A AgeAccel, Univariate B IEAA, Univariate c EEAA static, Univariate

Meta P=1.9e-11, Heterog. P=0.082 Meta P=8.2e-09, Heterog. P=0.61 Meta P=7.5e-43, Heterog. P=0.0067

Cohort N (events) HR [95% CI] HR [95% CI] HR [95% CI]
WHI White 995 309 ] 0.993[0.971,1.016] pe 0.998[0.975, 1.021] e 1.016[0.998 , 1.035]
LBC 1921 445 312 o 1.030[ 1.013, 1.048 ] ey 1.023 [ 1.004, 1.042] ] 1.030 [ 1.017 , 1.044 ]
LBC 1936 919 106 agl 1.030[ 1.003, 1.059 ] — 1.022[0.992, 1.053 ] —— 1.031[1.004, 1.059 ]
NAS 647 221 te 0.999[0.975, 1.023 ] Ha 1.010[0.984 , 1.037 ] [ 1.039[1.015, 1.063 ]
FHS 2614 236 b= 1.035[ 1.011, 1.060 ] e 1.028 [ 1.003, 1.055 ] b 1.063 [ 1.043, 1.083 ]
KORA 1257 42 = 1.033[0.975, 1.093 ] e 1.033[0.972, 1.098 ] F—— 1.095[1.053,1.138]
INCHIANTI 506 91 —— 1.034[0.992, 1.078 ] F—— 1.034[0.990 , 1.080 ] —— 1.036[ 1.004 , 1.070 ]
Rotterdam 710 32 ——  1.049[0.993,1.110] . 1.028 [0.961, 1.100 ] b—————1 1.096 [ 1.034, 1.161]
BLSA White 317 26 F—— 1.100[1.023,1.183] p————1.114 [ 1.025 , 1.212] [ 1.043[0.980, 1.111]
TwinsUK 805 30 ——| 1.072[0.988,1.162] — 1.036[0.947 , 1.134] b————11.102[ 1.036, 1.172]
WHI Black 675 176 o 1.027 [ 1.004 , 1.050 ] == 1.029 [ 1.005, 1.054 ] [ 1.036 [ 1.014, 1.059]
ARIC Black 2768 1075 L] 1.024 [ 1.012, 1.037 ] - 1.023[1.011, 1.036 ] L] 1.041[1.031, 1.051]
WHI Hispanic 431 78 ] 1.038[0.988 , 1.091] [ 1.022[0.971,1.076 ] —— 1.049[1.011, 1.088 ]
Meta (FE) [} 1.024[1.017,1.031]  Meta (FE) [} 1.022[1.014,1.029]  Meta (FE) [} 1.040 [ 1.034 , 1.046 ]

0900 ' 1.100 ' 1.300 0.905 1.000 1,105 1.221 0851 | 1051 _ 1162
Hazard Ratio Hazard Ratio Hazard Ratio

SPECIAL COLLECTION
ON STEVE HORVATH'S
PUBLICATIONS IN AGING
(ALBANY NY)

Univariate Cox regression
meta-analysis of all-cause mortality,
see Chen et al "DNA methylation-based
measures of biological age:
meta-analysis predicting
time to death"

Steve Horvath's ‘
Publications in
Aging (Albany NY)




Editorial and Publishing Office Aging
6666 E. Quaker St., Suite 1,
Orchard Park, NY 14127
Phone: 1-800-922-0957
Fax: 1-716-508-8254
e-Fax: 1-716-608-1380

Submission
Please submit your manuscript on-line at http://aging.msubmit.net

Editorial
For editorial inquiries, please call us or email editors@impactaging.com

Production
For questions related to preparation of your article for publication, please call us or email
krasnova@impactaging.com

Indexing
If you have questions about the indexing status of your paper, please email kurenova@impactaging.com

Billing/Payments
If you have questions about billing/invoicing or would like to make a payment, please call us or email
payment@impactaging.com

Media
If you have questions about post publication promotion, Altmetric, video interviews or social media,
please email media@impactjournals.com

Printing
Each issue or paper can be printed on demand. To make a printing request, please call us or email
printing@impactjournals.com

Publisher's Office

Aging is published by Impact Journals, LLC

To contact the Publisher’s Office, please email: publisher@impactjournals.com, visit
www.impactjournals.com, or call 1-800-922-0957

Aging (ISSN: 1945 - 4589) is published twice a month by Impact Journals, LLC.
6666 East Quaker St., Suite 1B, Orchard Park, NY 14127

Abstracted and/or indexed in: PubMed/Medline (abbreviated as "Aging (Albany NY)"), PubMed Central (abbreviated as "Aging
(Albany NY)™), Web of Science/Science Citation Index Expanded (abbreviated as Aging-US) & listed in the Cell Biology-SCIE
and Geriatrics & Gerontology category, Scopus /Rank Q1(the highest rank) (abbreviated as Aging) - Aging and Cell Biology
category, Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative), Dimensions (Digital Science's).

