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Editorial

Targeted cancer therapy: The initial high concentration may slow down the selection for resistance

Mikhail V. Blagosklonny

ABSTRACT

Unfortunately, any targeted therapy is, always, started with low levels of the drug in the organism, selecting for
drug resistance. One should propose that initial drug levels must be maximized, and durations may be
minimized, ideally, as portions of preemptive combination of targeted drugs.

To ensure rapid selection of drug resistance in the cell
culture, we first treat cancer cells with low drug
concentrations, increasing drug concentrations over
time. | hope no further explanation is needed.

In patients, treatment with targeted drugs is also
mistakenly designed to expedite the selection of
resistance, a fact that may shock my readers. Initially,
cancer cells are exposed to low drug concentrations,
which are then increased. This is achieved simply by
administering the same daily dose to patients from day
1. For example, Cabozantinib is taken once daily.
Cabozantinib has a long terminal plasma half-life (~120
hours) and accumulates 5-fold by day 15 with daily
dosing.

| reiterate: the concentration increases 5-fold by day 15
due to its long half-life and consistent daily dosing of
one tablet.

Low initial concentrations can be avoided by taking 5
tablets on the first day and then continuing with 1 tablet
every week, for example. Another hypothetical
regimen is 3 tablets for every 3 days and then
discontinuing it. Levels of Cabozantinib remain high
for the next one to two weeks (post-treatment remained
activity).

Consider my case: | have multiple brain metastases
driven by METex14, effectively targeted by capmatinib,
the most selective and effective MET inhibitor.
Capmatinib selects for resistant secondary mutations in
the METex14 that can be targeted by Cabozantinib,
although it is less effective and selective than
capmatinib. It is possible that one of the metastases
contains at least one capmatinib-resistant cell with
secondary MET mutations, which could eventually
make the metastasis resistant to capmatinib.

In my case, | propose using 5 tablets of Cabozantinib
for 1 day every two months. Only 1 day every 2
months.

The mutant cell is exposed to relevant concentrations of
Cabozantinib for one to two weeks (post-treatment
remained activity).

Another example. Afatinib (EGFR/HER2-4 inhibitor) is
used to treat EGFR-mutant-dependent lung cancer (it is
not my case, as mine is METex14-dependent). Afatinib
has a half-life of 37 hours. Steady-state is achieved
within 8 days of once-daily dosing, with overall
accumulation ratios of 2.0-2.7 for C max and 2.5-3.4
for AUC. Instead, we should achieve Steady-state on
day 1. In some cases, the first day levels should be
higher than ever further and the course of treatment may
be brief.

In my case, the most common off-target mechanism of
resistance involves overexpression of EGFR and HER2-
4. | prefer very high dose treatment with afatinib for just
1 days in combination with capmatinib. After stopping
afatinib, its levels remain high for several additional days
(post-treatment remained activity), and capmatinib must
continue to be used. Afatinib alone is ineffective in my
case (METex14), but afatinib targets potential resistance
to capmatinib. (Note: Without capmatinib, METex14-
positive cells would not be killed by the off-target
resistant drug. A combination of two drugs must be used,
including high levels of afatinib post-treatment).

Another example: trametinib (an MEK inhibitor) is
usually given 1 tablet (2 mg) every day from day 1. The
estimated elimination half-life is 3.9 to 4.8 days.
Trametinib accumulates with daily repeat dosing with
the accumulation ratio of 6.0. Steady state was achieved
by day 15. This is reminiscent of Cabozantinib.

One may suggest that steady-state-like levels (or even
higher levels) may be required for the very beginning of
treatment. Especially, in brief applications use. For
drugs with long half-life, the drug may be given only on
day 1 because high levels of the drug remain for a long
time in the organism, no matter what. These are post-
treatment levels and | call this the reversal level curve
(Figure 1). | suggest to use reversal schedules in
targeted drug combinations (Figure 2). I’ve depicted the
schema I have used for me for very specific reasons that
are beyond the topic of this editorial (My battle with
cancer: exceptional chapters from part II). It is worth
mentioning that inhibition of MEK and mTOR should
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be used together, because rapamycin may activate
MEK, and Trametinib may activate the mTOR pathway.

In conclusion, to decelerate the acquisition of drug
resistance, targeted therapy must immediately target the
tumor at a higher than steady-state drug concentration.
The courses may be brief, if the doses are high, but that

A
% standard
» application
5 reverse
application
o
<
D
7y

is a topic for another story. Importantly, as previously
discussed, targeted drugs should be used in appropriate
combinations [1, 2].

Starting treatment with a higher dose is common in
medicine. For instance, starting with high doses is
typical for antibacterial antibiotics to avoid resistance.

days

days

Figure 1. Reverse dose application. (A) The drug is given every day 1 tablets. (B) The drug is given on day 1 only 6 tablets (just one as an

example).

4
tablets

20
Rapamycin

Capmatinib (800 mg/d)

3
tablets

1 3 8

I tablets

Capmatinib (800 mg/d)

14 days

Figure 2. One of my targeted combinations. Capmatinib — standard everyday use. All other medications - reverse dose application -are

given on day 1 only. The number of tablets on day1 are shown.
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Often, antibiotics are used at double (or higher) doses
on the first day, as a high single dose, or even
intravenously.

Also, rapamycin is given at a loading dose on the first
day, which is three times higher than the maintenance
dose in organ transplant patients. For another example,
dexamethasone is often started with a load.

Appendix

“My battle with cancer. Part 1.” Oncoscience. 2024
Jan 3; 11: 1-14.

Abstract:

In January 2023, diagnosed with numerous metastases
of lung cancer in my brain, | felt that I must accomplish
a mission. If everything happens for a reason, my
cancer, in particular, 1 must find out how metastatic
cancer can be treated with curative intent. This is my
mission now, and the reason | was ever born. In January
2023, | understood the meaning of life, of my life. | was
born to write this article. In this article, 1 argue that
monotherapy with targeted drugs, even when used in
sequence, cannot cure metastatic cancer. However,
preemptive combinations of targeted drugs may, in
theory, cure incurable cancer.
https://www.ncbi.nIm.nih.gov/pmc/articles/PMC107654
22/

Forthcoming “My battle with cancer: exceptional
chapters from part I1.”

Abstract:

For a divine reason, | was destined for cancer with
multiple brain metastases: to create the book “My Battle
with Cancer,” a far-reaching endeavor for which | was
born. Surprisingly to others, | experience moments—no,
entire days—of happiness and joy. My journey through
cancer, as both a patient and a researcher, has gifted me
insights into cancer cures, born from a mind that
remains active, often even in sleep. Unfortunately, one
thing happened on May 20, 2024, hurting me, but this is
not a part of this book. Nevertheless, | am finishing the
book with the hope of increasing the lifespan to the
normal duration for future incurable cancer patients.
Among other topics, | propose preemptive combinations
of targeted drugs to prevent resistance to the key cancer
driver and thus sustain long-lasting remission;
classification of targeted combinations; intermittent
targeting; reverse dose applications; increasing targeting
of brain metastases; and the harmful effects of standard
WBRT, Avastin, and immunotherapy-induced hyper-
progression.
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ABSTRACT

At the very moment of cell-cycle arrest, the cell is not senescent yet. For several days in cell culture, the arrested
cell is acquiring a senescent phenotype. What is happening during this geroconversion? Cellular enlargement
(hypertrophy) and hyperfunctions (lysosomal and hyper-secretory) are hallmarks of geroconversion.

Epigraph culture conditions. Cellular mass (volume) growth is

driven in part by growth-promoting pathways such as
“Growth stimulation leads to cellular senescence when mTOR [6]. And this is how the anti-aging activity of
the cell cycle is blocked” [1]. rapamycin was predicted, before life-extension was

shown in animals [9].

Arrest is not yet senescence
Despite the obvious (acquisition of senescent phenotype

Not anything that causes arrest causes senescence. For takes time via active process), the existence of
example, serum withdrawal, contact inhibition, nutrient geroconversion is largely ignored by scientific
starvation and rapamycin cause reversible arrest Community. One of the reasons is that in cell CUlthe,
(quiescence) instead of senescence. What these geroconversion occurs automatically, unless actively
conditions have in common is that they inhibit cellular prevented by rapamycin, serum and nutrient
mass or volume growth and specifically inhibit the withdrawal, contact inhibition, severe hypoxia and some
mTOR pathway (Of note: in the cell Cu|ture, quiescent other factors (diSCUSSEd |ater). In 2011, it was pOintEd
cells will eventually succumb to senescence, because out that “In cell culture, cell cycle arrest typically leads
even rapamycin does not suppress geroconversion to senescence, because the cell is overstimulated by
completely). serum, nutrients, oncogenes and so on. Therefore, cell
cycle arrest is sufficient to cause senescence, especially
To induce senescence, DNA-damaging agents p21 and in cancer cells. This is why arrest of cell cycle is
p16 cause cell-cycle arrest. Freshly arrested cells do not confused with senescence” [10].
have senescent phenotype. During several days, the
arrested cells acquire a large, flat morphology, beta-Gal Growth stimulation drives senescence during
positivity —and  Senescence-Associated  Secretory cell cycle arrest
Phenotype (SASP) [2-4]. The acquisition of senescent
phenotype in arrested cells is known as gerogenic Nutrients, mitogens or growth factors (GF), hormones
conversion or geroconversion [4-8]. (e.g., insulin and testosterone),  cytoplasmic
oncoproteins, oxygen and other factors stimulate
Geroconversion is a continuation of cellular growth, growth-promoting pathways such as mTOR and
when the cell cycle is blocked [1]. It may also partially MAPK, which stimulate both cellular mass growth,
occur in proliferating cells and is overstimulated in cell cyclin D induction and cell cycle progression. In the

www.aging-us.com 905 AGING


mailto:Blagosklonny@oncotarget.com
mailto:Blagosklonny@rapalogs.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

absence of growth stimulation (e.g., GF or serum
withdrawal), MAPK and mTOR are deactivated. This
slows down both cellular mass growth and cell cycle
progression, and the cell becomes quiescent.
Re-addition of growth factors allows quiescent cells to
re-start proliferation [5, 6].

In proliferating cells, mTOR drives cellular mass growth,
and this growth in cell size is balanced by cell division
(Figure 1A). In quiescent cells, mTOR is deactivated, and
the cell cycle is arrested. What would happen if the cell
cycle were arrested, but mTOR is still active?

This condition can be caused by induction of CDK
inhibitors (p21 and p16), which block the cell cycle,
without affecting growth-promoting pathways such as
mTOR and MAPK [6].

When the cell cycle is arrested by p21/p16, then mTOR
drives growth in the absence of cell division, causing
cellular hypertrophy (a large, flat cell morphology),
lysosomal hyperfunction (beta-Gal-staining) and other
hyperfunctions such as SASP (Figure 1B). It also
increases tissue-specific hyperfunctions [6, 11].

Overactivated mTOR causes compensatory resistance to
growth factors and insulin, via the pS6K1/IRS feedback
loop [12, 13].

In cell culture, p21 and p16 cause cell-cycle arrest fast,
but, at the moment of the arrest, the cells are not yet

A Proliferating cells

(O
growth

senescent. During the next 3-5 days, the arrested cells
acquire the senescent phenotype [2-4]. This process is
called geroconversion.

In a typical cell culture, cells are overstimulated by
nutrients, serum and oxygen and grow in low cell
density, making mTOR maximally active. For
example, DMEM contains 5-fold higher than normal
blood levels of glucose, higher than even in diabetic
patients [13]. This is why it is sufficient to induce cell
cycle arrest to induce senescence, unless mTOR-driven
geroconversion is actively suppressed by serum
withdrawal and contact inhibition, which deactivate
mTOR [5, 14].

Pseudo-DNA-damage response in senescent cells

Molecular damage is not required for geroconversion
(like it is not required for growth). For example, p21
and pl16 (CDK inhibitors) and cause cell-cycle arrest
without causing DNA damage: p21 and pl6 directly
bind to CDKs to arrest cell cycle. Then still active
mTOR, MAPK and other growth-promoting pathways
convert this arrest to senescence (geroconversion).

During geroconversion, overactivated kinases such as
ATM phosphorylate H2AX, even in the absence of
DNA damage [15]. As suggested by Rybak et al. [16]
although DNA double-strand breaks always induce
vyH2AX, the reverse is not true: YH2AX is not an
unequivocal marker of these breaks [16-18].

() cmmons

division

—7
Yy

growth

p21/pl6
Hypertrophy

Beta-Gal, SASP

4

B Arrest
| mTOR
geroconversion
Arrested
cell

Hyperfunctions
Loss of PP

Senescent cell

Figure 1. Geroconversion as a form of growth. (A) Proliferating cells. Cellular enlargement (growth) is followed by cell division. mTOR
is shown as one of the drivers of growth. (B) Arrested cells. In the arrest cell (p21 and p16) cellular enlargement is followed by cell division.

mTOR is shown as one of the drivers of geroconversion.
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So, detection of yH2AX indicates that the cell may be
senescent but does not indicate that it is necessarily
caused by DNA damage. Unfortunately, it is not known
to most scientists.

Acute DNA damage can cause arrest, but it’s
not yet senescence

Acute DNA damage by radiation and DNA-damaging
drugs activates DNA damage response (DDR). While
DNA damage response (DDR) causes cell-cycle arrest,
it is growth-promoting pathways such as mTOR that
convert this arrest to senescent phenotype. (Figure 1B).

[Note: Life-long, gradual accumulation of DNA damage
(accumulation of mutations) does not lead to cell-cycle
arrest, but, in contrast, contributes to unlimited
proliferation, robustness and immortality in cancer
cells].

Once again, acute DNA damage or DDR in
proliferating cells can lead to cellular senescence,
because proliferating is associated with high activity
of growth-promoting pathways necessary for gero-
conversion. When DDR causes arrest, these growth-
promoting pathways drive geroconversion [19]. In
serum-starved quiescent cells, mTOR is inactive and
DNA damage cannot cause senescence. Growth
stimulation with serum then drives geroconversion [19].

In the organism, acute DNA damage, or DDR, can lead
to cell senescence by arresting proliferating cells. This
is an age-independent cellular senescence that may
occur at any age. This is also called non-adaptive cell
senescence [20].

In contrast, age-dependent cellular senescence may be
driven by life-long hyperfunction of growth-promoting
pathways, especially in arrested (post-mitotic) cells.

Proliferative potential

At first, the freshly arrested cells retain proliferative
potential (PP) and can re-start proliferation, if cell-cycle
arrest is lifted. Following geroconversion, senescent
cells cannot proliferate, even when cell-cycle arrest is
lifted. The senescent cell may re-enter the cell cycle but
cannot progress further or die in mitosis [2-4]. Loss of
PP is a marker of the senescent phenotype, and
rapamycin partially prevents loss of PP, as it partially
prevents other markers of senescent phenotype such as
cell hypertrophy, beta-Gal and SASP. Proliferative
potential should not be confused with proliferation. For
example, rapamycin inhibits proliferation but preserves
PP. When p16 and p21 were induced for one day and
then switched off, the cells resumed proliferation. If p16

was switched off after six days, cells remained
phenotypically senescent and could not restart
proliferation [2, 3]. Serum starvation [1, 19, 21] and
mMTOR inhibitors [1, 4, 22], prevent loss of PP during
arrest, caused by switchable p21/p16 and the synthetic
CDKA4/6 inhibitor Palbociclib (PD0332991).

The irreversibility of cell cycle arrest should not be
confused with Loss of PP. For example, Doxorubicin, a
DNA-damaging drug, can render cell-cycle arrest
irreversible, because doxorubicin cannot be easily
washed out from the cell. If arrest is irreversible, it is
impossible to know whether the cell retained (or not)
the proliferative potential.

Cell hypertrophy (enlargement) as a marker of
senescence

The large senescent morphology is the most noticeable
feature of senescence in cell culture [23] and in the
organism [24]. And it is not coincidental.
Geroconversion is a continuation (quasi-program) of
cellular growth [25]. At the beginning of gero-
conversion in p2l-arrested cells, cellular mass (protein
per well) is increased exponentially, and then growth
becomes linear in p21-arrested cells [26]. In agreement,
Neurohr et al. showed that within 9 days after
doxorubicin-induced arrest, cell size increased linearly
8-fold [21]. Similarly, linear increase in cell volume
was observed during arrest caused by the CDKi
Palbociclib, and this increase was completely prevented
by serum starvation [21]. Rapamycin partially decreases
hypertrophy during cell-cycle arrest caused by either
p21 or synthetic CDK inhibitors [4, 26]. Pan-mTOR
inhibitors more potently suppressed hypertrophy than
rapamycin [27, 28].

Thus, hypertrophy is only partially rapamycin-sensitive
[26, 27].
of

Excessive cell marker

geroconversion

growth as a

Geroconversion can occur not only in arrested but also
in proliferating cells, if growth stimulation is excessive.
For example, stem cells are small, and their size is
increased with aging [29], and excessive growth
stimulation drives stem cell geroconversion [7, 8].

It was even suggested that an increase in cell size by
itself can cause senescence [21, 29, 30]. According to
the geroconversion concept, excessive activation of
growth-promoting pathways (MAPK, mTOR, etc.,)
drives both excessive growth and other hyperfunctions
(SASP, lysosomal hyperfunction (beta-Gal), hyper-
differentiation). Furthermore, overactivated MAPK and

wWww.aging-us.com

907

AGING



mMTOR pathways may induce p53/p21 and cycle arrest
[31]. Following cell-cycle arrest, growth becomes even
more excessive. Excessive growth and other
manifestations of geroconversion are difficult to
dissociate, because the manipulations that decrease
growth (serum/nutrient starvation, rapamycin) also
block MAPK/MTOR network that drives ALL
manifestations together. This may suggest that cell size
drives senescence rather than hyperfunctional growth-
signaling drives senescence-associated hyprertrophy. As
suggested, excessive mitogen/growth-stimulation may
lead to hypermitogenic arrest [32] and then full-blown
cell senescence [9, 31].

Geroconversion as terminal differentiation

Geroconversion can also be viewed as hypertrophic
differentiation. For example, chondrocytes, responsible
for bone growth in length, become hypertrophic and
undergo senescence [33-36]. Like geroconvesrsion,
terminal differentiation is an active process associated
with decrease of proliferative potential [37], possible
beta-Gal-positivity [38] as well as hypertrophy [39, 40]
and increase of cellular functions, mainly tissue-specific
functions. Geroconversion can be called gerogenic
differentiation. This topic links the organismal/body
growth program, hypertrophic differentiation, and
geroconversion as a quasi-program of cellular growth and
developmentally programmed cellular senescence [20].

Developmentally programmed cell senescence

While cell senescence is a quasi-programmed in aging,
it may be programed in development [20, 41-45].
During mammalian embryonic development, senescent
cells are cleared by macrophages, resulting in tissue
remodeling [41].

Oncogene-induced senescence
Hyper-mitogenic stimulation may trigger cell-cycle

arrest and simultaneously promote size growth [32,
46-49].

How should we define cellular senescence?

Cellular senescence is neither functional decline nor
caused by chronic accumulation of molecular damage.
In contrast, cellular senescence is characterized by
universal hyperfunctions such as SASP plus tissue-
specific hyperfunctions (senescent beta-cells as an
example). Second, whether accumulation of molecular
damages (mutations) lead to cancer, cancer cells tend to
be immortal. A common definition of cellular
senescence as permanent loss of proliferative potential
does not recapitulate the most important features of

the senescent phenotype, such as hypertrophy and
hyperfunctions (e.g., SASP).

Cell senescence is a proliferation-like state in non-
proliferating cells.  Growth-promoting  pathways,
including mTOR and MEK/MAPK, drive both growth
and geroconversion. When actual growth is completed,
growth-promoting pathways drive cellular senescence
(Figure 1). Thus, a program of growth becomes a quasi-
program of senescence. (Quasi- means pseudo- or
“resembling but not real”). Senescent cells resemble
proliferating cells but do not proliferate [5]. As “Growth
stimulation leads to cellular senescence when the cell
cycle is blocked” the molecular hallmark of senescent
cells is presented: high levels of p21/p16, phospho-S6
and cyclin D1 [50]. Cell senescence is associated with
constitutive, proliferative-like activity of nutrient-
sensing and growth-promoting pathways such as mTOR
in non-proliferative (arrested) cells.

David Gems and Carina Kern suggested replacing the
term cellular senescence with remodeling activation,
and SASP with RASP [20]. The key word is activation.
According to hyperfunction theory, cellular senescence
(or remodeling activation) can be viewed as
hyperactivation, hyperfunction, hypertrophy, hyper-
differentiation.

In 2003, | proposed “that simultaneous stimulation of
mitogen-activated pathways and downstream inhibition
of cyclin-dependent kinases leads, ultimately, to cell
senescence” [32]. In other words, senescence occurs
when growth stimulation meets cell cycle arrest. In
agreement, Rapamycin and other rapalogs (Everolimus
and Ridaforolimus), pan-mTOR inhibitors [27, 28] and,
to a lesser extent, MEK, PI3K, mdm-2 and S6K
inhibitors all slow down geroconversion in mammalian
cells [1, 22, 26, 51-55].