This publication and all its content, unless otherwise noted, is licensed under CC-BY 3.0 Creative Commons Attribution License.

Impact Journals, LLC meets Wellcome Trust Publisher requirements.
IMPACT JOURNALS is a registered trademark of Impact Journals, LLC.

IMPACT [COLIRNALS


http://aging.msubmit.net/
mailto:editors@impactaging.com
mailto:krasnova@impactaging.com
mailto:kurenova@impactaging.com
mailto:payment@impactaging.com
mailto:RyanJamesJessup@Impactjournals.com
mailto:RyanJamesJessup@Impactjournals.com
mailto:publisher@impactjournals.com
http://www.impactjournals.com/

ONLINE ISSN: 1945-4589

Www.aging-us.com

DITORIAL BOAR

EDITORS-IN-CHIEF Jan Vijg - Albert Einstein College of Medicine, Bronx, NY, USA

David A. Sinclair - Harvard Medical School, Boston, MA, USA
Vera Gorbunova - University of Rochester, Rochester, NY, USA
Judith Campisi - The Buck Institute for Research on Aging, Novato, CA, USA

Mikhail V. Blagosklonny - Roswell Park Cancer Institute, Buffalo, NY, USA

EDITORIAL BOARD

Frederick Alt - Harvard Medical School, Boston, MA, USA

Vladimir Anisimov - Petrov Institute of Oncology, St.Petersburg, Russia
Johan Auwerx - Ecole Polytechnique Federale de Lausanne, Switzerland
Andrzej Bartke - Southern Illinois University, Springfield, IL, USA

Nir Barzilai - Albert Einstein College of Medicine, Bronx, NY, USA
Elizabeth H. Blackburn - University of California, San Francisco, CA, USA
Maria Blasco - Spanish National Cancer Center, Madrid, Spain

Vilhelm A. Bohr - National Institute on Aging, NIH, Baltimore, MD, USA
William M. Bonner - National Cancer Institute, NIH, Bethesda, MD, USA
Robert M. Brosh, Jr. - National Institute on Aging, NIH, Baltimore, MD, USA
Anne Brunet - Stanford University, Stanford, CA, USA

Rafael de Caba - NIA, NIH, Baltimore, MD, USA

Ronald A. DePinho - Dana-Farber Cancer Institute, Boston, MA, USA
Jan van Deursen - Mayo Clinic, Rochester, MN, USA

Lawrence A. Donehower - Baylor College of Medicine, Houston, TX, USA
Caleb E. Finch - University of Southern California, Los Angeles, CA, USA
Toren Finkel - National Institutes of Health, Bethesda, MD, USA

Luigi Fontana - Washington University, St. Louis, MO, USA

Claudio Franceschi - University of Bologna, Bologna, Italy

David Gems - Inst. of Healthy Ageing, Univ. College London, UK

Myriam Gorospe - National Institute on Aging, NIH, Baltimore, MD, USA
Leonard Guarente - MIT, Cambridge, MA, USA

Andrei Gudkov - Roswell Park Cancer Institute, Buffalo, NY, USA
Michael Hall - University of Basel, Basel, Switzerland

Philip Hanawalt - Stanford University, CA, USA

Nissim Hay - University of Illinois at Chicago, Chicago, IL, USA



Siegfried Hekimi - McGill University, Montreal, Canada

Stephen L. Helfand - Brown University, Providence, RI, USA

Jan H.J. Hoeijmakers - Erasmus MC, Rotterdam, The Netherlands

John 0. Holloszy - Washington University, St. Louis, MO, USA

Stephen P. Jackson - University of Cambridge, Cambridge, UK

Heinrich Jasper - The Buck Institute for Research on Aging, Novato, CA, USA
Pankaj Kapahi - The Buck Institute for Research on Aging, Novato, CA, USA
Jan Karlseder - The Salk Institute, La Jolla, CA, USA

Cynthia Kenyon - University of California San Francisco, San Francisco, CA, USA
James L. Kirkland - Mayo Clinic, Rochester, MN, USA