Numerous studies further confirmed that mTOR is
involved in the senescence phenotype [56—69].

Regardless of whether cellular senescence contributes to
organismal aging or not, the geroconversion cell culture
model is a prototype of the hyperfunction theory of
quasi-programmed aging. The geroconversion model
introduces the notion of a quasi-program of growth and
hyperfunction. Regardless of mechanistic link (or its
absence) between cellular senescence and organismal
aging, they are analogies. The same pathways that drive
geroconversion are involved in organismal aging and
age-related diseases. The same drugs that slow down
geroconversion also extend lifespan, as tested in
animals so far. Targets of gerostatics (e.g., mTOR,
PI13K) are involved in aging of animals from worm to
mammals. Therefore, gerostatics are anti-aging drugs.
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The model of geroconversion is useful to discover
anti-aging drugs.
of

Organismal aging as

developmental growth

quasi-program

Like geroconversion is a continuation of cellular
growth, the organismal aging is a continuation of
developmental growth (see Figure 1 in reference [70]).
Aging is not programmed, it is quasi-programmed. A
quasi-program is a purposeless continuation of
programs that were not turned off upon their
completion. This has been discussed in detail [9, 50,
71-75].

Growth and aging are driven by overlapping signaling
pathways. As suggested in 2007, “mTOR stands out
because (a) it is a hub in the signaling network, (b) it is
conserved from plants to animals (c) its inhibitors,
rapamycin (Sirolimus) and everolimus, are clinically
available drugs” [76]. To be clinically useful, the
hyperfunction theory is mTOR-centric.
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ABSTRACT

There is no doubt that prostate cancer is a disease. Then, according to hyperfunction theory, menopause is also a
disease. Like all age-related diseases, it is a natural process, but is also purely harmful, aimless and unintended
by nature. But exactly because these diseases (menopause, prostate enlargement, obesity, atherosclerosis,
hypertension, diabetes, presbyopia and thousands of others) are partially quasi-programmed, they can be
delayed by slowing aging. Is aging a disease? Aging is a quasi-programmed disease that is partially treatable by
rapamycin. On the other hand, aging is an abstraction, a sum of all quasi-programmed diseases and processes. In
analogy, the zoo consists of animals and does not exist without animals, but the zoo is not an animal.

Prostate cancer to urinate and kidney damage and, if left untreated,
to death. Benign prostatic hyperplasia can be
Prostate cancer is an age-related disease. Every man detectable by the age of 30. Between 30 and 50 the
would be diagnosed with prostate cancer, except that prostate grows in size, with a doubling time of 4.5
most men do not live long enough, dying from other years. Between 51 and 70 years old, the doubling
age-related diseases. The frequency of prostate cancer time is around 10 years [6]. Thus, the prostate is
detected by autopsy is 30-fold higher than mortality enlarged in every aging man, and therefore it is a
from prostate cancer so that “more men die with “normal” disease, occurring in everyone, often
prostate cancer than because of it” [1]. Among men asymptomatic.
aged 70-79, a tumor is found by autopsy in 36% of
Caucasians and 51% of African-Americans [1, 2]. The Early in puberty, the prostate doubles in size, and its
older the man, the higher frequency of autopsy-detected secretory function is increased to produce prostate
prostate cancer. The frequency of high-grade prostate fluid. During puberty, the prostate reaches the required
cancer doubles every ten years [1]. size and function, but it continues to grow without
purpose, becoming eventually hypertrophic, hyper-
Puberty is critical for susceptibility to prostate cancer plasic and hyper functional. The disease is quasi-
later in life [3]. Older age at sexual maturation is linked programmed, a continuation of the developmental
to a decreased risk of prostate cancer later [4, 5]. Thus, growth and reproductive program that was not
prostate cancer is partially quasi-programmed (it will be switched off upon its completion. Quasi-programs are
discussed later) in puberty and would develop almost in purely harmful and unintended by nature, but they are
everyone, if other causes of death did not exist. a continuation (or a byproduct) of essential programs,
so natural selection is powerless to eliminate them.
Prostate enlargement or BPH (Note: The force of natural selection is negligible late
in life, so selection is very weak against quasi-
Benign prostatic hyperplasia (BPH) is the most programs. Natural selection is maximally strong for
common age-related disease in men. An enlarged growth and reproductive programs, and quasi-
prostate can block the urethra, leading to an inability programs are by-products).
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Cellular hyperfunctions drive prostate growth and,
ultimately, benign prostate hyperplasia (BPH).
Hyperproliferation of epithelial and stromal cells,
leukocyte infiltration, inflammation and other hyper-
functions lead to BPH. Hypersecretory phenotype
(hyperfunction) also known as senescence-associated
secretory phenotype (SASP) contributes to the
development of BPH [7, 8]. Prostatic inflammation
(hyperfunction) stimulates prostatic growth and
progression of symptoms [9].

mMTOR drives cellular size growth, hyper-inflammation,
senescent and hyper-secretory phenotypes [10-17].
Therefore, rapamycin (Rapatar) prevents prostate
hypertrophy and hyperplasia and reduces inflammation
in rat models of BPH [18].

Atherosclerosis

Atherosclerosis is driven by hyperfunction of numerous
cell types, acting locally and distantly. Thus, activation
of endothelial cells, smooth muscle cells (SMC) and
macrophages contributes to the formation of
atherosclerotic plaque. Hypertrophy and hyperplasia of
SMC and hypertrophic transformation of macrophages
(foam cells) are hallmarks of atherosclerosis.
Hyperfunctional blood platelets interact with the arterial
wall, accelerating atherosclerosis and thrombosis.
Adipocytes and hepatocytes hyperproduce atherogenic
lipoproteins and cytokines. Hyperlipidemia, hyper-
glycemia,  hyperinsulinemia, and  hypertension
contribute to  atherosclerosis.  Atherosclerosis is
associated with all other diseases of aging, especially
hypertension, type 11 diabetes and obesity.

Atherosclerosis originates in childhood and progresses
throughout life [19]. It occurs in everyone. It is a
hallmark of aging and a “normal disease”.

Clinical manifestations of atherosclerosis, cardio-
vascular diseases, are the main causes of death in
humans. The path from cellular hyperfunction that
causes atherosclerosis, hypertension and thrombosis to
myocardial infarction is shown in Figure 2 in ref. [20].

Rapamycin (sirolimus) and its analog (everolimus)
attenuate atherosclerosis in mice [21] and rabbits [22].
According to a prospective randomized controlled trial,
rapamycin (sirolimus) decreased carotid atherosclerosis
in humans [23].

Menopause

Some age-related diseases are so program-like that they
are considered to be the norm. Menopause happens in

every woman (the average age at menopause is 51,
according to the North American Menopause Society),
and therefore it is not commonly viewed as a disease. But
atherosclerosis and prostate enlargement (and all age-
related diseases) also happen in everyone. One may argue
that menopause is not as deadly as cancer. However, it is
deadlier than osteoarthritis and Alzheimer’s disease.
Menopause promotes cardiovascular diseases (CVD)
osteoporosis, obesity, type Il diabetes and other diseases
[24, 25]. Needless to say, loss of reproductive function is
highly disadvantageous from an evolutionary point of
view (we will discuss the grandmother hypothesis in the
next section).

One may argue that menopause occurs too early in life
compared with prostate cancer and Alzheimer’s disease,
for instance, to be called disease. However, premature
menopause is considered a disease. By arbitrary
definition, it occurs before the age of 40 years, or two
standard deviations in years before the mean
menopausal age of the study population [26].

Regulation of the menstrual cycle is very intricate and
vulnerable, and hormonal hyperstimulation can disrupt
the cycle. Even low doses of estradiol and progesterone
are contraceptive. The famous contraceptive “Plan B”,
a progestin, disrupts the menstrual cycle and prevents
pregnancy by a single dose. (Note: in comparison, the
regulation of a male reproduction function is much
simpler, explaining why men do not lose it as much as
women do with age).

Not surprisingly, hyperfunction of the hypothalamic-
pituitary-ovarian axis eventually dysregulates the
system and causes ovarian failure (see Figure 3 in ref.
[27]). The menstrual cycle is tightly-regulated by
numerous hormones, cell types and organs. Luteinizing
hormone (LH) and follicle-stimulating hormone (FSH),
produced by the pituitary gland, stimulate ovulation and
the production of estrogens and progesterone by the
ovary. For example, FSH stimulates follicles,
production of ova and estrogens. Before puberty, the
levels of both FSH and estrogens are low. To start the
menstrual cycle, production of FSH is increased,
stimulating the ovaries and estrogen production.
Activation of follicles from the dormant pool serves as
the source of fertilizable ova. With age, levels of FSH
continuously increase, hyper-stimulating the ovaries
[28], causing more follicles to be recruited
simultaneously (see Figures 3—4 in ref. [27]).

Hyper-stimulation of follicle recruitment leads to
follicular depletion and ovarian failure.

Thus, stimulation of FSH is initiates puberty, and its
continuous hyperfunction accelerates menopause. Since
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the quasi-program of menopause is a continuation of
puberty, mTOR, a central regulator of the onset of
puberty, accelerates the onset of both puberty [29] and
menopause in animals [30-32].

By activating mTOR, obesity accelerates ovarian
follicle development and follicle loss in rats [33]. By
inhibiting mTOR, calorie restriction delays puberty and
extends reproductive lifespan in rodents [34, 35].
Overactivated mTOR activates the entire primordial
follicle pool, and, subsequently, all primordial follicles
become depleted in early adulthood, causing premature
ovarian failure (POF) in mice [30-32].

Rapamycin preserves the follicle pool reserve and
prolongs the ovarian lifespan in female rats [36] and
mice [34, 37, 38]. mTOR is overactivated in the
peripheral blood cells of women with premature ovarian
insufficiency [39].

Critique of the grandmother (great-great-grand-
mother hypothesis) hypothesis

As we discussed in the previous section, menopause is a
byproduct of the reproductive program that initiates
puberty. The same process that turns the menstrual
cycle on in puberty becomes hyperfunctional, damaging
the reproductive system and (unintentionally) switching
it off. As are all age-related diseases, menopause is
purely harmful and provides no benefits.

Some prominent gerontologists, however, hypothesize
that menopause is adaptive and intended by natural
selection to prevent older women from reproduction and
thus redirect their efforts to help daughters to raise
grandchildren [40]. Unless a daughter is a modern
working mom, rather than a prehistorical female, this
hypothesis makes no sense.

First, the natural age of grandmothers is 28, whereas
menopause occurs at 51. Then the hypothesis should be
renamed as great-great-grandmother hypothesis. The
genetic similarities of a woman with great-grand-
children are less than with nephews and nieces.

Second, the best possible help would be breast feeding.
However, post-menopausal women cannot get pregnant
and therefore cannot lactate. If nature selects for caring
for grandchildren, elderly women should produce milk
or become pregnant to produce it.

Third, only maternal grandmothers increase grand-
children’s survival, whereas paternal mothers decrease
it. The presence of paternal grandmothers (mothers-in-
law) is detrimental to grandchild survival or well-being

[41-44]. In most societies, a wife would likely live with
a parental grandmother.

Fourth, only a minority of pre-historical females lived
long enough to become great-great-grandmothers. Even
300 years ago in England, only 25% of people survived
to the age of 26. How many would survive until
menopause? It is commonly argued that hunter-gatherers
lived as long as modern people. Although the maximal
lifespan can be the same, due to accidental causes of
death, the median lifespan of any species in the wild is
much shorter than in a protected environment
(laboratory animals and modern humans). It does not
matter how long some survivors live after menopause,
what is important is that most died before it.

If only one of these arguments is correct, the
grandmother hypothesis has little value. The list can go
on [45]. Some observations cannot be reconciled with
the grandmother hypothesis. Older women have an
increased chance of giving birth to twins and triples
[46]. Furthermore, the outcome of such pregnancies in
older mothers are better than in younger mothers [47,
48]. Why is declining fertility is associated with the
increasing twinning rate? It is in agreement with
hyperfunction theory. Hyperstimulation with FSH leads
to multiple ovulation and a higher incidence of twins
and triplets with age [46].

If menopause were adaptive, it would be conditional in
the presence of grandchildren, but not in their absence.
Conditional control is easy to achieve, even a single
spike of sex steroids is sufficient to do the trick (this is
exactly what a single pill of birth control pill like
“plan B”, a progestin, does).

If nature equipped women with menopause to take care
of grandchildren, why then does it impair their vision?
Presbyopia, or age-related farsightedness, develops in
humans by the age of female menopause. Is presbyopia
an adaptive program as well? Like menopause,
presbyopia is quasi-programmed; the ability to focus on
near objects declines from childhood to adulthood, and
its continuation culminates in presbyopia. By the time
of menopause, presbyopia occurs in everyone. It is
purely harmful and is treated by glasses (as a disease
should be treated).

Male fertility gradually decreases with aging. Men do
not have menopause, because men do not have a
vulnerable menstrual cycle to start with (similarly,
women do not have BPH).

Finally, consider a parody “grandfather hypothesis™ that
prostate hyperplasia develops in order to make men
urinate in the middle of the night and thus protect
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grandchildren from lions. | hope it is not taken
seriously, just as the bizarre grandmother hypothesis
should not be either.

Age-related diseases happen, potentially, in everyone

It is difficult to define a disease, especially an age-
related disease [49, 50]. For example, osteoporosis and
obesity were not officially recognized as diseases until
1994 and 2013, retrospectively. Whether we define age-
related alterations as a disease depends on political,
cultural, financial, medical and social reasons.

The main objection to considering age-related diseases
such as menopause and presbyopia as diseases is that
they happen to everyone. However, disease does not
need to be rare to be a disease. For example, everyone
may be sick with influenza during their lifetime, but it
does not make it any less a disease. Furthermore, no
definition of disease includes the requirement that it
should not affect everyone.

All age-related diseases happen either in everyone (for
example, prostate enlargement in men and athero-
sclerosis) or would happen in everyone (Alzheimer’s
disease and cancer), if one does not die from a competing
disease. For example, a human may suddenly die from
myocardial fibrillation due to coronary atherosclerosis
at the age of 60, but if one were saved and properly
treated, they may be diagnosed with Alzheimer’s
disease, and die from cancer at the age of 80.

Age-related diseases are quasi-programmed

Age-related diseases occur to everyone, and, therefore,
no one is immortal.

They happen in everyone because they are quasi-
programmed in development, a continuation of growth
and reproductive programs. External (environmental)
factors and genetic predispositions also play a role,
making certain age-related diseases manifest at different
times or even not manifest at all in a lifetime.

For example, hypertension is a continuation of
developmentally increased blood pressure from the
newborn (blood pressure 64/41 mmHg) to the adult.
Hypertension can also be viewed as a quasi-program of
growth upon its completion. In fact, accelerated
postnatal growth leads to higher blood pressure later in
life [51]. Yet, external factors such as alcohol and
smoking may accelerate the development of
hypertension [52].

Cancers are the least quasi-programmed among all
aging-related diseases because of the critical role of (a)

external factors (e.g., smoking) that cause mutations and
(b) inherited genetic susceptibility. In prostate
enlargement, in comparison, environmental and genetic
factors play a lesser role, and the prostate becomes
hyperplastic and hypertrophic in everyone.

External factors and genetic variations may accelerate
and aggravate quasi-programmed diseases. In humans,
the role of external factors and genetic variability may
obscure quasi-programmed nature of diseases. In
genetically identical C. elegans at identical conditions,
age-related diseases are clearly quasi-programmed
[53-57].

Age-related diseases are hyper-functional

Age-related diseases are driven by hyperfunctions on
different levels: from signal-transduction pathways, to
cells and tissues, to systems and organs. These
hyperfunctions eventually damage tissues and organs,
causing secondary loss of function. Hyperfunction is a
function that was not turned off upon its completion
[58]. (Note: Hyperfunction is not necessarily an absolute
increase in function but may even be a decrease if it is
still higher than optimal for longevity [59]). For
example, mTOR drives cellular growth, but when the
cell cycle is blocked, and mTOR is not turned down,
then it drives the senescence phenotype associated with
hyperfunctions such as SASP and proinflammation [60].
Cellular hyperfunctions are tissue-specific: osteoclasts
resorb the bone, thus leading to osteoporosis; fibroblasts
and immune cells cause proinflammation, associated
with most age-related diseases; constriction of arterial
SMC causes coronary artery spasm; blood platelets form
clots. On systemic levels, hyperfunctions include
hyperinsulinemia, hypertension, hyperglycemia, hyperl-
ipidemia and others.

Cellular hyperfunction inevitably leads to age-related
diseases and then to organ failure and secondary
functional decline [61]. For example, hyperfunctional
cells promote atherosclerosis, hypertension, arterial
spasm, thrombosis, culminating in myocardial infarction,
which, in turn, causes loss of function [20, 62].

MTORC1-dependent beta-cell hyperfunction culminates
in beta-cell exhaustion (diabetes) [63-65]. Ovarian
overactivation leads to follicular exhaustion and
menopause [27, 30-32, 34, 36-38].

Hyperfunctional phases of pre-diseases are often
asymptomatic, while their consequences — loss of
function — are always symptomatic. Even classic
diseases, such as hypertension, may have mild
symptoms until damage occurs (stroke, myocardial
infraction, heart or renal failure).
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Functional decline in athletic performance [66] can
precede official age-related diseases. Such an early-life
decline is not caused by recognized age-related
diseases. Early-life hyperfunctions are unrecognized.
They are asymptomatic, until causing mild functional
decline in athletic performance in everyone. Secondary
loss of function can be observed early in life due to
unnamed hyperfunctions.

Is aging a disease?

According to conventional views, aging is a risk factor
for developing disease. It is believed that aging can be
healthy (without diseases) and that humans can die
either from aging or from diseases. It was claimed,
“aging should be strongly considered not to be a disease
and as such should not be treated” [67].

According to hyperfunction theory, aging is not a risk
factor, aging is the sum of all age-related diseases. There
is no aging without these diseases. So-called “healthy”
aging is slow aging observed in centenarians, who
develop diseases later in life. But no centenarian dies
from old age, all die from age-related diseases [68—70].

Like quasi-programmed diseases, aging is a natural
continuation of developmental programs that were not
switched off upon their completion. Aging is the sum of
all quasi-programmed diseases. As David Gems put it,
aging versus disease is a false dichotomy [71].

Aging is natural. Natural process is a disease, if it leads
to death or functional decline [50, 71, 72]. A natural
process, such as atherosclerosis, is a disease, whereas an
unnatural process, such as a car accident, is not a
disease. All age-related diseases are natural, and
therefore we are mortal.

Aging is driven, in part, by hyperfunctional signaling
pathways, such as the nutrient-sensing and growth-
promoting mTOR pathway. Inhibition of the mTOR
pathway by genetic, pharmacological and other means
extends lifespan in numerous species and decelerates
development of age-related diseases [73-75].

As suggested in 2006, “Once development is
completed, a program for development is not switched
off, thus becoming a quasi-program for aging. This
hyper-functional quasi-program is manifested as
diseases of aging, leading to organ damage and
secondary decline.” [58]. (Note: Secondary decline is
the most visible manifestations of advanced aging).

So, is aging a disease?

On one hand, aging is a progressing disease with 100%
mortality rate. It can be treated (as a disease) with

rapamycin, for instance. Diseases can be prevented by
slowing down aging [58]. Potential anti-aging drugs
could be tested by slowing diseases. Disease or not,
aging is as treatable as a disease [76].

However, aging is not a specific disease, but the sum of all
age-related diseases, including both life-limiting (e.g.,
diabetes, cancer and CVD) and non-life-limiting (e.g.,
osteoarthrosis and gray hair). It is a form of complex
disease syndrome [71]. Using an analogy, is the American
people a human? Is it a man or a woman? The people
consist of all men and women; each of them is a human.
But the people are not a human, neither a man nor a
woman. Similarly, aging consists of all quasi-programmed
alterations, age-related pre-diseases and diseases, early
unrecognizable diseases that manifested as early functional
decline, cosmetic conditions, and others. The aging
process is the common mechanism of all diseases.

Given that aging is a sum of all age-related diseases, it
can be called aging syndrome, or aging.

Aging seems mysterious, if one is studying so-called
“healthy” or “successful” aging. One can subtract
disease after disease until nothing is left. No aging. It is
like subtracting every man and woman from the
American people until nothing is left. Aging looks
quasi-programmed, because it consists of quasi-
programmed diseases that are driven by hyperfunctions
that culminate into organ/system failure (and secondary
loss of function). Aging behaves as the sum of all
diseases. And this sum can be prevented by inhibiting
the common mechanism that we call aging. Aging is
driven by the same processes as diseases: from over
stimulated signal-transduction pathways to cellular
hyperfunction, systemic hyperfunction leading to organ
failure (secondary functional decline). To understand
aging, we should depict the pathogenesis of overlapping
age-related diseases driven by hyperfunctional signals
and cells towards organ damage. Aging is a collection
of processes that drive quasi-programmed diseases.
Preventive medicine that targets early hyperfunctional
stages of a group of overlapping diseases is an anti-
aging medicine. Aging can be understood through the
development of all quasi-programmed diseases.
Treatments that prevent age-related diseases partially
prevent aging and vice versa [71, 77].
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ABSTRACT

A thought-provoking article by Gems and de Magalhdes suggests that canonic hallmarks of aging are superficial
imitations of hallmarks of cancer. | took their work a step further and proposed hallmarks of aging based on a
hierarchical principle and the hyperfunction theory.

To do this, | first reexamine the hallmarks of cancer proposed by Hanahan and Weinberg in 2000. Although six
hallmarks of cancer are genuine, they are not hierarchically arranged, i.e., molecular, intra-cellular, cellular,
tissue, organismal and extra-organismal. (For example, invasion and angiogenesis are manifestations of
molecular alterations on the tissue level; metastasis on the organismal level, whereas cell immortality is
observed outside the host).

The same hierarchical approach is applicable to aging. Unlike cancer, however, aging is not a molecular disease.
The lowest level of its origin is normal intracellular signaling pathways such as mTOR that drive developmental
growth and, later in life, become hyperfunctional, causing age-related diseases, whose sum is aging. The key
hallmark of organismal aging, from worms to humans, are age-related diseases. In addition, hallmarks of aging
can be arranged as a timeline, wherein initial hyperfunction is followed by dysfunction, organ damage and
functional decline.

Hallmarks of cancer: comparing apples and
oranges

As depicted by Hanahan and Weinberg in 2000 [1], the
circle schema of six hallmarks of cancer somewhat
compares apples and oranges https://els-jbs-prod-
cdn.jbs.elsevierhealth.com/cms/attachment/428dbc2e-
657¢-429d-9814-9910c7df1678/grl_Irg.jpg.

The hallmarks themselves are exact, but they are not
equal. For example, limitless replicative potential (cell
immortality) cannot be directly compared to sustained
angiogenesis. Cell immortality is revealed outside the
host (extra-organismal level), for example, in cell
culture where clonal cell lines can proliferate
indefinitely without interaction with normal tissues. In
contrast, sustained angiogenesis requires interaction of
cancer cells with normal cells of several tissues.

Angiogenesis can be only understood on the tissue
level.

Second, cancer cells undergo Darwinian-type selection
[2] for resistance to anti-growth signals, resistance to
apoptosis and self-sufficiency in mitogenic signals. This
trio represents three out of six hallmarks of cancer [1].
They can be combined in one super-hallmark: resistance
to growth-limiting conditions [3]. (Note: The definition
of oncogenic resistance to growth-limiting conditions
was discussed previously [4]). Not only resistance to
apoptosis and anti-growth signals but also self-
sufficiency in mitogenic signals render cells resistant to
growth-limiting conditions. Examples of growth-
limiting conditions include lack of external mitogenic
signals, cytostatic cytokines such as TGF-beta,
cytotoxic carcinogens such as tobacco smoke, anti-
cancer drugs, contact inhibition, glucose deprivation,
cellular senescence, hypoxia, absence of nutrients and
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growth factors [5, 6]. For example, glucose deprivation
selects for oncogenic Ras [6].

Whereas normal cells do not proliferate in growth-
limiting conditions, cancer cells do. Resistance to
growth-limiting conditions provides an immediate
selective advantage. But what immediate advantages
can be provided by cellular immortality? The cell
cannot tell the future, that it will live in cell culture one
day. Cellular immortality is selected indirectly as
derived hallmarks [3], because the same mutations that
provide resistance to growth-limiting conditions also
make cells immortal, angiogenic, invasive and
metastatic [1, 7, 8]. Cellular immortality, angiogenesis,
invasion and metastasis are derived hallmarks.

Third, molecular alterations (e.g., DNA mutations) are
absent in the six-hallmark circle by Hanahan and
Weinberg [1]. As discussed by Gems and de Magalhaes,
the hallmarks do not include mutations (or genetic
instability) because this hallmark is implicitly taken for
granted [9]. In fact, Hanahan and Weinberg called it an
enabling hallmark in their revised paper published in
2011 [7].

In 2005, 1 explicitly included the molecular hallmark
(mutations) and suggested the hierarchical principle to
arrange these hallmarks from molecular to organismal

Hierarchical model of hallmarks of cancer:
arranging the oranges

Here 1 present the hallmarks of cancer, depicted as a
circle by Hanahan and Weinberg [1], not as the circle
but hierarchically, from molecular levels to the
organism (Figure 1).

Molecular level: Somatically inheritable molecular
alterations.

Genome instability is an enabling hallmark of cancer
because it enables the acquisition of molecular
alterations, such as DNA mutations, aneuploidy and
epigenetic alterations [7]. Vogelstein et al. suggested
that a typical human tumor contains relatively few
driver gene mutations that each confers a growth
advantage of 0.4% and numerous passenger gene
mutations that confer no selective advantage [8, 10].

Intracellular  signaling pathways:
translation of ambivalent signaling

Oncogenic

Signal-transduction pathways are ambivalent, causing
opposite outcomes depending on cellular context.
Oncogenic mutations re-wire signal transduction
pathways. For example, MAPK pathways can
simultaneously induce cyclin D1 and CDK inhibitors,
leading either to cellular proliferation or senescence

DNA mutations and other somatically inheritable molecular alterations,

levels [5].
Ex-organism| Immortality: Cell lines in vitro and
Free-living cancer-cell parasites spreading from animal to animal
Derived o . Metastasi
haIImarks rganism etastasis
Tissue Invajsion .
Angiogenesis
Selective
Driver Cellular| Resistance to growth limiting conditions:
hallmark Pressure Resisting growth suppressors and cell death, proliferative signal
Pathways | Oncogenic translation of ambivalent signaling: activation
Enabli by mutations of growth-promoting and anti-apoptotic pathways
nabling
hallmarks
Molecular
Genetic instability

Figure 1. Hierarchical representation (from molecular to organismal levels) of the original hallmarks of cancer based on

Hanahan and Weinberg. See text for explanation.
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[11]. Inactivation of CDK inhibitors such as pl6 may
translate this ambivalent signaling into proliferation [3,
12]. TGF-beta inhibits normal cell proliferation, but in
cancer it can induce proliferation and invasion [7, 13].

Growth-promoting and  mitogen/nutrient-sensing
signaling pathways are constantly activated by
mutations to promote growth and proliferation as well
as self-sufficiency in mitogen signaling. This, in turn, is
manifested as three hallmarks of cancer on the next
hierarchical level: cellular. This trio can be combined as
one super-hallmark of resistance to growth-limiting
conditions.

Cellular level: Resistance to growth-limiting
conditions

Oncogenic mutations make cancer cells resistant to
growth-limiting conditions (a definition of oncogenic-
type of resistance was discussed previously [4]). This is
the driver hallmark of cancer because it provides a
selective advantage to cancer cells. Cells, capable of
proliferation, are unicellular organisms in a Darwinian
sense [2, 14, 15]. Selection can be “natural” (during
carcinogenesis) and “artificial” (during cancer therapy)
[14, 16]. For example, selection for therapy resistance
increases oncogenic properties of cancer cells because
many mutations in oncogenes and tumor suppressors
that render cells drug-resistant also make them more
oncogenic [5, 17-19]. Simultaneously, the same
combination of mutations enables metastasis and other
higher-level hallmarks. There is no direct selection for
metastatic potential, angiogenesis and immortality.
They are derived hallmarks.

Tissue level: Invasion and angiogenesis

Cancer cells produce cytokines and enzymes, which
enable the cells to invade and to attract normal cells of
different tissues in order to sustain angiogenesis [7].

Organismal level: Metastasis

Metastasis is the deadliest hallmark of cancer. Yet, there
is no direct selection for metastatic potential. Direct
selection for metastatic potential could take place only
if metastases produced new metastases; in other words,
if metastases reproduce. Simply, selection for cells
resistant to growth-limiting conditions (survival and
proliferation) brings about mutations that confer not
only resistance, but also metastatic potential. There are
no specific “metastasis” genes [8, 20]. They are the
same oncogenes and tumor suppressors that act on
cellular levels for the “trio” hallmark. Let us consider an
analogy. If we select people for their ability to run
faster, these selected people will also jump higher than

average, although selection was not for jumping ability.
The fastest runners are the farthest jumpers.

Extra-organismal level: Cellular immortality

Some cancer cell lines live for more than half of a
century in cell culture and for thousands of years in the
wild. Originating in one animal, viable cancer cells are
directly transmitted into unrelated hosts in a process
similar to metastasis [21, 22]. Transmissible cancers
have been observed in domestic dogs, the Tasmanian
devil, hamsters and six bivalve species such as the soft-
shell clam [23]. Canine transmissible venereal tumors
(transmitted during sexual intercourse) may have
originated thousands of years ago from the cells of a
wolf or East Asian breed of dog [21-25]. The
Tasmanian devil facial tumor disease [24] spreads
through the Tasmanian devil population by transfer of
cancer cells through biting [22]. [26]. Derived from a
single original clam, leukemia-like cancer spreads
among marine bivalves through sea water, leading to
massive population loss [23, 27].

Six levels rather than six hallmarks

The number of hallmarks of cancer is arbitrary. Some
can be combined, and others can be added. Numerous
authors have re-visited the hallmarks of cancer, adding
hallmarks or suggesting a new set of hallmarks [28-37].

Some hallmarks of cancer may be pseudo-hallmarks.
For example, visiting an oncologist is a “hallmark” of
cancer. We can be 99% sure that if someone has 20
appointments in an oncology clinic, then this person has
cancer. However, it would be ridiculous to include this
pseudo-hallmark in Figure 1. And the hierarchical
principle makes this impossible, because there is no
level (among the six levels) to include it.

Hallmarks of aging

To start with, let us depict the hallmarks of aging
suggested by Lopez-Otin et al. [38] based on the
hierarchical principle. This representation renders
hallmarks tangible but reveals three shortcomings
(Figure 2).

First is the lack of hallmarks on the organismal level.
Yet, the main hallmark of organismal aging is age-
related diseases in all species from C. elegans [39—42]
to humans [39, 43]. Aging is the sum of all age-related
diseases, which cause death “from aging”.

Second, the relationship between hallmarks on different
levels are unclear.
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Third, the inclusion of genetic instability as a hallmark
is based on the theory that aging is caused by
accumulation of molecular damage. The molecular
damage theory was refuted by key experiments, as
discussed in detail [44-51].

Yes, damage accumulates and is harmful and potentially
lethal [52-55] but it is not life-limiting because aging
caused by hyper-functional signaling terminates life
first. The reason why mTOR-driven aging is life-
limiting has been discussed [49, 56, 57].

It was also suggested that the levels of DNA repair
needed to avoid cancer at a young age greatly exceeds
the levels that are needed to prevent damage-induced
aging during a normal lifetime [58]. As previously
discussed, the role of molecular damage in cancer
supports the role of mTOR-driven hyperfunction in
aging [59].

Let us depict hallmarks of aging, according to the
hyperfunction theory of aging (Figure 3).

Hallmarks of aging and hyperfunction theory

The hyperfunction theory of aging was extensively
reviewed previously [44, 45, 49, 56, 57, 60—66], and

Tissue

Cellular

Pathways

Molecular

responses [60, 67] to its critics [68, 69] were also
provided.

According to hyperfunction theory, aging is a
continuation of developmental and reproductive
programs that were not turned off upon their

completion. Continuously active signaling pathways
that initially drive developmental growth, drive aging
later in life. Signaling pathways establish feedback
loops, involving also gene expression and epigenetic
modifications. These pathways become hyperfunctional,
meaning that their activity is higher than optimal for
longevity.

How does normal function become a deadly
hyperfunction? Consider an analogy. When you pump
air into an inflatable balloon, it grows in size. But when
it reaches its intended size and you continue to pump air
at the same rate, it will not grow further but instead will
burst. This event can be compared with a stroke due to
hypertension, resulting in brain damage. The brain is
not damaged by life-long accumulation of molecular
damage, but by hyperfunction, such as hypertension and
hypercoagulation, thrombosis.

Hyper-function does not necessarily mean increased
function. Even unchanged or slightly decreased activity

stem cell exhaustion, altered intracellular communication

cell senescence, telomere attrition,
epigenetic alterations, loss of proteostasis, cellular damage

nutrient-sensing signaling pathways

genetic instability =DNA damage, mutations

Figure 2. Hierarchical representation of the hallmarks of aging based on Lopez-Otin et al. See text for explanation.
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of growth-promoting pathways, such as mTOR, can be
hyperfunctional when developmental growth is
completed. As an analogy, 55 mph on the highway is not
speeding, but even 40 mph on the driveway is too fast.

Hyperfunction causes organ damage and functional
decline. The accumulation of molecular damage is
associated with decline, but it is hyperfunction that
causes decline during a normal lifetime.

Unlike cancer, aging is not a molecular disease.
Development is not driven by accumulation of
molecular damage or mutations in signaling pathways,
and aging is not either. Nutrient-sensing pathways (e.g.,
mTOR) are not altered by random mutations.

The lowest level of hallmarks of aging is a continuous
activation of normal signal transduction pathways.
Deactivation of these pathways by knockout of a single
gene extends lifespan in animals [70-73]. Rapamycin, a
drug that inhibits normal mTOR signaling, extends
lifespan [74—77].

Hyperfunctional signaling directly drives age-related
diseases. There are no longevity pathways/mechanisms
inhibitable by pro-aging pathways such as mTOR. Pro-

N

aging pathways do not drive aging by inhibiting
longevity mechanisms. Why would nature create
something that inhibits longevity mechanisms? Pro-

aging pathways such as mTOR directly drive age-
related diseases because they are a continuation of

development.

The key to understanding aging: life-limiting vs.
non-life-limiting hallmarks

Among numerous harmful processes, only one can be
life-limiting in a particular individual. If an animal dies
from one cause, it cannot die from another cause even a
day later. If quasi-programmed (e.g., mTOR-driven)
aging is life-limiting, then accumulation of random
damages cannot kill the organism.

Lopez-Otin et al. [38] suggested three criteria for
hallmarks of aging but two of them are criteria for both
life-limiting and non-life-limiting processes: (1)
hallmarks are observed during normal aging and (2) its
experimental aggravation should decrease lifespan.
However, experimental aggravation can make any
process life-limiting. Telomere shortening becomes life-
limiting in mice lacking telomerase, but their symptoms
are drastically different from normal age-related

Hyperfunctions (hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia etc)

Organism| Age-related diseases
Systems/
organs followed by organ failure and loss of functions
Tissue | Hyperfunctions: pro-inflammation, hyperplasia and secondary atrophy/

stem cell exhaustion, collagen-crosslinking

Cellular Hyper-functions (e.g., SASP), altered proteolysis

telomere shortening, epigenetic alterations

Sub- Mitochondrial disfunction

cellular

Pathways Hyper-functional growth-promoting and nutrient-sensing
and other intracellular signaling pathways, pS6/pErk

Molecular | Non-life-limiting accumulation of molecular damages

Figure 3. Hierarchical hallmarks of aging based on hyperfunction theory, applicable to humans. Non-life-limiting hallmarks are

shown in brown color. See text for explanation.
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diseases [78]. Although telomere shortening is
associated with cardiovascular disease (CVD) in
humans, patients with dyskeratosis congenita (DKC), a
condition caused by short telomeres, do not die from
CVD but from bone marrow failure (which is not a
typical age-related disease) [79]. Hyperfunction theory
explains how hyper-functional signaling leads to CVD
in humans [80]. But telomere shortening cannot
explain it.

Anything can shorten lifespan including starvation and
the atomic bomb but they are not causes of aging. Only
the third criterion matters: (3) its experimental
amelioration should slow down aging and increase
healthy lifespan. Not surprisingly, “the last criterion is
the most difficult to achieve and not all of the hallmarks
are fully supported yet by interventions,” as noted by
Loépez-Otin et al. [38]. In other words, they are not
hallmarks of normal aging.

(Note: Even the third criterion is not sufficient to define
a life-limiting hallmark.

Besides interventions may have off-target effects. For

example, NAC, an antioxidant, is also a mTOR
inhibitor [81]).

N

Systems/

organs

Hyperfunctions

I

Cellular

In conclusion, numerous deadly processes develop in
parallel but only a few (or one) are life-limiting.

Therefore, non-limiting hallmarks are not included in the
version of life-limiting hallmarks of aging (Figure 4).
This final re-presentation is generic and can be applied
to any species, from C. elegans to humans.

Aging as a selective force for cancer

Common cancers are age-related diseases. This cannot
be explained by simple accumulation of mutations with
age. For example, melanoma and lung cancer in
smokers have atypically high mutation burden [8] but
still develop at old age. Centenarians, who age slower,
are protected from cancer. Rapamycin and calorie
restriction slow aging in mice and prevent cancer.

As discussed, the selective force driving carcinogenesis
is growth-limiting conditions, also named micro-
environmental constraints in aging [16]. For example,
the aging hematopoietic system selects for robust
hematopoietic cells and such a preleukemic clone can
originate leukemic clone [82]. Specifically, chronic
inflammatory microenvironments in old age may select
for cells harboring oncogenic mutations [83].

Organism| Age-related diseases

Hyperfunctions followed by loss of functions and organ damage

Pathways | Hyper-functional growth-promoting and nutrient-sensing
and other intracellular signaling pathways

Molecular N/A

Figure 4. Hierarchical hallmarks of aging based on hyperfunction theory, universal. Hyperfunction of intracellular signaling
pathways leads to cellular and systemic hyperfunctions, which in turn lead to age-related diseases on the organismal level [56]. Specific
hyperfunctions and diseases may be different in different species and therefore are not shown. For example, human systemic
hyperfunctions (e.g., hypertension, hyperlipidemia, hyperglycemia) and diseases (e.g., cardio-vascular diseases) differ from diseases in C

elegans [40, 41].
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Chronic inflammation is a hyper-function and is in part
mTOR-dependent [84-88]. An aging microenvironment
puts stem cells on the path of hyper-activation [89] and
geroconversion [90-92], leading to their exhaustion
[89-92].

Mutations are necessary (with a few exceptions) but not
sufficient for inducing cancer. The second requirement
is selective force, favoring these mutations. Aging is a
leading selective force.

One of the potential mechanisms of growth-limiting
conditions that drive cancer progression is mTOR-
dependent cellular senescence.

Common hallmarks of cancer, aging and cell
senescence

Cellular senescence is a two-step process: cell cycle
arrest followed by geroconversion [93]. Like organismal
aging, geroconversion is a continuation of growth driven
in part by hyperfunctional mTOR. When the cell cycle is
blocked by p21/pl6, but growth-promoting pathways
such as mTOR and MAPK are active, the cells become
hypertrophic ~ (large  cell  morphology)  and
hyperfunctional: ~ beta-Gal  staining  (lysosomal
hyperfunction) and SASP. A hallmark of cellular
senescence is active mTOR pathway in non-proliferating
cells. Rapamycin suppresses geroconversion to
senescence [93-97]. Figuratively, organismal aging is a
quasi-growth after developmental growth is completed.

In cancer, the PI3K/mTOR pathway is almost
universally activated by mutations [98-100].
Figuratively, cancer cells are proliferating senescent
cells. In organismal aging, cancer and cellular
senescence, the same key signaling pathways, such as
mTOR, are involved. This is why the same drugs, such
as rapamycin, can suppress all of them.
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As suggested in 2006, by slowing down the mTOR-
driven developmental program, rapamycin must slow
down quasi-programmed aging [1]. In other words,
targeting development with rapamycin must lead to a
longer lifespan. An elegant study by Gladyshev and co-
workers has confirmed this prediction [2].

According to hyper-function theory, aging is a quasi-
program, a purposeless continuation of the growth
program that has not been switched off upon its
completion [1]. Aging is not programmed, only
development is. Unlike a program, a quasi-program has
no aim, although, like a program, it can be modulated
[1, 3, 4]. For example, excessive nutrients and calorie
restriction can accelerate and decelerate aging,
respectively.

Aging is driven by hyperfunctional signal-transduction
pathways which, via cellular and systemic hyper-
functions, cause age-related diseases, whose sum is
called aging [1]. Hyperfunctions cause organ damage
(not molecular damage), resulting in loss of functions
and secondary functional decline [1, 5].

The nutrient-sensing mTOR pathway promotes cellular
growth [6-8] and cellular senescence, which is
a continuation of cellular growth, when the cell cycle
is blocked [9, 10]. According to hyperfunction theory,
age-related diseases are quasi-programmed [1,11] with
clear-cut examples in simple organisms such as C.
elegans [11-15]. Hyperfunction theory was extensively
reviewed [1, 5, 11, 16 -20]. Critical comments [21-
23] have been addressed [5, 24]. Importantly,

hyperfunction theory is mTOR-centric, describing
mTOR-driven aging and its diseases [1]. By slowing
down aging, rapamycin delays age-related diseases [1,
25, 26].

To maximally extend health and lifespan in humans, it
was suggested that the treatment with rapamycin
should be started at a young age: “As an anti-aging
drug, rapamycin will prevent diseases rather than cure
complications of diseases. Rapamycin will prevent
[organ] damage but not to reverse damage. It might
prevent diabetes and obesity but not diabetic gangrene
and stroke. It might prevent macular degeneration
but will unlikely cure blindness. Rapamycin will
not repair broken bones but might prevent
osteoporosis... rapamycin will be most useful as [an]
anti-aging drug to slow down senescence and to
prevent diseases” [1].