Guido Kroemer - INSERM, Paris, France

Titia de Lange - Rockefeller University, New York, NY, USA

Arnold Levine - The Institute for Advanced Study, Princeton, NJ, USA
Michael P. Lisanti - University of Salford, Salford, UK

Lawrence A. Loeb - University of Washington, Seattle, WA, USA

Valter Longo - University of Southern California, Los Angeles, CA, USA
Gerry Melino - University of Rome, Rome, Italy

Simon Melov - The Buck Institute for Research on Aging, Novato, CA, USA
Alexey Moskalev - Komi Science Center of RAS, Syktyvkar, Russia

Masashi Narita - University of Cambridge, Cambridge, UK

Andre Nussenzweig - National Cancer Institute, NIH, Bethesda, MD, USA
William C. Orr - Southern Methodist University, Dallas, TX, USA

Daniel S. Peeper - The Netherlands Cancer Institute, Amsterdam, The Netherlands
Thomas Rando - Stanford University School of Medicine, Stanford, CA, USA
Michael Ristow - Swiss Federal Institute of Technology, Zurich, Switzerland
Igor B. Roninson - Ordway Research Institute, Albany, NY, USA

Michael R. Rose - University of California, Irvine, CA, USA

K Lenhard Rudolph - Hannover Medical School, Hannover, Germany

Paolo Sassone-Corsi - University of California, Irvine, CA, USA

John Sedivy - Brown University, Providence, RI, USA

Manuel Serrano - Spanish National Cancer Research Center, Madrid, Spain
Gerald S. Shadel - Yale University School of Medicine, New Haven, CT, USA
Norman E. Sharpless - University of North Carolina, Chapel Hill, NC, USA
Vladimir P. Skulachev - Moscow State University, Moscow, Russia

Sally Temple - NY Neural Stem Cell Institute, Albany, NY, USA

George Thomas - University of Cincinnati, Cincinnati, OH, USA

Jonathan L. Tilly - Massachusetts General Hospital, Boston, MA, USA

John Tower - University of Southern California, LA, CA, USA

Eric Verdin - University of California, San Francisco, CA, USA

Thomas von Zglinicki - Newcastle University, Newcastle, UK

Alex Zhavoronkov - Insilico Medicine, Baltimore, MD, USA

Aging (ISSN: 1945 - 4589) is published monthly by Impact Journals, LLC.
6666 East Quaker St., Suite 1B, Orchard Park, NY 14127

Abstracted and/or indexed in: PubMed/Medline (abbreviated as “"Aging (Albany NY)"), PubMed Central (abbreviated as "Aging (Albany NY)"),
Web of Science/Science Citation Index Expanded (abbreviated as Aging-US) & listed in the Cell Biology-SCIE and Geriatrics & Gerontology
category, Scopus /Rank Q1(the highest rank) (abbreviated as Aging)- Aging and Cell Biology category, Biological Abstracts, BIOSIS Previews,
EMBASE, META (Chan Zuckerberg Initiative), Dimensions (Digital Science's).

This publication and all its content, unless otherwise noted, is licensed under CC-BY 3.0 Creative Commons Attribution License.

Impact Journals, LLC meets Wellcome Trust Publisher requirements.
IMPACT JOURNALS is a registered trademark of Impact Journals, LLC.

IMPACT |OLIRNALS



Table of Contents

DNA-methylation-based telomere length estimator: comparisons with measurements from flow FISH
and gqPCR
Published in 2021, Volume 13, Issue 11 pp 1475-14686

Epigenetic mutation load is weakly correlated with epigenetic age acceleration
Published in 2020, Volume 12, Issue 18 pp 17863-17894

Blood DNA methylation sites predict death risk in a longitudinal study of 12, 300 individuals
Published in 2020, Volume 12, Issue 14 pp 14092-14124

Epigenome-wide association study of leukocyte telomere length
Published in 2019, Volume 11, Issue 16 pp 5876-5894

DNA methylation-based estimator of telomere length
Published in 2019, Volume 11, Issue 16 pp 5895-5923

Optimism is not associated with two indicators of DNA methylation aging
Published in 2019, Volume 11, Issue 14 pp 4970-4989

Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels
Published in 2019, Volume 11, Issue 12 pp 4238-4253

Rapamycin retards epigenetic ageing of keratinocytes independently of its effects on replicative
senescence, proliferation and differentiation
Published in 2019, Volume 11, Issue 10 pp 3238-3249

Epigenetic clock analysis of human fibroblasts in vitro: effects of hypoxia, donor age, and expression of
hTERT and SV40 largeT
Published in 2019, Volume 11, Issue 10 pp 3012-3022

DNA methylation GrimAge strongly predicts lifespan and healthspan
Published in 2019, Volume 11, Issue 2 pp 303-327

Cell and tissue type independent age-associated DNA methylation changes are not rare but common
Published in 2018, Volume 10, Issue 11 pp 3541-3557

A multi-tissue full lifespan epigenetic clock for mice
Published in 2018, Volume 10, Issue 10 pp 2832-2854

Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase
expression
Published in 2018, Volume 10, Issue 10 pp 2800-2815

Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo
studies



Published in 2018, Volume 10, Issue 7 pp 1758-1775

An epigenetic biomarker of aging for lifespan and healthspan
Published in 2018, Volume 10, Issue 4 pp 573-591

Leukocyte telomere length, T cell composition and DNA methylation age
Published in 2017, Volume 9, Issue 9 pp 1983-1995

Accelerated epigenetic aging in Werner syndrome
Published in 2017, Volume 9, Issue 4 pp 1143-1152

An epigenetic aging clock for dogs and wolves
Published in 2017, Volume 9, Issue 3 pp 1055-1068

Longitudinal study of surrogate aging measures during human immunodeficiency virus seroconversion
Published in 2017, Volume 9, Issue 3 pp 687-705

Epigenetic clock analysis of diet, exercise, education, and lifestyle factors
Published in 2017, Volume 9, Issue 2 pp 419-446

Specific premature epigenetic aging of cartilage in osteoarthritis
Published in 2016, Volume 8, Issue 9 pp 2222-2231

DNA methylation-based measures of biological age: meta-analysis predicting time to death
Published in 2016, Volume 8, Issue 9 pp 1844-1865

Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels
Published in 2016, Volume 8, Issue 7 pp 1485-1512

Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and
Alzheimer’s disease related cognitive functioning
Published in 2015, Volume 7, Issue 12 pp 1198-1211

Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring
Published in 2015, Volume 7, Issue 12 pp 1159-1170

Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients
Published in 2015, Volume 7, Issue 12 pp 1130-1142

DNA methylation age of blood predicts future onset of lung cancer in the women's health initiative
Published in 2015, Volume 7, Issue 9 pp 690-700

Epigenetic age analysis of children who seem to evade aging
Published in 2015, Volume 7, Issue 5 pp 334-339

The cerebellum ages slowly according to the epigenetic clock
Published in 2015, Volume 7, Issue 5 pp 294-306



WWwWw.aging-us.com AGING 2021, Vol. 13, No. 11

Research Paper
DNA-methylation-based telomere length estimator: comparisons with
measurements from flow FISH and qPCR

Emily E. Pearce?, Steve Horvath?3, Shilpa Katta®®, Casey Dagnall*®, Geraldine Aubert®’,
Belynda D. Hicks*®, Stephen R. Spellman®, Hormuzd Katki, Sharon A. Savage’, Rotana Alsaggaf'’,
Shahinaz M. Gadalla®"

IClinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National
Institutes of Health, Rockville, MD 20850, USA

’Department of Biostatistics, Fielding School of Public Health, University of California School of Public Health, Los
Angeles, CA 90095, USA

3Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles,

CA 90095, USA

4Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute,
National Institutes of Health, Rockville, MD 20850, USA

>Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada

"Repeat Diagnostics Inc, North Vancouver, BC V7M 1A5, Canada

8Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
53226, USA

9Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes
of Health, Bethesda, MD 20892, USA

*Equal contribution

Correspondence to: Shahinaz M. Gadalla, Rotana Alsaggaf; email: gadallas@mail.nih.gov, rotana.alsaggaf@nih.gov
Keywords: telomere length, qPCR, flow FISH, DNAmMTL, agreement
Received: January 5, 2021 Accepted: May 14, 2021 Published: June 3, 2021

Copyright: © 2021 Pearce et al. This is an open access article distributed under the terms of the Creative Commons
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