It was suggested in 2006 to take rapamycin
immediately to the clinic to suppress human aging [1],
even though longevity studies in animals were not yet
performed. Starting from 2009, numerous studies
demonstrated that rapamycin extends lifespan in mice
[27-39].

Hyperfunction theory predicts that rapamycin can slow
down aging by two complementary mechanisms:

(a) directly suppressing the quasi-program of aging

b) reprogramming aging by slowing the
developmental-growth program
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To demonstrate reprogramming, rapamycin should be
given for a brief period during development.

Shindyapina et al. showed that treatment with
rapamycin for the first 45 days of life extends median
lifespan by 10% [2]. Health was improved as measured
by gait speed, frailty index, and glucose and insulin
tolerance tests [2]. Rapamycin-treated mice were small
and did not catch up on growth later [2].

The hyperfunction theory explains why a large-body
correlates with longevity between species (for example,
elephants live longer than mice, which live longer than
flies), but in contrast, within each species, it is a small
body size that is associated with longevity [40]. Life-
long small body size after a brief treatment is consistent
with reprogramming of the growth program.

Notably, life extension by rapamycin was mostly
observed in male mice [2]. This is consistent with the
finding that mTOR is overactivated in young male mice
compared with young female mice, thus explaining
robustness of males at young age and their shorter
lifespan [41].

Supporting the notion of rapamycin-induced re-
programming, previous studies found that (a) even
transient treatment with rapamycin can extend lifespan
[27, 36, 39] (b) a single rapamycin injection can lower
body weight set point in the long run [42] and (c)
rapamycin can affect the mTOR pathway activity long
term by preventing obesity [43, 44].

Further suggestions

To further study rapamycin-induced reprogramming of
aging, pregnant mice should be treated with a single
subcutaneous injection of rapamycin and the lifespan of
their offspring should be measured. Prenatal (before
birth) rapamycin treatment on early postnatal
development has been studied [45-47]. For example,
prenatally rapamycin-treated neonates are small, and
body weight and left ventricular mass remain reduced in
adulthood [47]. However, lifespan was not measured.
(Note: rapamycin pre-treatment increased mortality
immediately after the birth [47] because mTOR is
essential early in life. Early-life death is not aging-
driven and should be excluded from the age-related
mortality curve).

At what age may rapamycin treatment be started in
order to maximally extend human lifespan? Based on
murine data, treatment with rapamycin can be started at
a very old age. Still, in theory, the maximal effect
potentially may be achieved before age-related diseases
and pre-diseases become apparent in humans [1].

However, it should not be started too early because
MTOR is essential for growth and early life fitness. In
my opinion, rapamycin treatment (for anti-aging
purposes) may only be started when a young adult can
make informed decisions and should not be allowed
before the age of 21. Doctors should consider that
rapamycin may negatively affect reproduction, albeit
reversibly. | believe that the initial dose should be very
low and gradually increase with older age, when full
individual doses are achieved. An anti-aging dose/
schedule is a maximum dose that do not yet cause side
effects in a particular person [48]. Self-treatment is
unacceptable and doses are highly individual [48, 49].

Disclaimer

This commentary is for information purposes, not
medical advice.
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ABSTRACT

Failure of rapamycin to extend lifespan in DNA repair mutant and telomerase-knockout mice, while extending
lifespan in normal mice, indicates that neither DNA damage nor telomere shortening limits normal lifespan or

causes normal aging.

INTRODUCTION

As a provocative title has recently announced,
“rapamycin fails to extend lifespan in DNA repair
-deficient mice” [1]. The word “fails” implies bad news.
Rapamycin tried but failed. Yet, it is expected that the
anti-aging drug rapamycin should not restore lifespan of
short-lived mice that fail to grow and die young from
causes other than normal aging [2]. In such growth-
retarded mice, rapamycin, an inhibitor of cell growth,
further retards weight gain.

Similarly, rapamycin does not extend but even slightly
shortens lifespan in telomerase-deficient mice, which
die young from poor growth and intestinal atrophy
caused by telomere shortening [3]. (As we will discuss,
this is predictable by hyperfunction theory.) While
shortening lifespan by 18% in unnatural telomerase-
deficient mice, in the same study in natural mice,
rapamycin increased lifespan by 39% and healthspan by
58% (measured as tumor-free survival) [3]. In dozens of
independent studies, rapamycin has not failed to extend
lifespan in normal mice [4]. However, while extending
lifespan in normal mice, rapamycin may fail to save
animals dying young from cellular growth retardation.
But something important should not be overlooked. The
failure of rapamycin to extend lifespan in these short-
lived mice, dying from DNA damage, rules out the
damage theory of aging. To understand this point, we
must first discuss what limits animal lifespan.

Quasi-programmed (hyperfunctional) aging

In proliferating cells, growth-promoting pathways such
as mTOR (Target of Rapamycin) and MAPK drive
cellular growth, which is balanced by cell division. When
the cell cycle is arrested, however, growth-promoting
pathways drive cellular senescence, which is a
continuation of cellular growth in the absence of cell
division [5]. During geroconversion to senescence, cells
become hypertrophic and hyperfunctional. One example
of hyper-function is SASP or Senescence-Associated
Secretory Phenotype [6]. Rapamycin can cause reversible
cycle arrest but suppresses geroconversion, thus ensuring
quiescence instead of senescence. (Note: Rapamycin
does not prevent cell cycle arrest, it only prevents
geroconversion that makes this arrest permanent [7]. This
point is often miscited by others). Rapamycin slows
down both growth and geroconversion, figuratively
slowing down time [8]. Like cellular senescence is a
continuation of growth, organismal aging is a
continuation of growth too [9].

According to hyperfunction theory, aging is quasi-
programmed, a continuation of developmental
growth programs, driven in part by hyper-functional
signaling pathways including the mTOR pathway
[9]. Hyperfunction is an excessive normal function
later in life. It’s not necessarily an increase of function;
it may even be insufficient decrease of function. For
example, protein synthesis is decreased in C elegans but

www.aging-us.com 3167

AGING


mailto:Blagosklonny@oncotarget.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

is still too high: its further inhibition extends lifespan
[10, 11].

Hyperfunction leads to age-related diseases, secondary
organ damage and loss of function. For example,
cellular  hyperfunctions result in  hypertension,
culminating in stroke and damage of the brain. Aging is
a sum of all age-related diseases [12, 13]. This theory
was discussed in detail [9, 14-20] and has gained
experimental support [11, 16, 21-26]. | will not discuss
it here, just to mention that accumulation of molecular
damage is not a driving force of development and
therefore of aging. It is hyperfunctional signaling
pathways such as mTOR (one of many) that drive both
growth and aging, causing age-related diseases that in
turn damage organs, leading to secondary loss of
function.

Although molecular damage accumulates, this
accumulation is not life-limiting because quasi-
programmed aging terminates life first (Figure 1A).
Quasi-programmed (hyperfunctional) aging is life-
limiting, because it is favored by natural selection.

A lifespan
Death l

Progression

VdVvd

lifespan

Progression

— age

— age

Natural selection favors robust development and
fitness early in life at the cost of aging. For example,
growth hormone receptor-deficient mice (GHR-KO
mice), with decreased mTORCL1 activity, live longer
but are small and weak early in life [27, 28]. In such
mice mTORC1-driven aging is inhibited and mice live
longer but would not survive in the wild and therefore
do not exist in nature. As another example, knockout
of PI3K, an activator of mTOR pathways, extends
lifespan 10-fold in C. elegans [29]. The mutant worm
undergoes prolonged developmental arrest, which
would be lethal in the wild [29]. Therefore, natural
selection favors hyperfunctional mTOR that is
optimal for development but drives age-related
diseases later in life.

According to damage theories, aging is functional
decline caused by molecular damage. According to
hyperfunction theory, quasi-programmed aging is not
functional decline but a hyperfunction: cellular and
systemic functions are higher than optimal for
longevity. They are optimal for early life fitness and in
part (only in part) mTOR-dependent.
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Figure 1. Rapamycin extends lifespan in natural but not progeroid mice. (A) Natural mice. Hyperfunctional aging (green/yellow/red
arrow) progresses from development (green) to diseases (red), reaching death threshold and limiting lifespan. Accumulation of molecular
damage (gray arrow) is slow and does not reach death threshold in animal lifetime. It would take longer to die from molecular damage.
Treatment with rapamycin (RAPA) extends lifespan by slowing down mTOR-driven aging (B) Progeroid, telomerase- or DNA-repair-deficient
mice. Accumulation of molecular damage (gray arrow) is artificially accelerated to become life-limiting. Treatment with rapamycin (RAPA)

cannot extend lifespan.
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In both molecular damage and hyperfunction theories,
aging exists because late-life is shadowed from natural
selection. But quasi-programmed aging is not simply
shadowed from, it is promoted by natural selection,
because accelerated aging is hardwired with fitness
early in life. By selecting for fitness, nature indirectly
selects for accelerated aging. This makes quasi-
programmed aging life-limiting. One of predictions of
hyperfunction theory is that rapamycin must extend
lifespan in animals [9]. This prediction has been
confirmed. In dozens of studies, rapamycin prolongs
lifespan and healthspan in mice [3, 30-65]. Rapamycin
extends lifespan in C elegans [66] and Drosophila [67—
69]. Furthermore, rapamycin even extends life of the
simplest animal, Hydra, which is thought to be
immortal. Depending on conditions, Hydra can be
either immortal or undergo aging. Rapamycin slows
aging, stem cell exhaustion and extends life span in
Hydra [70].

mTOR-driven aging is only one component of quasi-
programmed (hyperfunction) aging. In addition,
MEK/MAPK, NF-kB, p63, HIF-1 and many other
signaling pathways are involved, interacting with the
mTOR pathway and forming networks. Rapamycin
cannot affect all of them. In theory, mTOR-independent
quasi-programmed aging can be life-limiting in some
conditions and diseases. | suggest that long-lived GHR-
KO mice with low mTORC1 activity undergo partially
MTORC1-independent quasi-programmed senescence,
because rapamycin cannot prolong lifespan in these
mice further, while prolonging lifespan in parental
normal mice [71]. Discussion of mTOR-independent
components of quasi-programmed aging is beyond the
focus of this article. Let us return to stochastic
accumulation of molecular damage.

How molecular damage can become life-
limiting

Molecular damage can become life-limiting in two
ways. First, hyper-functional aging should be eliminated
or slowed down, so an organism lives long enough to
die from accumulation of molecular damage. In this
scenario, accumulation of molecular damage causes
post-aging. Such examples are unknown, but it is a very
intriguing possibility. Could a PI3K-null worm [29]
with 10-fold longer lifespan die from molecular
damage?

Second, accumulation of molecular damage can be
greatly accelerated artificially by knockout of
repair/maintenance enzymes (Figure 1B). Such animals
do not exist in nature. But artificially created, they may
provide a glimpse of how post-aging may look. Their
pathology differs drastically from normal aging, for

example, telomere shortening. Second-generation
telomerase-deficient mice (G2 Terc™") with critically
short telomeres fail to grow and die young from
unfamiliar diseases such as intestinal atrophy due to
failure of cell proliferation [3]. When telomeres reach
critical length, it can cause DNA-damage response,
leading to aplastic anemia, organ fibrosis, atrophy of the
small intestine and the spleen, skin and hair lesions. In
humans, diseases of short telomeres cause death from
bone marrow failure and pulmonary fibrosis [72]. This
does not resemble normal aging.

In humans, mice and C. elegans, telomere shortening is
not life-limiting [73-75]. In mice lacking telomerase,
even accelerated telomere shortening is still not life-
limiting in the first generation [76]. It took several
generations to achieve critically short telomeres, leading
to syndromes strikingly different from normal aging. In
humans, telomere length does not reach telomere
threshold during life time [75, 77, 78]. Normal telomere
shortening would cause telomere-driven pathologies,
but normal animals do not live long enough to reach this
threshold. Rapamycin prolongs life in normal mice,
proving that telomere length does not constrain normal
lifespan [3]. When artificially shortened, then telomeres
become life-limiting and rapamycin cannot extend
lifespan anymore [3].

Ercc1®~ mutant mice are defective in DNA repair, such
as  transcription-coupled  repair,  global-genome
nucleotide excision and crosslink repair [1, 2].
Therefore, multiple types of DNA damages accumulate.
This leads to decreased cell proliferation, arrested
development, poor growth, abnormal liver nuclei of
liver and kidney, absence of subcutaneous fat, ferritin
deposition, kidney malfunction and early death [2].
Unlike natural mice, short-lived Ercc1®~ mice do not
develop tumors, probably because they do not live long
enough to suffer typical age-related diseases [1, 2]. In
such mice, dying from molecular damage, rapamycin
fails to extend lifespan [1].

CONCLUSIONS

Here I discussed new evidence that normal aging is not
caused by accumulation of molecular damage or
telomere shortening: while extending normal lifespan in
mice, rapamycin failed to do so in mice dying from
molecular damage (Figure 1).

Previously, several lines of evidence suggested that
molecular damage does not cause normal aging. Their
detailed discussion is beyond the focus of this article, so |
will just mention some of them, without referencing them
(I will reference these points in forthcoming review
“When  longevity drugs do  not  increase
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longevity: Unifying development-driven and damage-
induced theories of aging”, In press). First,
overexpression of enzymes that decrease damage does not
extend lifespan in most studies. Similarly, antioxidants do
not extend lifespan in animals and may increase mortality
in humans. Furthermore, even data that support damage
theory can be explained by other mechanisms. For
example, N-Acetyl-L-Cysteine, a commonly used anti-
oxidant, can inhibit mTOR. Second, according to
calculations, molecular damage, especially mMtDNA
mutations and telomere shortening, cannot reach deadly
threshold during animal lifetime. Third, genetic knockout
of signaling pathways can extend lifespan without
affecting molecular damage. Similarly, pharmacological
interventions can extend life without affecting damage
accumulation. Forth, dramatic intra- and inter-species
differences in lifespan poorly correlate with the rate of
molecular damage. Fifth, nuclear transfer and nuclear
reprogramming both rule out DNA damage as a cause of
aging. Following adult somatic cell nuclear transfer,
cloned animals are healthy and have normal lifespan.
Sixth, low levels of molecular damage may increase
longevity. This phenomenon is known as hormesis.
Regardless of mechanistic explanations, this indicates
that molecular damage is not-life-limiting even when
moderately increased. Finally, rapamycin increases
lifespan in all normal animals tested, indicating that
mTORC1-dependent quasi-program is life-limiting. The
list can go on and on. Once again, damage accumulates
and must cause death eventually, but quasi-programmed
(hyperfunctional) aging terminates life first. Molecular
damage can become life-limiting, when artificially
accelerated or, potentially, when quasi-programmed
aging is decelerated. Then interventions to repair
molecular damage may increase life further.
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ABSTRACT

COVID-19 is not deadly early in life, but mortality increases exponentially with age, which is the strongest
predictor of mortality. Mortality is higher in men than in women, because men age faster, and it is especially
high in patients with age-related diseases, such as diabetes and hypertension, because these diseases are
manifestations of aging and a measure of biological age. At its deepest level, aging (a program-like continuation
of developmental growth) is driven by inappropriately high cellular functioning. The hyperfunction theory of
quasi-programmed aging explains why COVID-19 vulnerability (lethality) is an age-dependent syndrome, linking
it to other age-related diseases. It also explains inflammaging and immunosenescence, hyperinflammation,
hyperthrombosis, and cytokine storms, all of which are associated with COVID-19 vulnerability. Anti-aging
interventions, such as rapamycin, may slow aging and age-related diseases, potentially decreasing COVID-19
vulnerability.

https://www.bloomberg.com/news/articles/2020-03-
18/99-0f-those-who-died-from-virus-had-other-illness-

italy-says.

COVID-19 vulnerability: age, diseases, gender

COVID-19 is caused by coronavirus SARS-CoV-2.
Most cases of COVID-19 are asymptomatic, but some
are severe and lethal. Mortality is the simplest marker of
COVID-19 vulnerability. COVID-19 vulnerability can
be defined as a chance of death from COVID-19, once

In other words, infected people without pre-existing
diseases do not die. This may seem paradoxical because
we just discussed that age is sufficient to increase

infected. mortality exponentially. This is because pre-existing
conditions are manifestations of biological age, whereas
Age: aging and diseases are two sides of the same coin [24—

In all studies conducted in all countries, the mortality
rate from COVID-19 increases exponentially with age
[1-11]. Exact mortality rates varied in hundreds of
studies because they depend on testing and therapeutic
interventions. But the rule is clear: the mortality rate is
increasing exponentially with age.

Age-related diseases:
Mortality is especially high in patients with pre-existing
conditions [6, 9, 10, 12-23].

In Italy, 99% of patients, who died, had at least one
illness.

26]. These conditions are typical age-related diseases:
hypertension, diabetes, obesity, ischemic heart disease
(IHD) and chronic obstructive pulmonary disease
(COPD) and other diseases [9, 12-23].

Of course, not all (only some) patients with age-related
diseases die from COVID-19. In other words, age-
related diseases are necessary but not sufficient for
mortality from COVID-19.

Age and pre-existing (age-related) diseases are
interdependent. A number and severity of diseases
correlate with age. An average 60 year old person has

WWwWw.aging-us.com 1004

AGING


https://www.bloomberg.com/news/articles/2020-03-18/99-of-those-who-died-from-virus-had-other-illness-italy-says
https://www.bloomberg.com/news/articles/2020-03-18/99-of-those-who-died-from-virus-had-other-illness-italy-says
https://www.bloomberg.com/news/articles/2020-03-18/99-of-those-who-died-from-virus-had-other-illness-italy-says
mailto:Blagosklonny@oncotarget.com
mailto:Blagosklonny@rapalogs.com

more age-related diseases than an average 50 your old
person. Yet, a particular 60 year old person may have
no age-related diseases, whereas a particular 50 year old
person may have multiple diseases including
hypertension, diabetes, obesity and cancer. In this case,
it is a chronologically younger person who is bio-
logically older. And it is the biological age that
determines the likelihood of death from COVID-19.

Male Gender:

At the same age, the mortality rate is twice higher in
men than in women [9, 27, 28], in part, because men
age faster than women and, at any chronological age,
men are biologically older than women [29].

So, three rules can be combined in one: COVID-19
vulnerability is determined by biological age. Biological
age combines chronological age, age-related diseases
and gender. A combination of all age-related diseases
(and pre-diseases) is a biomarker of biological age.
Figuratively, SARS-Cov-2 can “measure” biological
age, which is thus the best predictor of mortality from
both COVID-19 and other diseases.

Mortality from aging compared with COVID-19
mortality

Aging can be measured as an increase in the probability
of death with age. Mortality increases exponentially,
starting from age 8-9. Men have a higher “normal” age-
related death rate than women because men age faster
than women [29].

COVID-19 mortality rate parallels the “expected”
aging-related death rate (Supplementary Figure 1) and
see second graph in:
https://medium.com/wintoncentre/how-much-normal-
risk-does-covid-represent-4539118e1196.

Chances to die from COVID-19 are proportional to
chances to die from aging itself at any age. The only
discrepancy between natural and COVID-19 mortality
is observed below the age of 8 years old. Whereas
natural death rate is relatively high, COVID-19
mortality is low (no mortality [11]). This discrepancy
will be discussed later. But first how do animals,
including humans, die from aging?

Age-related diseases

Humans and other animals (including the worm [30] and
the fly [31]) do not die from aging itself but from age-
related diseases such as ischemic heart disease (IHD),
hypertension, diabetes, cancer, Alzheimer’s and
Parkinson’s diseases, age-related macular degeneration,
osteoporosis and sarcopenia (As we will discuss, even

seemingly non-deadly diseases such as osteoporosis can
lead to deadly complications). The incidence of these
diseases increases exponentially with age. Some diseases
such as obesity, hypertension and diabetes develop
earlier in the course of aging. Other diseases, such as
Alzheimer’s disease and macular degeneration, are
usually diagnosed later [32, 33]. Age-related diseases
may also occur in younger people with genetic
predisposition and environmental exposure hazards. But
even without these factors, diseases develop because
they are quasi-programmed (see “Quasi-programmed
aging section”). These diseases are not diseases of
civilization, as it may seem. Humans simply now live
long enough to develop them. Of course, ‘“hazards of
civilization” can accelerate them at a younger age.

Aging and its diseases cannot be separated. Healthy aging,
or aging without diseases, is merely a slow aging, when
biological age is less than chronological age. During a
period of seemingly healthy aging, pre-pre-diseases and
pre-diseases are progressing until they eventually reach
clinical manifestations. Thus, healthy aging progress to
unhealthy and pre-diseases become diseases [34].

Age-related diseases and COVID-19 vulnerability are
highly intertwined. Patients, who die from COVID-19,
otherwise would die from age-related diseases such as
heart disease, cancer, diabetes, hypertension, just a year
later. COVID-19 approximately doubles a patient’s
aging-dependent risk of dying during one year. For
example, (numbers are very approximate), a sixty year
old woman has 1% chance to die from aging before her
61st birthday. At that age, if infected, the death rate from
COVID-19 is around 1% for females. If infected, a
patient has approximately doubled chances to die
compared with usual age-related mortality during one
year. As David Spiegelhalter put it: “getting COVID-19
is like packing a year’s worth of risk into a week or two”.
https://medium.com/wintoncentre/how-much-normal-
risk-does-covid-represent-4539118e1196.

Children and young adults have a very low risk of death
from aging-related diseases, so that risk remains
extremely low even when doubled.

Although natural mortality is relatively high in the
youngest age group, especially in infants, they do not die
from age-related diseases of course. Instead, infants are
vulnerable to bacterial infections and candida infections
due to underdeveloped immune system [35]. Low
COVID-19 mortality in the pediatric age group [11] is
consistent with the notion that COVID-19 vulnerability
is not due to a “weak” immune system. In contrast, as
we will discuss in the next section, it is hyper-functional
immune response that leads to death from COVID-19 in
the elderly by causing cytokine storm.
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Cytokine storm as a hyperfunction

Severe COVID-19 is characterized by hyper-
inflammation, cytokine storm, acute respiratory distress
syndrome (ARDS), damage to the lung, heart and
kidneys [36-39].

In response to viral replication, hyperfunctional
monocytes and macrophages infiltrate the lung,
causing hyper-inflammation and hyper-secretion of
cytokines such as interleukin (IL)-6, IL-2, IL-7, IL-
lra, interferon-y inducible protein (IP)-10, tumor
necrosis factor (TNF)-o, ferritin, monocyte chemo-
attractant protein (MCP)-1, macrophage inflammatory
protein (MIP) 1-a, granulocyte-colony stimulating

factor (G-CSF), C-reactive protein (CRP) and
procalcitonin. [22, 36—42].
This leads to leukocyte recruitment, vascular

permeability, edema and further pulmonary damage in
vicious cycle [37, 38, 41, 43, 44]. Hyper-inflammation
becomes systemic, in turn causing hyper-coagulation
and thrombosis, disseminated intravascular coagulation
[45]. This causes injury of distant organs such as the
kidneys. Pre-existing organ damage (late stages of age-
related diseases) exacerbates organ damage caused by
cytokine storm [42, 43, 46]. In addition, cellular hyper-
functions and systemic hyper-inflammation may lead to
cellular exhaustion, such as exhaustion of lymphocytes
(lymphopenia) [47—49]. Hypercoagulation is associated
with hyperactive fibrinolysis and increased D-dimer
blood levels [23]. Cytokine storm is a systemic
hyperfunctional response (Figure 1).

Of course, age-related hyperfunctional response, such as
cytokine storm, is not caused by lifelong accumulation
of molecular damage. Aging is not caused by molecular
damage after all. Instead it’s a continuation of
developmental/growth programs that lead to hyper-
functions and in turn eventually to dysfunctions.

Hyperfunction theory of quasi-programmed
aging

“Quasi” means “resembling” or “seemingly, but not
really.” Quasi-program of aging is not a program but a
continuation of developmental programs that were not
switched off upon their completion [24, 50]. They
purposelessly unfold, leading to age-related diseases,
secondary organ failure and death. Quasi-programmed
(program-like) aging is associated with higher than
optimal cellular and systemic functions, which
eventually, via cellular exhaustion and organ damage,
lead to functional decline (Figure 2). For example,
starting from birth, blood pressure increases and
continues to increase after organismal growth is
completed. Therefore, hypertension is the most
prevalent age-related disease. In turn, hypertension can
cause organ damage: stroke, infarction and renal failure.
Similarly, obesity develops in post-development as a
continuation of growth (yet, it can be prevented by low
caloric diets, illustrating that quasi-program of aging
can be decelerated).

Hyperfunction is an excessive normal cellular function:
contraction by smooth muscle cells (SMC), adhesion
and aggregation by blood platelets, insulin secretion by
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Figure 1. Cytokine storm as a systemic hyperfunction.

www.aging-us.com

1006

AGING



beta-cells, lipid accumulation by adipocytes, secretion by
stromal and immune cells, oxidative burst by leukocytes,
just to name a few. When higher than optimal, they
cause vasoconstriction and hypertension, thrombosis,
hyperinsulinemia, hypertrophy, hyperplasia, obesity,
hyper-secretory phenotype or Senescence-associated
secretory phenotype (SASP), hyper-inflammation and
so on.

Hyper-function is not necessarily an absolutely increased
function. It may be also insufficiently decreased function
(relative hyperfunction). Levels of IGF-1 and growth
hormone decrease during lifespan. Despite this decrease,
IGF-1 levels are still higher than optimal (relative
hyper-function) because further genetic decrease in

Hyper-
function

Function

IGF-1 levels (by genetic means) extends health span and
lifespan in mammals [51-53].

Cellular hyperfunctions may eventually switch to
cellular exhaustion and loss of functions at late
stages. During the course of type II diabetes, mTOR
overactivation and hyperinsulinemia eventually lead to
beta-cell exhaustion and insulin insufficiency, from pre-
diabetes to diabetes [54, 55]. As another example, after
puberty, hyperstimulation of the ovary eventually leads
to oocyte exhaustion and menopause (see Figure 3 in ref.
[29]). Depletion of naive lymphocytes is another
example, as reviewed here later. Age-related alterations
are mostly noticed when they switch to functional
decline, which is a late event.

7

Organ
damage

Loss of
function

Pre-diseases  Diseases

DEVELOPMENTAL
GROWTH (program)

AGING (quasi-program)

Figure 2. Quasi-programmed hyperfunctional aging. Aging is a continuation of developmental programs that were not switched off
upon their completion. An increase in cellular and systemic functions (manifested as pre-diseases and then as diseases) leads to eventual

organ damage and secondary loss of function.
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Figure 3. COVID-19 vulnerability as an age-related disease. Age-related diseases, including COVID-19 vulnerability, are manifestations
of aging. Abbreviations: Ischemic heart disease (IHD); Chronic obstructive pulmonary disease (COPD).
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In some cases, functional decline can be primary and
programmed. For example, thymus involution
(replacement of T cells by adipocytes) starts early in life,
accelerates at puberty and continues later. Still loss of
thymocytes and their niches may be in part due to
adipocyte hyperplasia and hypertrophy [56]. In fact,
obesity accelerates involution, whereas calorie
restriction decelerates it [57, 58]. Furthermore, the
oblation of sex hormones decelerates or even reverses
thymus involution [59]. Thus, involution is triggered by
adipocyte hyperplasia and increased production of sex
hormones during puberty [56].

Quasi-programmed aging is not driven by molecular
damage. It is driven by nutrient/hormone/cytokine-
sensing and growth-promoting signaling pathways such
as Target of Rapamycin (TOR; mTOR), which are
involved in developmental growth and later cause
hyperfunctional aging and its diseases [24, 26].

Covid-19 vulnerability as an age-related
syndrome

What is the cause-effect relationship between age-related
diseases and COVID-19 lethality? Do patients die from
age-related diseases, complicated by COVID-19? Or, in
contrast, do these various diseases make COVID-19
infection lethal? Both scenarios take place to some
extent. However, the relationship is mostly indirect. Both
age-related diseases and COVID-vulnerability result
from the same underlying cause (Figure 3). This is why
they are highly correlated. The cause is aging itself.
Aging is manifested by a sum of deadly - and not so
deadly - diseases and conditions ranging from cancer to
grey hair. Although not all diseases seem to be deadly,
they can cause complications such as stroke, ventricular
fibrillation, renal failure, lung edema. Even sarcopenia
and osteoporosis lead to falls and broken bones
culminating in a deadly sequence of events. Cosmetic
manifestations such as aging spots and wrinkles, while
not deadly by themselves, can be manifestations of other
diseases. For example, baldness correlates with prostate
enlargement [60], and the later can lead to urinary
obstruction and renal failure.

Diseases occur together. For example, chronic
obstructive pulmonary disease (COPD) is associated
with diabetes, cardiovascular disease and hypertension
[61]. If a person has one disease (e.g., diabetes), this
patient has higher chances of having other diseases (e.g.,
hypertension, IHD, cancer) or conditions, including
COVID-19 vulnerability, which is revealed only during
infection but can be predicted by pre-existing diseases.

Aging is initially driven by an increase in cellular and
systemic functions (hyperfunction), leading to age-

related conditions. For example, hypertension is a
systemic hyperfunction due to hyperfunction of multiple
cell types such as arterial smooth muscle cells (aSMC).
Similarly, COVID-19-vulnerability is associated with
hyperfunction of inflammatory cells that, in response to
COVID-19 infection, causes cytokine storm, hyper-
coagulation and damage of the lung and distant organs.

The COVID-19 vulnerability syndrome is an aging-
related disease, strictly dependent on biological age,
associated with other age-related diseases, and
exemplified by hyper-functional response to infection.

Inflamm-aging and immunosenescence

With hundreds of cell types acting in concert, the
immune system is so complex that we cannot discuss
age-related alterations without oversimplification. The
most noticeable alteration is that memory T and B cells
replace naive T and B cells [62]. (This seems natural
since life-long exposure to pathogens replaces naive
cells by memory cells). Replacement of naive immune
cells decreases adaptive responses to novel antigens
such as SARS-CoV-2. In contrast, immune protection
by memory T cells from viral re-infection with known
pathogens is usually increased with age [62].

Immune responses are roughly divided into (a) innate
responses, carried mostly by neutrophils, macrophages
and NK cells, which react to pathogen rapidly and
nonspecifically, and (b) adaptive responses, carried by T
and B lymphocytes, which are delayed, slower and
specific (e.g., antigen-specific clonal expansion of T
and B lymphocytes and antibody production by B
lymphocytes) [63—65]. In the elderly, immune responses
to SARS-CoV-1/2 are “stuck in innate immunity,” with
insufficient progression to adaptive immunity [37].
However, decline in adaptive response, such as antibody
production, plays little role in COVID-19 mortality. It is
hyper-functional innate immunity, hyper-inflammation,
cytokine storm and hyper-coagulation that lead to organ
failure and death. In agreement, hyper inflammatory
response rather than high virus numbers leads to death of
SARS-CoV-infected old nonhuman primates [66].

Aging is associated with diseases of immune hyper-
function such as autoimmune disorders with paradoxical
increase in certain signaling pathways and cytokine
levels [67-69].

In the elderly, innate immune cells are in a state of
sustained activation, producing pro-inflammatory cyto-
kines [67, 70-72]. Increased pro-inflammatory activity
by the innate immune system, especially by monocytes/
macrophages, is a state of alertness and hyper-reactivity
on the cost of potential age-related inflammatory diseases
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[67, 70-72]. Whereas some functions are decreased,
others are increased. According to the inflamm-aging
concept, innate immune system overtakes adaptive
immune system in aging. Cause-effect relationships are
bi-directional: immunosenescence (namely, a decrease in
adaptive response) is a cause and consequence of
inflamm-aging [67, 70-72].

We can consider inflamm-aging as an example of
hyper-function. While some functions are decreased,
others are increased. Hyper-function is damaging. (In
analogy, increased electric power, without an adaptor,
would damage a laptop). Damaging hyper-functions can
lead to loss of function and cellular exhaustion. And
vice versa, loss of function may cause compensatory
hyper-functions of another components.

Cellular senescence as a continuation of growth

Cellular senescence is a continuation of cellular growth,
when actual growth is completed [73, 74]. In
proliferating cells, cellular mass growth is balanced by
cell division. Cells grow in size and then divide. When
the cell cycle is blocked (e.g., p21 and pl6), then
growth-promoting pathways such as mTOR and MAPK
drive conversion to senescence (geroconversion) [24, 74,
75]. During geroconversion, cells become hypertrophic
and “fat”. Cellular functions increase: hyper-secretion
and lysosomal hyper-function are manifested by SASP
and beta-Gal staining. Hyper-activated growth-
promoting pathways cause compensatory resistance to
growth factors/insulin, permanent loss of re-proliferative
potential [74]. Rapamycin, everolimus, pan-mTOR
and MAPK inhibitors slows down geroconversion,
maintaining reversible quiescence instead of senescence
[73, 76-88].

Geroconversion is a continuation of cellular growth
[73, 74]. Similarly, aging is a continuation of
developmental growth (see Figure 1 in ref. [89]).
When the developmental program is completed, it
becomes a quasi-program of aging. As discussed in
detail, chronically activated nutrient-sensing and
growth-promoting pathways drive age-related diseases,
culminating in organismal death [24, 26].

Age-related diseases are quasi-programmed. Aging is a
common cause of age-related diseases, a sum of all age-
related diseases. They are diseases of hyper-function,
secondary hypo-function and compensation reactions
[25]; they are deadly manifestations of aging.

From activation of cellular functions to systemic
hyperfunctions, from diseases to organ damage and
death, hyperfunction theory of quasi-programmed aging
describes the sequence of events [26]. And as discussed

in 2006, suppression of aging by gero-suppressants,
such as rapamycin, will prevent and treat all age-related
diseases [24]. This point of view is becoming widely
accepted and, in recent literature, quasi-programmed
model of diseases (2006) is called “geroscience
hypothesis™ [2, 90].

Figuratively, rapamycin rejuvenates immunity [91]

If aging were functional decline due to accumulation
of molecular damage, then it would be near to impossible
to restore functions and rejuvenate the immune
system. In contrast, if functional decline is secondary
to hyperfunctions (see Figure 2 in ref. [89]), these
hyperfunctions can be suppressed pharmacologically to
restore lost functions. Typical drugs are inhibitors of
their targets, rather than activators, so they decrease
functions of their targets. By decreasing hyper-functions,
which otherwise lead to secondary loss of functions,
rapamycin may restore “lost” functions (Figure 4).

Rapamycin improves vaccination against viruses such
as influenza in old mice, monkeys and humans [92—
100]. Importantly, rapamycin increases pathogen-
specific but not graft-reactive CD8+ T cell responses
[95, 101]. Therefore, rapamycin and everolimus can
both be used to prevent donor organ rejection and
improve adaptive immunity against new pathogens [96].

Differentiation is an increase of tissue-specific cellular
functions. Terminally differentiated B, T, and NK cells
can rapidly react to already known pathogens [102].
Decrease in naive T and B lymphocytes (and thus
diminished response to novel antigens) results in part
from cellular hyper-differentiation in the immune
system [64, 103]. Hyper-functional differentiation can
be counteracted by rapamycin [98].

As another example, age-related exhaustion of stem cells
is partially due to loss of quiescence caused by growth
over-stimulation [92, 104-106]. In general, senescent
cells characterized by hyper-proliferative drive coupled
with cell cycle arrest [77]. In young mice, mTOR hyper-
activation causes senescence of hematopoietic stem cells
(HSC) and decreases lymphopoiesis [92]. In old mice,
rapamycin rejuvenates hematopoiesis, and improves
vaccination against influenza virus [92].

Third, production of lymphoid cells may be decreased
because of disruption of hypoxic niches due to
adipocytes hyperplasia [56, 107]. Hypoxic niches can
preserve HSC [108, 109] probably because hypoxia
inhibits mTOR and cellular senescence [110]. In
agreement, rapamycin preserves HSCs [92, 98, 111,
112] reduces the proportion of memory cells and
maintains a pool of naive T cells [92, 98].
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Fourth, growth factor (GF)- and insulin-resistance is
loss of function because cells cannot respond to
GF/insulin. But it may be caused by over-activated
mTOR, which via S6K/IRS feedback loop blocks
insulin and GF signaling. Rapamycin abrogates the loop
restoring signaling [113-118].

Anti-aging medicine

A high prevalence of age-related diseases, often called
“diseases of civilization,” is a success story of modern
medicine. In the past, most people did not live long
enough to develop age-related diseases and those who
developed them died soon after. Due to medical
advances, people survive to 85 on average, despite
suffering from age-related diseases. Standard medicine
preferentially extends life span, without necessarily
affecting health span (see Figure 3 in ref. [119]). For
example, defibrillation and coronary stenting can save
life but not cure heart disease. It is anti-aging
interventions that extend health span, delaying diseases,
thus extending lifespan. Aging is a common cause of all
age-related diseases. By suppressing aging, anti-aging
interventions may delay all age-related diseases [119].

As a well-known example, low calorie diets such as
calorie restriction, intermittent fasting, and low
carbohydrate diets extend both health and lifespan.
Figuratively, low calorie diets prolong life by improving
health. Nutrients and obesity activate growth-promoting
pathways (e.g., mTOR), thus accelerating development
of quasi-programmed (age-related) diseases. Obesity is

A

Hyperfuncional
cell or pathway

anti-viral
response and
immunization

associated with all age-related diseases from cancer to
Alzheimer’s and from diabetes to sarcopenia. COVID-
19 vulnerability is also associated with obesity [9, 19,
20, 22]. According to hyperfunction theory, obesity
accelerates aging and all age-related conditions
including COVID-19 vulnerability.

Diabetes is one of main risk factors of death in COVID-
19 [5, 6, 12, 13, 15, 21]. Can type 2 diabetes, an age-
related disease, be reversed? In remarkable studies, it
was shown that a brief course (6-8 weeks) of very low
calorie diets (VLCDs) can reverse type 1l diabetes. In
one study, VLCD reversed diabetes in 46% of patients
with up to a 6-year history of diabetes [120]. VLCD is
most effective for its prevention and at early stages of
diabetes [121]. This anti-aging modality is so simple
that remission can be achieved at home by health-
motivated individuals [122]. Simultaneously, it treats
other age-related diseases such hypertension [123].
Obesity is associated with other diseases of hyper-
function from diabetes and sarcopenia to cancer and
Alzheimer’s’ disease. Since age-related diseases are
predictors of COVID-19 mortality, VLCD in theory
may decrease COVID-19 vulnerability.

Rapamycin and everolimus as anti-aging drugs

In the soil of Easter Island, a complex bacteria produces
anti-fungal antibiotic rapamycin to suppress yeast
growth but, as a by-product, it also suppresses yeast
aging (quasi-programed aging is a continuation of
growth). Approved for human use in 1999, Rapamycin

Restrained cell
or pathway

anti-viral
response and
immunization

Figure 4. Rejuvenating immunity by inhibiting hyperfunction. (A) Specific hyper-functional cells (or signaling pathways) can inhibit
some other cell types (or pathways) that are needed for proper anti-viral response and immunization. (B) By inhibiting hyper-functional cells
or pathways, rapamycin can reactivate “loss-of-function” otherwise suppressed by hyper-functional cells or pathways.

WWwWw.aging-us.com 1010

AGING



(Sirolimus) and its close analog Everolimus are widely
used in several diseases including cancer and organ
transplantation. Hundreds of clinical trials (and twenty
years of clinical practice) have ensured their safety and
good tolerability especially in healthy older adults [119].

Currently, several anti-aging clinics prescribe rapamycin
out of label to prevent age-related diseases and slow
aging. Hundreds of recent reviews discussed rapamycin
and everolimus in detail, so I will just emphasize a few
points:

1. Crucial prediction of hyper-function theory of
quasi-programmed aging in 2006 was that
rapamycin will slow aging, extend healthspan and
lifespan and decrease all age-related [124]. It has
been confirmed: it extends lifespan in animals from
worm to mammals. In some strains of short-lived
mutant mice, it extends life span two fold [98, 125].

2. Rapamycin slows geroconversion to cellular
senescence in cell culture [74].

3. mTOR is a potential therapeutic target in chronic
obstructive pulmonary disease COPD [126], [127].
Rapamycin (sirolimus) is already approved and
successfully used in lymphangioleiomyomatosis
(LAM), a progressive, cystic lung disease, associated
with inappropriate activation of mTOR [128]. Long-
term daily use of rapamycin improves lung function
without causing serious side effects (and of course
no even minor side effects in the lung, given that
rapamycin improves lung function) [128].

4. Despite widespread misunderstanding, rapamycin
and everolimus do not cause diabetes. In contrast,
they prevent diabetic complications in animals with
diabetes (see for references [129]). In rodents, in
some conditions they may cause symptoms of
starvation pseudo-diabetes similar to prolong
fasting and ketogenic diet [129]. Although, the
Johnson study found a slight but significant
correlation between Medicare billing for insulin and
the use of rapamycin in renal transplant patients,
this correlation was mechanistically explained by
interaction of rapamycin with two other drugs used
in the same patients [130, 131]. In cancer patients,
everolimus may cause reversible hyperglycemia as
a mild, infrequent and reversible side effect after
several weeks of daily high doses of everolimus and
rapamycin [132]. Mechanistically, everolimus
decrease insulin production, not causing insulin
resistance [132]. If anything, everolimus and
rapamycin can be considered to treat complications
of type II diabetes and prevent hyperinsulinemia
and obesity ([129] and references within). What

actually contributes to type 2 diabetes is excess of
nutrients (and especially carbohydrates), which
activate mTOR and cause hyperinsulinemia and
insulin resistance.

Potential applications of rapamycin/everolimus
to COVID-19

As soon as COVID-19 epidemic started, it become clear
that COVID-19 vulnerability is an aging-dependent
condition and the use of rapamycin (Sirolimus) was
immediately suggested by independent researchers [1,
3, 133-137]. These proposals were based on a mixture
of several rationales, which need to be clearly
distinguished. In theory, there are at least three
independent applications of rapamycin and everolimus
for COVID-19. Currently, they all are still hypothetical.

1. Anti-aging effect (Figure 5). By decreasing
biological age and preventing age-related diseases, a
long-term rapamycin therapy may in theory decrease
COVID-19 mortality rate in the elderly. Anti-aging
application is especially important because it is
beneficial regardless of COVID-19. After all,
mortality rate from aging and its diseases is 100%,
causing more than 2 million deaths in the USA
annually. Continuous use of rapamycin is expected
to improve health, decrease age-related diseases and
extend healthy lifespan, rendering individuals less
vulnerable, when infected with the virus.

COoVID-19
vulnerability
A

10

0.1

—_—
»

age(years)

0 t 60 120

RAPAMYCIN started

Figure 5. Prevention of COVID-19 vulnerability by staying
young. Hypothetical graph in the absence of COVID-19. COVID-
19 vulnerability (log scale) increases exponentially with age (blue
line). The line ends at age 120, a maximum recorded age for
humans. In theory, a continuous rapamycin treatment would
slow down an increase of the vulnerability with age (red line). The
increase is still logarithmic but at a different slope, because
rapamycin slows the aging process. The maximum lifespan, in the
absence of COVID-19, is extended because the 100% natural
death threshold is achieved later.
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2. Rejuvenating immunity. As we discussed in section
“Figuratively, rapamycin rejuvenates immunity”
[91], mTOR inhibitors can improve immunity to
viral infections, improve immunization and
vaccination to some viruses such as flu [92-100,
111, 112, 138]. In addition, viruses such as flu
[139] and coronavirus (MERS-CoV) [140] depend
on mTOR activity for replication. Currently,
however, there are no data regarding COVID-19.
Although aimed to evaluate safety, Phase 1 clinical
trial “Sirolimus in COVID-19 Phase 1 (SirCO-1)”
may reveal anti-viral effects too
https://clinicaltrials.gov/ct2/show/NCT04371640.

3. Potential suppression of cytokine storm and hyper-
inflammation (Figure 1). As we discussed in the
section “Cytokine storm is a hyperfunction”,
cytokine storm and hyper-inflammation is a main
cause of death in COVID-19 pneumonia [36—40,
42, 45, 135, 141-143] Rapamycin, an anti-
inflammatory agent, inhibits hyper-functions,
cellular senescence and decrease secretion of
cytokines ([74, 81, 144]. Rapamycin inhibits the
Jak2/Stat4 signaling pathway [145] and reduces IF-
v and TNF-a levels [112]. Rapamycin (Sirolimus)
treatment improves outcomes in patients with
severe HINI1 pneumonia and acute respiratory
failure and was associated with improvement in
virus clearance, and shortened ventilator days
[146]. Clinical trial “Sirolimus Treatment in
Hospitalized Patients With COVID-19 Pneumonia
(SCOPE)” has been started
https://clinicaltrials.gov/ct2/show/NCT04341675.

Disclaimer

This review is intended for a professional audience, to
stimulate new ideas and to aid the global efforts to
develop effective treatments for COVID-19 disease.
This article does not represent medical advice or
recommendations to patients. The media should
exercise caution and seek expert medical advice for
interpretation, when referring to this article.
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ABSTRACT

From the dawn of civilization, humanity has dreamed of immortality. So why didn’t the discovery of the anti-
aging properties of mTOR inhibitors change the world forever? | will discuss several reasons, including fear of
the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that
no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible
(and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging:
cancer, stroke, infarction, blindness and premature death. | will also discuss why it is more dangerous not to
use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been
implemented for potential life extension in humans. If you read this article from the very beginning to its end,

you may realize that the time is now.

“If you wait until you are ready, it is almost
certainly too late.” Seth Godin

In one short-lived mutant strain of mice, the mTOR
inhibitor rapamycin (known in the clinic as Sirolimus)
extends maximum life span nearly three-fold [1].
Albeit less spectacularly, rapamycin also prolongs life
in normal mice as well as in yeast, worms and flies,
and it prevents age-related conditions in rodents,
dogs, nonhuman primates and humans. Rapamycin and
its analog, everolimus, are FDA approved for human
use and have been used safely for decades. In 2006, it
was suggested that rapamycin could be used
immediately to slow down aging and all age-related
diseases in humans [2], becoming an “anti-aging drug
today” [3].

But rapamycin was unlucky

Rapamycin known in the clinic as Rapamune or
Sirolimus, was unlucky from the start, however. Twenty
years ago, it was labeled an immunosuppressant and
used to treat renal transplant patients. If rapamycin had

been labeled an immunomodulator and anti-inflam-
matory drug instead, it would sound much more
appealing now. At anti-aging doses, rapamycin
“eliminates hyperimmunity rather than suppresses
immunity” or, more figuratively, it ‘“rejuvenates
immunity” [2]. This enables rapamycin and everolimus,
a rapamycin analog, to act as immunostimulators [4-6],
improving immunity in cancer patients [7] and the
elderly [8, 9]. For example, rapamycin reduces the risk
of CMV infection in organ transplant patients [10-12],
improves antipathogen and anticancer immunity in mice
[13-15], prolongs lifespan in infection-prone mice [16]
and protects aged mice against pneumonia [17].
Rapamycin also inhibits viral replication [18, 19]. As a
noteworthy example, rapamycin inhibits replication of
the 1918 flu virus (the deadliest flu virus in history) by
100-fold [19], and also protects against lethal infection
with influenza virus when administered during
vaccination [13]. Still, as Dr. Allan Green advises,
patients taking rapamycin should be carefully
monitored for skin and subcutaneous bacterial
infections, which should be treated with antibiotics
https://rapamycintherapy.com.
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Twenty years ago, it was thought that rapamycin might
increase the risk of cancer (see a forthcoming review
“Understanding the side effects of rapamycin”). Despite
that concern, it was revealed that rapamycin actually
prevents lymphoma and some types of cancer in
transplant patients [20-27]. Currently, in fact,
rapamycin analogs, everolimus and temsirolimus, are
widely used in cancer therapy. Furthermore, rapamycin
is the most effective known cancer-preventive agent in
mice [25, 28-32] extending the lifespan of cancer-prone
mice [33-36]. It has even been suggested that rapamycin
extends lifespan by preventing cancer [37].

Nevertheless, social media often warn that although
rapamycin prevents cancer, its use to prevent cancer
may come at the cost of getting cancer. This self-
contradiction miscites a twenty-year-old warning by the
FDA for all drugs marketed as immunosuppressants
(including rapamycin and everolimus): “Increased
susceptibility to infection and the possible development
of malignancies such as lymphoma and skin cancer may
result from immunosuppression.” This statement does
not say that rapamycin or everolimus cause
malignancies. (Just read it again). Although rapamycin
and its analogs are now approved by the FDA for
treatment of cancer and lymphomas, the rumors that
these drugs may cause cancer persist. To my
knowledge, no study has shown that mTOR inhibitors
cause cancer.

At this point, most scientists agree that rapamycin is not
counterindicated because of concerns about immuno-
suppressive effects. But a new objection against
rapamycin has emerged, namely that rapamycin may
cause diabetes. As discussed in detail [38], the new
wave of “fear of rapamycin” is groundless. So, what are
the metabolic effects of rapamycin?

Metabolic effects or rapamycin and starvation

When it is over-activated by nutrients and insulin,
mTOR acts via S6K to inhibit insulin signaling, thereby
causing insulin resistance [39-44]. Acute treatment with
rapamycin abrogates insulin resistance in cells and
animals including humans [45-51]. One study showed
that chronic treatment with rapamycin may also prevent
insulin resistance [52]. However, in some (but not all)
rodent models, chronic treatment with rapamycin can
also cause glucose intolerance and even insulin
resistance [53-56]. This was interpreted as a deleterious
side effect or even type 2 diabetes (T2D). Actually,
however, these metabolic changes are features of
benevolent starvation pseudo-diabetes (SPD), which
was described 170 years ago in fasted animals and later
in humans [57, 58]. During prolonged fasting,
utilization of glucose by non-brain tissues must be

suppressed to ensure an adequate supply to the brain.
When a fasted animal or human is then given a meal,
glucose appears in the urine (glycosuria), which is a
canonical symptom of diabetes. But this is because
prolonged fasting (starvation) leads to decreased insulin
secretion and to insulin resistance, and subsequent re-
feeding then causes transient hyperglycemia and
glycosuria. This SPD can be caused not only by
prolonged fasting, but also by severe restriction of
calorie and carbohydrate intake [38]. For example,
severe calorie restriction can cause diabetes-like glucose
intolerance [59]. Despite that, very low calorie diets are
the most effective treatments for type 2 diabetes [60-
62]. Some researchers re-discovered SPD in obese
patients on strenuous weight loss program and
erroneously warned that low calorie diets cause type 2
diabetes [63].

The obligatory symptom of starvation is ketosis, as
ketones substitute for glucose as the main fuel for the
brain. The ketogenic diet, a promising treatment for
diabetes and obesity in humans, can cause symptoms of
SPD in rodents (see for references [64]). Once again,
some researchers warned that the ketogenic diet can
favor type 2 diabetes [65]. As discussed, such warnings
may not be justified [64, 66-68].

Rapamycin can be viewed as a partial starvation-
mimetic [69-71]. It is therefore predictable that, under
some conditions, prolonged treatment with rapamycin
may lead to the emergence of SPD [72]. This has been
confirmed in rapamycin-fed mice, which developed
insulin resistance, glucose intolerance and mild
hyperglycemia [54]. Nevertheless, rapamycin-fed mice
lived longer and thus were healthier than mice fed a
standard diet [54]. It is not completely clear why SPD
was observed in only some studies and was not
observed in other studies (see for references [38, 73]).

Importantly, SPD is reversible and does not lead to
complications. Furthermore, rapamycin reduces the
incidence of diabetic complications such as diabetic
nephropathy in rodents [42, 74-85]. In healthy elderly
humans, chronic treatment with rapamycin or
everolimus did not cause hyperglycemia [8, 9, 86]. On
the contrary, the risk of hyperglycemia was lower in the
mTOR inhibitor treatment group than the placebo group

[9].

In some cancer patients, high doses of rapamycin or
everolimus can cause hyperglycemia, which is usually
mild (grade 1-2) and reversible, and does not lead to
treatment interruption [87-89]. Hyperglycemia is a
common side effect of many oncotargeted drugs and is
not a manifestation of diabetes. Everolumus, for
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example, can cause hyperglycemia by decreasing
insulin production [89].

To summarize, chronic treatment with high doses of
rapamycin may cause symptoms of reversible SPD.
Diet-induced SPD, at least, is beneficial and therapeutic.
Rapamycin-induced SPD is a relatively rare side effect
and probably can be avoided by administering the drug
intermittently or at lower doses, and if SPD does occur,
it can be reversed by discontinuation of the drug.

In some studies in transplant patients, rapamycin
(sirolimus) and everolimus did not increase the risk of
diabetes [90-95, 96]. In one study, no patient, out of 21
patients treated with rapamycin, developed diabetes,
while the incidence of diabetes was 7% in patients
treated with either cyclosporine or tacrolimus [96].
Most importantly, cyclosporine- or tacrolimus-induced
diabetes resolved in 80% of patients after conversion
from tacrolimus/cyclosporine to rapamycin (sirolimus)
[96].

On the other hand, a large retrospective study reported
an association between Medicare billing for diabetes
treatment and rapamycin use, implying that rapamycin
may increase the risk of diabetes [97]. However, this
association was explained by the interaction between
rapamycin and calcineurin inhibitors, which increase
each other’s levels [96, 98, 99]. Consequently, it
remains unclear whether rapamycin per se increases the
risk of diabetes in transplant patients [96]. Moreover,
this is further complicated by the fact that most
transplant patients develop type 2 diabetes sponta-
neously without rapamycin treatment [100].

Rapamycin is not much more dangerous than
ordinary drugs

If used properly, rapamycin is not much more
dangerous than ordinary aspirin. Aspirin, one of the
most widely used nonprescription medications, may
cause numerous side effects, including life threatening
gastric bleeding. The manufacturer lists as possible side
effects: ringing in ears, confusion, hallucinations,
seizure, severe nausea, vomiting, bloody stools,
coughing up blood, fever and swelling. Still, millions of
people take aspirin daily to prevent cardiovascular
disease and cancer. It was calculated that the benefits of
aspirin are greater than their risks [101, 102]. I believe
the benefits of the anti-aging effects of rapamycin/
everolimus may even be greater (Figure 1).

In the case of rapamycin and everolimus, the most
worrying side effects have not been confirmed. At low
doses [8, 9, 86], or when administered as a single high
dose [103], no side effects have been detected so far in

the elderly. At high doses, rapamycin and everolimus
slow cell proliferation, which decreases blood cell
counts. As a result, mild and reversible thrombo-
cytopenia (low platelet count), anemia and leukopenia
are their most common side effects. But a mild
reduction of platelets may be beneficial. In fact, one of
the intended effects of aspirin is a decrease in platelet
function.

Benefits of future
discoveries
Cancer
prevention
“Fear of
Immortality” Better Health
Avoidable and
reversible side .
effects Longer Life

Figure 1. Potential risk vs benefits of rapamycin-based
anti-aging therapy. Pros and Cons: Potential benefits of
rapamycin may outweigh its risks.

There is one crucial reason why the side effects of
rapamycin are exaggerated. The frequency of
rapamycin side effects has often been estimated in
studies lacking a placebo group. In cancer and
transplant patients, numerous effects ascribed to
rapamycin, such as fatigue (asthenia), for example, are
often caused by the disease itself. In a placebo study of
healthy volunteers, the placebo group reported more
side effects such as fatigue than did the rapamycin
group [104]. In recent placebo-controlled studies in
healthy elderly people, no side effects were noticed as
compared to placebo [9, 86].

While aspirin may cause gastric ulceration and bleeding,
rapamycin may cause stomatitis and mycositis (ulceration
of the mucous membranes of the mouth and the digestive
tract) when used at high doses or chronically. A rare side
effect of rapamycin is non-infectious interstitial
pneumonitis [105].  And by inhibiting neutrophil
function, rapamycin may increase the severity of
bacterial infections [106]. These side effects require
rapamycin’s discontinuation. For antiaging purposes,
however, rapamycin may be used either intermittently
(e.g., once a week) or at low daily doses and can be
discontinued if any unpleasant effects occur.

www.aging-us.com 8050

AGING



From a single dose to intermittent schedules

Although nearly all drugs, including nonprescription
drugs such as aspirin, can be fatal at sufficiently high
doses, there are no known fatal cases of acute
rapamycin (sirolimus) overdose [103]. For example, in
a failed suicide attempt, an 18-year-old woman ingested
103 rapamycin tablets (103 mg), and the only detected
effect was an elevation in total blood cholesterol [103].
In rats, rapamycin’s LD50, a measure of drug lethality,
could not be determined because it is higher than 2500
mg/kg. While a single dose of rapamycin is safe, it is
sufficient to extend life and decrease obesity in several
rodent models [1, 107]. Furthermore, transient treatment
with rapamycin can be long lasting, extending the
lifespan and preventing obesity long after drug
discontinuation [107-112]. The magnitude of life
extension by rapamycin depends mostly on reaching a
high peak blood level [113]. A similar conclusion was
reached by a study of rapamycin use in obesity [112]. It
was suggested in 2008 that a pulse (intermittent)
schedule of rapamycin administration would improve
regeneration of stem cells [114] while avoiding
mTORC?2 inhibition [54, 115].

Therefore, to avoid side effects and maximize anti-
aging effects [110], a feasible approach would be to
prolong intervals between rapamycin administrations
while keeping the total dose constant. For example,
instead of daily administration, a weekly administration
of a higher dose can be suggested to achieve a high
peak blood level, followed by drug-free period to avoid
undesirable effects. Still, everyday treatment of the
elderly (1 mg/day for several weeks) was not associated
with side effects and has been shown to be safe [86].
Similar results were achieved with low doses of other
mTOR inhibitors [9]. Another option is an alternating
schedule; for example, a 3- month course of weekly
rapamycin alternating with a rapamycin-free month.
Finally, anti-aging schedules can be very flexible to fit
an individual patient. The optimal anti-aging dose is a
personalized maximum dose that does not cause side
effects in a particular patient (Figure 2).

In conclusion, the side effects of rapamycin are well-
known and reversible. When used on an anti-aging
schedule, side effects may be absent but, if not, they
may be mitigated by combining rapamycin with other
anti-aging drugs (metformin, statins) or by temporarily
discontinuing it.

Noteworthy, the alternative to the reversible (and
avoidable) side effects of rapamycin/everolimus are the
irreversible (and inevitable) effects of aging. And by
living longer, our generation will benefit from future
anti-aging discoveries (Figure 1).

But the fear of nonexistent side effects is not the only
reason the use of mTOR inhibitors for life extension has
been questioned. The second reason is that there is
rightful skepticism about any claims made about anti-
aging drugs because thousands of anti-aging remedies
have already failed. What then makes rapamycin
different?

Net benefits

/S~

Side effects

shorter health-

and life-span

(diseases including ‘

cancer) Rapamycin

0 Optihum dose

Figure 2. Optimal dose of rapamycin for maximal net
benefits. Life extension by rapamycin is dose-dependent in
rodents. The higher the dose, the higher the anti-aging benefits,
including cancer prevention and life extension. In humans, side
effects are dose-dependent and net benefits could potentially
decrease at very high doses. This point of the highest net benefit
is the optimal dose. The optimal dose varies in different
individuals due to the variability of potential side effects. Thus,
the optimal dose in a particular individual is determined by the
emergence of side effects. The treatment can be viewed as life-
long phase /1l clinical trial.

The history of mankind: empty promises of
immortality

On the one hand, from the dawn of civilization humans
have dreamed of immortality. On the other hand, from
the dawn of civilization a myriad of anti-aging remedies
turned out to be empty promises. Even worse, they
often shorten lifespan. Two notable examples are
antioxidants and human growth hormone. The idea that
free radicals, or reactive oxygen species (ROS), cause
aging was based on a “wild guess,” as Harman, a father
of the ROS theory, acknowledged when he titled his
paper, “I thought, thought, thought for four months in
vain and suddenly the idea came” [116]. The idea is
simple and intuitive, and it was widely accepted based
on circumstantial evidence. In fact, ROS are inevitable
products of metabolism, and they do damage bio-
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molecules. Moreover, excessive ROS can shorten
lifespan. Similarly, the atomic bomb can shorten life
span. Yet this does not mean that either atomic bombs
or oxidants are the cause of normal aging as we know it.

Numerous experiments support the ROS theory.
However, key experiments ruled the ROS theory out
(see for references [2, 117-122]. To make a long story
short, antioxidants could in theory prolong lifespan if
mTOR-driven  (quasi-programmed)  aging  were
suppressed and we lived long enough to die from ROS-
induced post-aging syndrome (I will discuss the
nuances in the forthcoming article “ROS and aging
revisited”). Indeed, ROS will kill any organism
eventually. However, organisms normally die from
mTOR-driven, age-related diseases (aging as we know
it) before ROS can kill them (see for discussion [2]).
As an analogy, consider most of the passengers on the
Titanic. Would antioxidant treatment have been useful
to them for life extension? The best way to extend life
for members of that group would have been to carry
more life boats. Only after their safe rescue could one
expect antioxidants to potentially increase their life
further. Similarly, only after rescue from the quasi-
program of aging may antioxidants potentially have an
impact.

Not surprisingly, antioxidants did not extend lifespan in
any clinical trials and were detrimental in some [122-
133]. As Ristow put it, they were “worse than useless”
[119]. For example, in two very large randomized
controlled trials, antioxidants increased the incidence of
cancer, especially of lung cancer in smokers [131-133].
Antioxidants also increased all-cause mortality. The
results were so disturbing that two trials were stopped
earlier than planned [131-133]. Also disturbing is the
finding that antioxidants accelerate cancer progression
and promote metastasis [134-136]. But despite their
uselessness, antioxidants continue to be a multibillion-
dollar business. They are widely sold as natural
products in the forms of nutritional supplements and in
foods “rich in antioxidants.”

Another example is human growth hormone (HGH),
which is widely used for rejuvenation and longevity.
Yet, it actually accelerates aging and shortens lifespan
[137, 138]. Growth hormone is a pro-aging hormone
because it indirectly activates mTOR [139]. Notably,
the hype around growth hormone is based on a single
publication [140], which misinterpreted its acute effects
[141].

Given that all previous anti-aging remedies have failed
to meet expectations, it is not surprising that the
discovery of the anti-aging effects of rapamycin are
being met with skepticism too. But unlike HGH, the

effects of rapamycin are not based on one single paper
as were HGH, nor is it based on a wild guess as were
ROS.

Rapamyecin is a proven anti-aging drug

The evidence that rapamycin can function as an anti-
aging drug is the product of thousands of scientists
working independently all over the world, studying
mTOR and its inhibitors for a variety of different
reasons in diverse organisms, ranging from yeast to
humans. Studies in model organisms, such as yeast,
worms and flies, have revealed components of the TOR
signaling pathway [142-145]. It was predicted in
2003[146] that conversion from quiescence to
senescence (geroconversion) is driven by growth-
promoting mediators, such as mTOR, when the cell
cycle is blocked [147]. Figuratively, geroconversion is
“twisted” growth that occurs when actual growth is
completed [2], [147]. In cell culture, mTOR is
maximally activated and geroconversion lasts 3-6 days,
whereas in the human body it may take decades. mTOR
drives geroconversion, rendering cells hypertrophic and
hyperfunctional (e.g. senescence-associated secretory
phenotype), which eventually leads to the development
of age-related pathologies [2]. Working independently,
clinical researchers have studied rapamycin for the
prevention and treatment of nearly every age-related
disease, including cancer, obesity, atherosclerosis and
neurodegeneration. If a drug is indicated for all age-
related diseases, it must be an anti-aging drug in that it
targets a common driver of age-related diseases — that
is, aging (see for references [2]). This is because aging
is the sum of all age-related diseases, which limit
lifespan [148-150]. Does rapamycin suppress aging and
extend lifespan by preventing diseases, or does it
prevent diseases by slowing aging? Actually, both
reflect the same process.

By 2006, an extensive body of work from several
independent fields all pointed to rapamycin as an anti-
aging drug [2]. According to hyperfunction theory,
aging is an unintended (not programmed but quasi-
programmed) continuation of the developmental growth
program, driven in part by mTOR [2, 120, 121, 151,
152]. Testable predictions have been formulated [2,
153] and confirmed in numerous independent studies
(see for references: [150, 154]).

In two dozen studies using different strains of mice,
rapamycin extended life span. Starting from a thorough
study by Harrison et al. [155] and followed by nearly
simultaneous studies by others [33, 108], the anti-aging
effects of rapamycin have been confirmed many times
(see for references: [113, 150, 156, 157]). Importantly,
rapamycin and everolimus are indicated in most, if not
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all,  age-related  diseases, from cancer to
neurodegeneration [2, 158].

Conventional drugs as anti-aging agents

Several conventional drugs used to treat age-related
diseases (e.g., hypertension, ischemic heart disease,
diabetes, cancer, prostate enlargement) can be viewed as
somewhat anti-aging drugs [150, 154]. First, these
drugs extend lifespan in the same model organisms (see
for references: [159]). For example, metformin extends
lifespan not only in mice, but also in the worms, which
do not suffer from human diseases [160, 161]. ACE
inhibitors prolong life not only in hypertensive rats, but
also in healthy normotensive rats [162]. If these drugs
were not ordinary drugs for human diseases, then
gerontologists would call them anti-aging agents.

Second, these drugs prevent or treat more than one
disease. For example, metformin is indicated to treat
type 2 diabetes as well as pre-diabetes, obesity,
metabolic syndrome, cancer, and polycystic ovary
syndrome [163-168]. Aspirin not only reduces
inflammation (a hallmark of aging), it also reduces the
risk of cardiovascular disease, thrombosis and cancer.
Low-dose aspirin prevents one-third of colorectal,
gastric, and esophageal cancers [169]. PDES inhibitors
such as Sildenafil and Tadalafil, which are widely used
for erectile dysfunction, are also effective against
benign prostatic hyperplasia (BPH) and pulmonary
arterial hypertension in humans and suppress
inflammation-driven colorectal cancer in mice [170].
Aging is the sum of all these age-related diseases. Given
that humans and animals die from age-related diseases,
life can be extended by treating multiple pre-diseases
and diseases. Rapamycin and these drugs may
complement each other in an anti-aging formulation by
further extending life and/or by mitigating each others
possible side effects [159]. For example, metformin
may counteract rapamycin-induced hyperglycemia
[171].

Not taking rapamycin may be as dangerous as
smoking

Strangely, the fear of tobacco smoking is less intense
than the fear of rapamycin. But whereas smoking
shortens both the healthspan and lifespan, rapamycin
extends them. Smoking increases the incidence of
cancer and other age-related diseases. Rapamycin
prevents cancer in mice and humans. Heavy smoking
shortens life expectancy by 6-10 years. In other words,
simply not smoking prolongs life by 6-10 years. In
middle-aged mice, just 3 months of high-dose
rapamycin treatment was sufficient to increase life
expectancy up to 60% [109]. When taken late in life,

rapamycin increases lifespan by 9-14% [155], despite
the dosage being suboptimal [111]. This possibly
equates to more than 7 years of human life. By
comparison, smokers who quit late in life (at age 65
years), gain between 1.4 -3.7 years [172]. Considered in
those terms, one could say that in the elderly, not taking
rapamycin may be even more “dangerous” than
smoking.  Finally, rapamycin may be especially
beneficial to smokers and former smokers. While the
carcinogens from tobacco cause lung cancer in mice,
rapamycin decreases tobacco-induced lung cancer
multiplicity by 90% [28].

Diet and rapamycin

Calorie restriction (CR) and intermittent fasting (IF)
extend both the lifespan and healthspan in diverse
species. However, CR is of little benefit when started in
old age [73, 173-178]. Fasting inhibits the mTOR
pathway in young but not old mice [179, 180]. By
contrast, rapamycin strongly inhibits mTORC1 at any
age. It extends lifespan, whether started late or early in
life [108, 155, 181], even if used transiently [109]. So,
whereas CR is more beneficial early in life, rapamycin
may be indicated later in life. In addition, the beneficial
effects of rapamycin and CR may be additive, given that
they are exerted through overlapping but distinct
mechanisms [182-186]. Intermittent rapamycin and CR
(24-48 hours after) can be combined, to avoid potential
hyperglycemia.  Physical exercise may be most
beneficial starting immediately after rapamycin use, to
take advantage of rapamycin-induced lipolysis as a fuel
for the muscles. By itself, chronic rapamycin treatment
does not compromise muscle endurance [187] and even
prevents muscle loss [188-190].

Do we need new or safer rapalogs to start aging
prevention?

Despite the metabolic side effects seen in some mouse
models, mice treated with rapamycin live longer and are
healthier. Humans also may want to live longer and
healthier lives, regardless of whether one calls the
means unsafe. Some basic researchers believe that
rapamycin cannot be routinely used to treat aging in
humans because of its metabolic effects and call for the
development of safer analogs. First, rapamycin and
everolimus are FDA-approved drugs, safe for human
use. Since 1999, rapamycin has been used by millions
of patients with no unexpected problems. One may
suggest that rapamycin/everolimus are safe enough for
very sick patients, not for healthy people.

First, healthy elderly people chronically treated with
rapamycin or other mTOR inhibitors showed no ill
effects (e.g. hyperglycemia) [8, 9, 86]. Logically, more
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threatening adverse effects could be expected in cancer
and transplant patients, who are often heavily pre-
treated and terminally ill than in healthy people.
Second, there are no truly healthy people among the
elderly; otherwise, they would be “immortal”, given
that all humans die from age-related diseases, not from
healthy aging. And the sooner they would be treated
with anti-aging drugs, the longer they would remain
relatively healthy.

That said, it is, of course, important to develop new
rapalogs, but not because current rapalogs are unsafe. It
is important because such research will help us to learn
more about mTOR and aging and may lead to the
discovery of agents capable inhibiting the rapamycin-
insensitive functions of mTORCI1. These future drugs
could potentially complement current rapalogs to
further extend lifespan. Non-rapalog rapamycin analogs
will also be developed [191]. The limitation of current
rapalogs is not that they are unsafe but that their ability
to extend life is limited. The goal should be to develop
new drugs that extend life span further.

Rapamycin is a natural anti-fungal antibiotic produced
by soil bacteria of Eastern Island. The patent on
rapamycin has expired, and pharmacological companies
have developed other rapalogs such as everolimus. (I
use the term rapalogs to encompass both rapamycin,
everolimus and any other analogs). At equipotent doses,
rapamycin and everolimus exert almost identical
therapeutic and adverse effects; although, everolimus is
weaker and has a shorter half-life in the organism
compared with rapamycin.

All current rapalogs exhibit the same side effects as
rapamycin and everolimus. Their real side effects are
mTORC1-dependent. Inhibition of mTORCI1 decreases
cell proliferation and function, which is manifested as
lower blood cell counts and insulin levels, especially
when rapalogs are chronically administered at high
doses. We could develop weaker rapalogs, which would
have no side effects if used at the same dose as
rapamycin. But then why not just use a lower dose of
rapamycin? (I will discuss elsewhere how safer
rapalogs are probably weaker rapalogs.) Given to mice
at the same doses as rapamycin, weaker analogs would
have neither side effects and no therapeutic effects.
Consequently, their metabolic effects would be
diminished and so would their therapeutic effects.
However, the same negative result can be achieved
simply by decreasing the dose of rapamycin. While
waiting for silver bullets, we need to use the currently
available rapalogs, such as rapamycin and everolimus,
to live longer. When “safer” rapalogs are clinically
available, we may use them too.

The time is now unless it’s too late

The overwhelming evidence suggests that rapamycin is
a universal anti-aging drug — that is, it extends lifespan
in all tested models from yeast to mammals, suppresses
cell senescence and delays the onset of age-related
diseases, which are manifestations of aging [discussed
by me in [148, 149, 158, 192]. Although rapamycin
may reverse some manifestations of aging [181, 193], it
is more effective at slowing down aging than reversing
it. Therefore, rapamycin will be most effective when
administered at the pre-disease, or even pre-pre-disease
stages of age-related diseases [150]. For example,
Carosi et al. suggested that mTOR inhibitors could be
useful in Alzheimer disease, but only in the earliest
stages [194, 195]. In addition, rapamycin and
everolimus are more effective for preventing cancer
than treating it. They may also be useful for treating
osteoporosis, though not a broken hip after an osteo-
porotic fracture. Rapalogs may slow athero-sclerosis,
thereby preventing myocardial infarction, but they are
unlikely to help reverse an infarction. In other words,
anti-aging drugs extend the healthspan (Figure 3) and
are most effective before overt diseases cause organ
damage and loss of function.

So, is it too late to take rapamycin once aging reaches
an unhealthy stage? Actually, it is not too late. Even if
one or a few age-related diseases renders aging
unhealthy, other potential diseases are still at pre-
disease stages, and anti-aging drugs may delay their
development. And they may slow down further
progression of existing overt diseases.

In addition to rapamycin/everolimus, the anti-aging
formula metformin, aspirin, ACE inhibitors, angiotensin
receptor blockers and PDES5 inhibitors, each of which
can prevent or treat more than one age-related disease
[159]. Note that I mention only clinically-approved
drugs because they can be used now. Later, perhaps, we
may be able to consider further life extension through
the use of low doses of pan-mTOR [196, 197], mdm-2
[198, 199] and MEK inhibitors [200, 201], lithium [201,
202], as well as next-generation rapalogs.

There is currently no consensus around the short-term
markers of anti-aging effects. Therefore, rapamycin
trials should be focused on its potential side effects
rather than anti-aging effects. We must be sure that the
therapy is safe. In the future, the treatment should be
conducted as a life-long phase I/Il trial, with dose
escalation of rapamycin/everolimus until the side effects
are reached in an individual patient. The tailored
optimal dose (see Figure 2) should be determined
individually for each patient and may vary widely.
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Figure 3. Effects of standard and anti-aging medicine on health- and lifespan. (A) The relationship between health- and life-
span. Aging is a sum of all age-related diseases, pre-diseases and pre-pre-diseases. Before overt age-related diseases become apparent,
there is a seemingly healthy period of aging (so-called healthy aging). Starting from adulthood, pre-pre-diseases progress towards pre-
diseases and then towards overt diseases. Unless treated with modern standard medical practice, the diseased stage is relatively brief.
From (A) to (B) Standard medical treatment is usually started when overt diseases are diagnosed. Standard medicine extends life span
mostly by preventing death from diseases, thus extending “unhealthy” phase of life, especially terminal stages of diseases,
characterized by organ damage, failure and loss of functions. Standard medicine extends lifespan. From (B) to (C) Anti-aging medicine is
most effective at the stage of pre-diseases and initial stages of diseases, characterized by increased functions before complications and
organ damage occur. In terminal stages of deadly diseases, anti-aging therapy may not be useful. Thus, anti-aging medicine increases
both health span and life span. Anti-aging medicine and standard medicine are additive when aging becomes unhealthy. The schema is
simplified because, in reality, age-related diseases start at different ages (presbyopia vs sarcopenia), progress at different paces
(atherosclerosis vs cancer), and most are not lethal, and some are well treated (cataract). Therefore, healthspan is an abstraction.

Doses and frequencies should be limited by the side
effects: stomatitis/mucositis, anemia, thrombopenia,
leukopenia, edema, and pneumonitis. To be safe, even
mild hyperglycemia should be avoided or mitigated
with metformin. Treatment is intended to be life-long,
unless discontinued due to side effects.

Self-medication (even by physicians themselves) should
be avoided and strongly discouraged. Instead, we need
anti-aging clinics that implement the entire anti-aging
recipe, including a complementary low carbohydrate
diet and life style changes. Blood levels of rapamycin
should be measured, as the rapamycin concentration in
blood varies greatly among individuals taking the same
dose. Doses of rapamycin should be tailored:
personalized dosing and schedules. There is no shortage
of potential patients who unfortunately already employ
self-medication with rapamycin, but there is a shortage
of physicians to treat them. Fortunately, a prototype
clinic already functions in the USA, demonstrating that
it is feasible from a regulatory standpoint (see Alan
Green'’s practice, Little Neck, NY). We cannot wait for

results from others if we want to live longer and
healthier ourselves. The time is now.

Disclaimer

This article is addressed to clinical scientists and
physicians. It is intended for informational and
educational purposes only. Medical doctors interested
in this topic may e-mail the author at
Blagosklonny@rapalogs.com
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Rapamycin for the aging skin

Mikhail V. Blagosklonny

In 2007, I filed a patent application claiming that topical
rapamycin (e.g., in the form of a cream or ointment)
https://patents.google.com/patent/ WO2008022256A2/en
could be used to prevent and treat skin aging. Potential
indications include various types of age-related spots,
wrinkles, photo-aged skin, and other age-related skin
conditions. The patent was not granted, nor were
cosmetic companies interested in pursuing this avenue
of product development. Cell senescence has
traditionally been seen as growth arrest. It seemed weird
that rapamycin, a drug that inhibits growth, could
inhibit cellular senescence. Nonetheless, it works
because, actually, senescence is a continuation of
growth when true growth is impossible [1]; in other
words, senescence is “twisted” growth [2]. In an exciting
‘twist’, these claims were recently confirmed in a clinical
trial by Chung et al. [3], which I will discuss later.

Even in 2007, the idea of using rapamycin topically was
not novel [4, 5]. (What was novel in my application
was the idea of using topical rapamycin as an anti-aging
drug for the aging skin [1]). By now, there have been
dozens of papers describing the therapeutic use of
rapamycin (Sirolimus) in patients with such skin
diseases as lymphatic malformations, vascular ano-
malies, Facial Angiofibroma and psoriasis [6-13]. These
diseases were treated in children and young adults. In
one study, topical rapamycin at low doses (0.003-
0.015%) decreased facial angiofibromas in young
adults. There was no systemic absorption of rapamycin
(blood levels were <1.0 ng/mL) [13].

Returning to cellular senescence, signaling in the
mTOR (Target of Rapamycin) pathway drives growth
of cellular mass and sustains cell cycle progression.
Cells grow and divide, balancing growth. But when the
cell cycle is suddenly blocked by p16 or p21, mTOR
drives growth-like conversion from reversible arrest
(quiescence) to senescence [2, 14]. In short, mTOR
drives geroconversion [15]. Rapamycin and its analogs,
as well as pan-mTOR inhibitors, suppress gero-
conversion, thereby maintaining cells in a young
healthy state. Moreover, these drugs prevent loss of
cells’ proliferative potential, which is considered a strict
definition of senescence [2, 15]. Geroconversion in
stem cells leads to stem cells depletion [16, 17]. mTOR-
driven hypertrophy can be followed by atrophy at the
end stages. Cellular hyperfunction eventually leads to
cellular exhaustion and secondary functional decline [1].

Commentary

Suppression of cellular senescence by rapamycin was
demonstrated in numerous studies both in vivo and in
vitro [18-30] and see for references [15]. In vitro,
rapamycin slows conversion to senescence by
approximately 3-fold [14]; it does not suppress it
completely. Notably in that regard, in the most
rapamycin-responsive mouse model of mitochondrial
disease, rapamycin extends the maximum life span by
nearly 3-fold [31].

Just as in vitro geroconversion is a continuation of
growth, organismal aging is an unintended and harmful
continuation of developmental growth post-develop-
ment [1, 32]. These messy quasi-programs inevitably
lead to age-related diseases, which include conditions
ranging from obesity, cancer and Alzheimer’s disease to
skin spots, wrinkles and seborrheic keratoses. mTOR
drives geroconversion, increasing cellular functionality
(e.g., the senescence-associated secretory phenotype). It
is noteworthy that this increase in cellular activity can
cause secondary exhaustion, tissue damage and
decreased of organ function; for example, hypertrophy
may be followed by atrophy at later stages. In other
words, age-related diseases and conditions initially
caused by mTOR-driven hyperfunction eventually lead
to organ damage and functional decline [1, 33]. Similar
quasi-programs were described even in the worm [34-
36]. In sum, aging is an unintentional and harmful
continuation of developmental programs, driven in part
by mTOR. To be clear, mTOR activity does not need to
increase with age, just keeping it at a level as high as
during development is sufficient to cause disease.
Despite its simplicity, this model accurately predicts
that rapamycin will extend life and delay diseases.
Indeed, since initial publications [18, 37, 38, 39],
numerous studies have confirmed that rapamycin
extends lifespan in mice (see for references [40-44]).

In that context, it is predictable that rapamycin would
slow skin aging. However, unless rapamycin reverses
skin aging, not merely slow it, the effect would be
difficult to document. This is because a patient cannot
serve as a self-control (placebo control) unless rapa-
mycin reverses aging, which would be easy to detect.
This difficulty can be overcome, however, by com-
paring an untreated hand with a hand treated with
topically applied rapamycin in the same subject. This is
the approach taken by Chung et al. in their study, which
found that treatment with rapamycin-containing cream
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improved skin photoaging and skin tone, decreased fine
wrinkles, increased dermal volume, and reduced
sagging of the skin [3]. These differences between
treated and untreated hands were detectable after 4
months of the treatment [3]. Regrettably, the study
excluded patients with diabetes, although the thera-
peutic effect would probably be more significant in
diabetic patients, given that mTOR is overactivated in
that disease. In addition, it is unclear whether rapamycin
reversed skin aging and improved the skin or merely
slowed the progression of skin aging. In the latter
scenario, the difference between the treated and
untreated hands is due to the progression of aging in the
untreated hands. In combination with placebo/treatment,
comparisons of specific abnormalities before and after
treatment is also needed. Despite these open questions
the study is remarkable [3].

As a cosmetic, rapamycin-containing cream may be
applied to selected areas, like the hands and face,
especially skin affected by age-related spots and
pathologies. It should not be applied to the entire skin
surface of the body. To affect the entire skin surface,
systemic use of rapamycin would likely be a better
option, as many manifestations of skin aging are
probably due to systemic organismal aging and disease;
skin aging is not an exclusively local process. And most
importantly, systemic rapamycin use increases lifespan
and decreases disease. This by itself is so important that
solely topical use of rapamycin may seem insufficient.
On the other hand, topical application of any drug is
safer than systemic administration. Still, the best
strategy in some cases may be simultaneous systemic
and topical use of rapamycin in selected areas of the
skin, especially areas where there are signs of aging
marks. However, given that most doctors are fearful of
systemic treatment with rapamycin [45], I expect that it
will be topical use of rapamycin that becomes
widespread, if regulatory hurdles can be overcome.
Whether rapamycin cream should be a prescription
treatment or an over-the-counter cosmetic will likely be
a matter of debate.
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ABSTRACT

Is aging a disease? It does not matter because aging is already treated using a combination of several clinically-
available drugs, including rapamycin. Whether aging is a disease depends on arbitrary definitions of both
disease and aging. For treatment purposes, aging is a deadly disease (or more generally, pre-disease), despite
being a normal continuation of normal organismal growth. It must and, importantly, can be successfully
treated, thereby delaying classic age-related diseases such as cancer, cardiovascular and metabolic diseases,

and neurodegeneration.

Endless debate on aging and disease

For decades, one of the most debated questions in
gerontology was whether aging is a disease or the norm.
At present, excellent reasoning suggests aging should be
defined as a disease [1-7]. I tend to define aging a
disease, even though it is the norm. Vladimir Dilman
referred to aging as “normal disease” [8, 9].

As 1 emphasized in my publications, aging is not
programmed. [ have explicitly stated as such even in
my article titled “Aging is not programmed: genetic
pseudo-program a shadow of development growth”
(PMID: 24240128). Aging is a normal continuation of
the normal develop-mental program, so it is NOT a
program but a purposeless, unintended quasi-program
[10-16]. Yet, aging is also a deadly disease because it
inevitably leads to death.

Indeed, aging is “the sum of all age-related diseases”
and this “sum is the best biomarker of aging” [17].
Aging and its diseases are inseparable, as these diseases
are manifestations of aging. Of course, any one age-
related disease can occur at a young age due to genetic
and environmental factors. What is important is that
aging is sufficient to cause all age-related diseases,

sooner or later, without dependence on genetic or
environmental factors [18]: if Alzheimer’s disease or
type 2 diabetes is not diagnosed during ones life time, it
is only because cancer or a stroke terminates life before

Alzheimer’s diseases or type 2 diabetes can be
diagnosed (and vice versa).

Aging is the sum of pre-diseases and diseases

Aging is an increase in the probability of death due to
age-related diseases, which are late manifestations of
aging [18]. Diseases are preceded by pre-diseases. For
example, diabetes is diagnosed when fasting glucose
levels are higher than 125 mg/dl, while levels of 100 to
125 mg/dl are considered pre-diabetes. Remarkably,
diabetic complications such as nephropathy and
retinopathy often develop before type 2 diabetes itself
(see for references [19]). Although not formally a
disease, pre-diabetes is currently treated to prevent
diabetes [20-23]. Moreover, pre-diabetes is initiated by
underlying processes that we will call pre-pre-diabetes,
which arise while fasting glucose levels and glucose
tolerance are still normal, though insulin levels are
increased (hyperinsulinemia), indicating mild insulin
resistance [24]. Hyperinsulinemia in healthy adults with
normal glucose levels is predictive of type 2 diabetes
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over a 24-year follow-up [25, 26]. Normal glucose
levels (<100 mg/dl) associated with hyperinsulinemia is
pre-pre-diabetes [27]. Hyperinsulinemia may in turn be
driven by mTOR signaling [19], which suggests a state
of pre-pre-pre-diabetes in which both glucose and
insulin levels are normal. The condition that we can call
pre-pre-diabetes is associated with future diabetes,
cardiovascular disease and the all cause mortality rate
[28]. Preventive treatment with metformin has been
initiated during these very early disease stages in obese
adolescents [29].

Another example is hypertension (a disease), which is
defined arbitrarily as blood pressure (BP) above 140/90
mmHg. Pre-hypertension (or borderline hypertension) is
defined as BP below 140/90 mmHg but higher than
120/80 mmHg. BP tends to increase with age, and
those whose BP has not yet reached 140/90 (disease), or
even 120/80 (pre-disease), may still have higher BP
than they did when they were younger [30]. Mortality is
associated with BP, even if it is lower than 140/90 [31].
Both pre-hypertension and pre-diabetes are age-related
pre-diseases. Likewise, the asymptomatic stages of
Alzheimer’s disease are also pre-disease.

In pre-diseases, abnormalities have not reached the
arbitrary diagnostic criteria of the diseases. So, aging
consists of progression from (pre)-pre-diseases (early
aging) to diseases (late aging associated with functional
decline). Aging is NOT a risk factor for these diseases,
as aging consists of these diseases: aging and diseases
are inseparable (Figure 1).

An aged appearance (e.g., grey hair, wrinkles, cushin-
goid body types and loss of muscles) are manifestations
of pre-diseases. For example, an aged appearance may
reflect hypercortisolism, sarcopenia, osteoporosis, skin
pre-diseases and so on. And age-related skin lesions
may herald pre-cancerous skin conditions [32].

Pre-pre-diseases

Pre-diseases

What is “healthy” aging?

What then is aging without diseases, so called “healthy”
aging. “Healthy” aging has been called subclinical
aging [33], slow aging [18, 34] or decelerated aging
[35], during which diseases are at the pre-disease or
even pre-pre-disease stage. Diseases will spring up
eventually. “Healthy” aging is a pre-disease state in
which asymptomatic abnormalities have not yet reached
the artificial definitions of diseases such as hypertension
or diabetes. Instead of healthy aging, we could use the
terms pre-disease aging or decelerated aging. Further-
more, decelerated aging can be achieved pharmaco-
logically. For example, rapamycin decelerates aging,
thereby making one healthier [36, 37].

Currently, the term healthspan lacks clarity and
precision especially in animals [38]. Although the
duration of healthspan depends on arbitrary criteria and
subjective self-rating, it is a useful abstraction. In
theory, a treatment that slows aging increases both
healthspan (subclinical period) and lifespan, whereas a
treatment that increases lifespan (e.g., coronary bypass,
defibrillation) is not necessarily increase healthspan
(Figure 1 in reference [33]). The goal of both anti-
aging therapies and preventive medicine is to extend
healthspan (by preventing diseases), thus extending
total lifespan.

Preventive medicine: a step towards anti-aging
medicine

Aging is the sum of diseases and pre-diseases.
Treatments are generally more effective at pre-disease
stages, associated with hyper-function, than at disease
stages, associated with functional decline. As discussed
in 2006, “rapamycin will prevent diseases rather than
cure complications of diseases. For example, rapamycin

Clinical disease level

| Death level

\H growth

Aging

Hy p e r-functions

Loss of
functions

Figure 1. Relationship between aging and diseases. When growth is completed, growth-promoting
pathways increase cellular and systemic functions and thus drive aging. This is a pre-pre-disease stage,
slowly progressing to a pre-disease stage. Eventually, alterations reach clinical disease definition,
associated with organ damage, loss of functions (functional decline), rapid deterioration and death.
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will not repair broken bones but might prevent osteo-
porosis.” [10]. In fact, rapamycin prevents osteoporosis
[39].

The goal of preventive medicine is to prevent diseases
by treating pre-diseases. Thus, preventive medicine is a
form of anti-aging therapy. Both preventive medicine
and anti-aging therapy should prevent pre-diseases by
treating “healthy” individuals. Some of the drugs used
in preventive medicine include statins, aspirin, ACE
inhibitors (e.g., lisinopril) and metformin, which can be
repurposed as anti-aging drugs [40, 41]. And vice versa,
rapamycin, an anti-aging drug, may become a corner-
stone of preventive medicine. As David Gems put it,
“anti-aging treatment is any preventative approach to
reduce late-life pathology. Its adoption would facilitate
translation, since it would shift the emphasis to medical
practice, particularly the introduction of preventative
approaches.” [42].

To treat what is treatable

The fact that aging is an obligatory part of the life of all
organisms is not important. What is important is that
aging is deadly and, most importantly, treatable.
Consider an analogy. Is facial hair (beard) in males a
disease? No of course, not. Still most men shave it,
effectively “treating” this non-disease, simply because it
is easily treatable. Is presbyopia (blurred near vision) a
disease? It occurs in everyone by the age of 50 and is a
continuation of developmental trends in the eye. It is
treated as a disease because it is easily treatable with
eye glasses. Unlike presbyopia, menopause in females
is not usually treated because it is not easy to treat.
Thus, the decision to treat or not to treat is often
determined by whether it is possible to treat. It does not
matter whether or not the target of treatment is called a
disease.

Aging is treatable

As the simplest example, calorie restriction (CR) slows
aging in diverse organisms, including primates [43-50].
Similarly, intermittent fasting (IF) and ketogenic diet
(severe carbohydrate restriction) extend life span in
mammals [48, 51-54]. CR (as well as carbohydrate
restriction and IF fasting) improves health in humans
[45, 48, 53, 55-62]. However, CR is unpleasant to most
humans and its life-extending capacity is limited.
Nutrients activate the mTOR (molecular Target of
Rapamycin) nutrient-sensing pathway [63-65] and, as
we will discuss mTOR drives aging, inhabitable by
rapamycin. Rapamycin-based anti-aging therapies have
been recently implemented by Dr. Alan Green
(https://rapamycintherapy.com).

Rapamycin and other rapalogs

Rapamycin  (Rapamune/Sirolimus), an allosteric
inhibitor of mTOR complex 1 [63, 66], is a natural
rapalog as well as the most potent and best studied
rapalog.  Rapamycin-analogs such as everolimus,
temsirolimus (a rapamycin prodrug) and deforolimus/
Ridaforolimus are also now widely used.

Rapamycin, everolimus and deforolimus slow
geroconversion [67-75]. It has been predicted that
rapamycin would slow aging in mammals [10, 76].
Starting in 2009, numerous studies have demonstrated
that rapamycin prolongs life in mice [75, 77-99], even
when started late in life [77, 78, 97-99], or adminis-
trated transiently or intermittently [77, 88, 89, 95].

In these studies, rapamycin was most effective at high
doses [88, 89, 93-96, 100-103]. Its effect and that of
everolimus lingers after their discontinuation [104],
even after a single dose [105]. What appears to be
important is to reach high peak levels using a single
high dose [93, 94].

In non-human primates, chronic and/or intermittent
rapamycin improves metabolic functioning [106]. In a
randomized controlled trial, middle-aged companion
dogs administrated rapamycin exhibited no further side
effects as compared to dogs receiving the placebo
[107].

Millions of patients with various diseases and
conditions (e.g., organ transplant recipients) have been
treated with rapamycin (Sirolimus). Typical dose of
rapamycin in organ-transplant patients is 2 mg/day.
Rapamycin in a single dose of 15 mg was administrated
to healthy volunteers without adverse effects [108].
Similarly, a dose of 8 mg/m2 (around 16 mg) was also
well tolerated in healthy male volunteers [109]. What is
amazing is that the placebo group reported more “side
effects” such as astenia than did the rapamycin group
[109]. In yet another study, comparison to placebo
revealed no real everolimus-induced side effects in the
elderly [104]. Moreover, everolimus improves
immunity [110] and reduces infections in elderly
healthy humans [104]. In placebo-controlled studies,
side effects of rapamycin and everolimus are
manageable with dose reduction and interruption.
Discontinuation due to toxicity was uncommon [111].
In volunteers (aged 70-95 years, mean age of 80 years),
treatment with 1mg/daily of rapamycin for 8 weeks was
safe [112]. Matt Kaeberlein suggests that conventional
doses of rapamycin maybe sub-optimal for maximum
life-extension [113]. I agree with this opinion.
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Conventional drugs as anti-aging drugs

Metformin is used not only to treat diabetes but also
pre-diabetes in order to prevent diabetes [20-23].
Metformin decreases insulin-resistance and body
weight and prevents diabetes, cancer and cardio-
vascular disease [21, 22, 114-119]. It is expected that
metformin would extend life and, in fact, metformin
does decrease all-cause mortality [119, 120].
Physicians generally do not think of metformin as an
anti-aging drug, simply because it is expected that life
will be extended, if diseases are prevented. In mice,
metformin extends healthspan and lifespan [117, 121-
123]. It also extends the lifespan of C. elegans [124-
127], which do not suffer from human diseases.
Gerontologists think of metformin as an anti-aging drug
[121-130], and metformin can be combined with
rapamycin [131].

Angiotensin II inhibitors

Angiotensin-converting enzyme (ACE) inhibitors (e.g.,
Captopril, Lisinopril, Enalapril, Ramipril) and
Angiotensin II receptor blockers (ARB) (e.g., Valsartan,
Telmisartan, Losartan) are widely used to treat
hypertension, which is a typical hyperfunctional
disease. Vasoconstriction, cardiomyocyte hypertrophy,
beta- and alpha- adrenergic hyperstimulation all lead to
high blood pressure (systemic hyperfunction), which, in
turn can contribute to stroke, myocardial infarction and
renal failure. ACE inhibitors and ARBs decrease
vasoconstriction and prevent cardiac hypertrophy. They
are life-extending drugs because they treat deadly
diseases.

Notably, ACE inhibitors increase the lifespan in rodents
with normal blood pressure [132-134], thereby acting as
anti-aging drugs.

Combinations of conventional drugs

Combinations of aspirin, statins, beta-blockers and
ACE inhibitors are given to aging individuals to
prevent cardiovascular diseases [135]. On the other
hand, these drugs extend life span in rodents and
Drosophila [136].

Typical combinations (polypill) include an antiplatelet
agent (aspirin), a statin and two blood pressure-lowering
drugs such as lisinopril and a beta-blocker [137,138].
Such combinations are estimated to reduce the 5-year
incidence of stroke by 50% [139]. Aspirin, statins, ACE
inhibitors, beta-blockers and metformin prevent some
types of cancer and pre-cancerous polyps [116-118,
140-146].

Treating aging by preventing diseases or
preventing diseases by slowing aging

As discussed, “aging is the sum of all age-related
diseases” and this “sum is the best biomarker of aging”
[17]. One could say that drugs prevent diseases by
slowing aging. Alternatively, it could be said that
prevention of diseases slows aging, which is the sum of
all diseases and pre-diseases. If a drug prevents
diseases, it will extend lifespan (apparently slowing
down aging). If a drug slows down aging it will prevent
diseases and extend healthspan [17, 147].

As suggested “narrow spectrum anti-aging treatments
(e.g. the cardiovascular polypill) could establish a
practice that eventually extends to broader spectrum
anti-aging  treatments  (e.g.  dietary  restriction
mimetics)”. [42].

CONCLUSION

It is commonly argued that aging should be defined as a
disease so as to accelerate development of anti-aging
therapies. This attitude is self-defeating because it
allows us to postpone development of anti-aging
therapies until aging is pronounced a disease by
regulatory bodies, which will not happen soon. Aging
does not need to be defined as a disease to be treated.
Anti-aging drugs such as rapamycin delay age-related
diseases. If a drug does not delay progression of at least
one age-related disease, it cannot possibly be considered
as an anti-aging drug, because it will not extend life-
span by definition (animals die from age-related
diseases). It has been suggested [17], “in order to extend
life span, an anti-aging drug must delay age-related
diseases. ... Once a drug is used for treatment of any
one chronic disease, its effect against other diseases ...
may be evaluated in the same group of patients.” Aging
can be treated as a pre-disease to prevent its progression
to diseases. Rapamycin-based combinations include
conventional life-extending drugs, which are used to
treat and prevent age-related diseases. These com-
binations could be combined with modestly low-
calorie/carbohydrates diet, physical exercise and stress
avoidance [40, 41]. And this approach is actually being
used now to treat aging at Alan Green’s clinic in Little
Neck, NY:
http://roguehealthandfitness.com/rapamycin-anti-aging-
medicine-an-interview-with-alan-s-green-m-d/?print=
pdf and https://rapamycintherapy.com
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Paradoxes of senolytics

Mikhail V. Blagosklonny

Senolytics are drugs that extend lifespan and delay
some age-related diseases by killing senescent cells [1-
4]. In fact, drug screens have identified a diverse group
of drugs that are preferentially toxic to at least some
senescent cells in some cellular models [2-9]. So far,
however, their selectivity against senescent cells is
modest and cell-type-specific [8-11]. Nevertheless,
targeting senescent cells has been shown in animal
models to prevent such age-related pathologies as
emphysema [12], lung fibrosis [13-15], atherosclerosis
[16, 17], osteoporosis [18], osteoarthritis [19-20], renal
disease [21], intervertebral disk pathology [2], hepatic
steatosis [22] and other age-related conditions [4, 7, 18,
23, 24].

In this editorial commentary, I want to draw your
attention to the paradoxes associated with senolytics,
which argue against the dogma that says aging is a
functional decline caused by molecular damage. This
dogma predicts that senolytics should accelerate aging.
If aging is caused by loss of function, then killing
senescent cells would be expected to accelerate aging,
given that dead cells have no functionality at all.
Instead, however, senolytics slow aging, which high-
lights a contradiction in the prevailing dogma.

Commentary

The theory of hyperfunctional aging [25-32] addresses
this paradox. Killing senescent cells is beneficial
because senescent cells are hyperfunctional [33]. The
hypersecretory phenotype or Senescence-Associated
Secretory Phenotype (SASP) is the best-known example
of universal hyperfunction [34-36]. Most such hyper-
functions are tissue-specific. For example, senescent
beta cells overproduce insulin [37] and thus activate
mTOR in hepatocytes, adipocytes and other cells,
causing their hyperfunction, which in turn leads to
metabolic syndrome (obesity, hypertension, hyper-
lipidemia and hyperglycemia) and is also a risk factor
for cancer [38-40]. SASP, hyperinsulinemia and
obesity, hypertension, hyperlipidemia and hypergly-
cemia are all examples of absolute hyperfunction (an
increase in functionality). In comparison, relative
hyperfunction is an insufficient decrease of unneeded
function. For example, protein synthesis decreases with
aging, but that decrease is not sufficient [30]. In
analogy, a car moving on the highway at 65 mph is not
“hyperfunctional.” But if the car were to exit the
highway and enter a residential driveway at only 60
mph it would be “hyperfunctional,” and stopping that
car would likely prevent damage to other objects.

Senolytic

Gero-suppressant
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Figure 1. Target of senolytics in the aging quasi-program. In post-mitotic quiescent cells in an
organism, growth-promoting effectors such as mTOR drive conversion to senescence. Hyperfunctional
senescent cells activate other cells (including cells in distant organs), rendering them also hyperfunctional,
which eventually leads to organ damage. This process manifests as functional decline, a terminal event

secondary to initial hyperfunction.

Senolytics such as ABT263 or 737 kill hyperfunctional senescent cells,

preventing damage to organs. Gerosuppressants such as rapamycin suppress geroconversion and may decrease
hyperfunction of already senescent cells, thereby slowing disease progression (not shown here in scheme).
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Similarly, killing hyperfunctional cells can prevent
organismal damage. Senolytics eliminate hyper-
functional cells, which otherwise damage organs
(Figure 1).

Senolytics should not be confused with gero-
suppressants (Figure 1). Gerosuppressants, such as
rapamycin, do not kill cells; they instead prevent
cellular conversion to senescence (geroconversion) [33].
Rapamycin also slows disease progression by limiting
the hyperfunction of senescent cells. Notably, some
senolytics are also gerosuppressants. For example,
inhibitors of MEK [41-43] or PI3K [2, 41] are both
gerosuppressants [41] and senolytics [2, 42, 43].

It may seem paradoxical that senolytics are anticancer
drugs [44] because standard anticancer agents cause
molecular damage. According to the hyperfunction
theory [45], molecular damage does not cause aging.
Although accumulation of molecular damage does
happen and would destroy the organism eventually, no
organism lives long enough for that to occur because
TOR-driven (hyperfunctional) aging kills it first. If
TOR-driven aging (i.e., aging as we currently know it)
were abolished, then organisms would die from “post-
aging syndrome” due to molecular damage (see Figure
8 in ref. [25]). Molecular damage contributes to some
age-related diseases. But these diseases would arise
even without molecular damage [45]. Molecular
damage is essential for most types of cancer, but a
senescent microenvironment [46] and overall organism
aging (and associated diseases such as diabetes) also
play roles [47], as does clonal selection for mTOR
activation in cancer cells [48]. Importantly, molecular
damage renders cancer cells robust and hyperfunctional.
Cancer cells kill an organism not because molecular
damage makes them weak; it is because the molecular
damage makes them robust and hyperfunctional. If
accumulation of molecular damage leads to
immortalization and robustness, then aging cannot
represent functional decline caused by molecular
damage [48].

All senolytics, without exception, were initially
investigated or specifically developed as anticancer
drugs. But not all anticancer drugs are senolytics. Both
senolytics and gerosuppressants belong to a very special
subgroup of oncotargeted drugs [49]. Various pathways
involving IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO,
PI3K, mTOR, S6K, and NF«xB comprise a mTOR-
related network and are involved in aging [49].
Oncoproteins promote aging, while tumor suppressors
are gerosuppressors, which inhibit aging [48, 50]. As
depicted a decade ago (see Figure 3 in ref. [51] and
Figures 4 and 9 in ref. [25]), oncotargets are gerotargets
that are also mTOR activators, while tumor and aging
suppressors are mTOR inhibitors. In brief, gerocon-
version and oncogenic transformation are two sides of
the same process [50]. Gerogenic oncogenes activate

the mTOR pathway, driving geroconversion of cell
cycle-arrested cells.  When cell cycle control is
disabled, they drive oncogenic transformation [48, 50].
Many puzzles remain. For example, killing senescent
adipocytes, macrophages or foam cells will slow
diseases such as atherosclerosis and metabolic diseases,
and killing senescent glial cells can prevent cognitive
decline [23]. On the other hand, killing some senescent
cell types may be counterproductive. For example,
killing senescent beta cells may lead to diabetes [37],
and killing of senescent hyperfunctional neurons in
Alzheimer’s disease may have unpredictable conse-
quences. Fortunately, senolytics are tissue-specific and
only kill some types of senescent cells [8-11], which
may make them safer.

To add further complication to the paradoxes associated
with senolytics, it was shown that many detected p16/p-
gal-positive cells are not senescent cells, but are instead
hyperfunctional macrophages, which contribute to aging
[52-54]. Notably, B-gal staining is a marker of hyper-
functional lysosomes [55]. A combination of markers,
including mTOR targets, is needed to define senescence
[33]. Some senolytics that target Bcl2 family proteins
may theoretically kill leukemia/lymphoma cells. I hope
to discuss these and other issues in a scheduled review
“Senolytics, gerosuppressants and conventional life-
extending drugs.”
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