ABSTRACT

Telomere length (TL) is a marker of biological aging associated with several health outcomes. High throughput
reproducible TL measurements are needed for large epidemiological studies. We compared the novel DNA
methylation-based estimator (DNAmMTL) with the high-throughput quantitative PCR (qPCR) and the highly accurate
flow cytometry with fluorescent in situ hybridization (flow FISH) methods using blood samples from healthy adults.
We used Pearson’s correlation coefficient, Bland Altman plots and linear regression models for statistical analysis.
Shorter DNAMTL was associated with older age, male sex, white race, and cytomegalovirus seropositivity (p<0.01
for all). DNAmMTL was moderately correlated with qPCR TL (N=635, r=0.41, p < 0.0001) and flow FISH total
lymphocyte TL (N=144, r=0.56, p < 0.0001). The agreements between flow FISH TL and DNAmMTL or gPCR were
acceptable but with wide limits of agreement. DNAMTL correctly classified >70% of TL categorized above or below
the median, but the accuracy dropped with increasing TL categories. The ability of DNAMTL to detect associations
with age and other TL-related factors in the absence of strong correlation with measured TL may indicate its
capture of aspects of telomere maintenance mechanisms and not necessarily TL. The inaccuracy of DNAMTL
prediction should be considered during data interpretation and across-study comparisons.
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INTRODUCTION

Telomeres consist of tandem DNA nucleotide repeats
(TTAGGG)n and a protein complex that cap
chromosome ends to ensure chromosomal stability [1].
Telomeres shorten as cells divide, eventually leading to
replicative  senescence and/or apoptosis, making
telomere length (TL) a useful marker of cellular and
thus biological age [2, 3]. TL has been associated with a
variety of age-related diseases and health outcomes
including cardiovascular disease, metabolic syndrome,
and cancer (reviewed in [4]). TL is used clinically to
diagnose patients with inherited telomere biology
disorders such as dyskeratosis congenita and has shown
promise in guiding donor selection for hematopoietic
cell transplant (HCT) [5-8].

Several methods have been developed for measuring
TL, each with its own strengths and limitations [9,
10]. The current gold standard is the Southern blot
Telomere Restriction Fragment (TRF) method; it
measures average absolute TL (in kilobases, kb), and
requires large quantities of high-quality DNA [11].
Another accurate method is fluorescence in situ
hybridization (flow FISH) in which fluorescently
labeled peptide nucleic acid (PNA) probes detect
telomeric repeats in total leukocytes and leukocyte
subsets to determine average TL as calibrated using
TRF and presented in kb. This method requires viable
leukocytes and special expertise [10, 12]. A widely
used method is quantitative polymerase chain reaction
(gPCR) that measures TL based on the ratio between
telomere copy number and that of a single-copy gene
(T/S) in the same DNA sample [13, 14]. qPCR is
frequently used to determine TL in epidemiologic
studies because of its high-throughput and small DNA
requirements; however, its reliability is limited by its
high sensitivity to pre-analytic factors, such as DNA
extraction or storage [15]. Other methods target the
shortest telomeres such as single telomere length
analysis (STELA) and the Telomere Shortest Length
Assay (TeSLA) [16, 17]. Large scale genomic and
epigenomic data offer opportunities for new
approaches to TL calculation, such as TelSeq, an
open-source software that is correlated with Southern
blot (r~0.6) and estimates TL in kb using whole-
genome sequence data [18].

Existing methods and high throughput adaptations
have extended telomere research to population-level
studies; however, there remains a need for TL
measurement tools that overcome the limitations of
current techniques: the sample quantities and analysis
time required by the most accurate methods, and the
limited reliability of high-throughput methods. DNA
methylation regulates gene expression and has been

associated with both chronological age and telomere
shortening [19-21]. A new method utilizing whole
genome DNA methylation array data to predict TL in
kb was recently introduced [22] and may be useful to
explore TL questions using available methylation
array databases. This study aims to independently
evaluate the performance of DNAmMTL in comparison
with TL measured by flow FISH and gPCR and
evaluate the relationship between DNAMTL and
participant characteristics known to be associated
with TL.

RESULTS
Participant characteristics

The study included 635 healthy adults (median age=34
years, range=19-61) who were HCT donors; blood
samples were available at the Center for International
Blood and Marrow Transplant Research (CIBMTR)
biorepository and were part of the National Cancer
Institute (NCI) Transplant Outcomes in Aplastic
Anemia (TOAA) Study. Of the 635 individuals, 425
(67%) were male, 478 (75%) were white, and 239
(38%) were cytomegalovirus (CMV) seropositive
(Table 1).

Association between DNAMTL and TL-related
participant characteristics

A statistically significant strong negative association
between DNAmMTL and chronological age was noted:;
the correlation coefficient (r) = -0.65, p<0.0001(Figure
1A). Shorter DNAMTL was associated with male sex
(p=0.0001) and CMV positive serostatus (p=0.0004).
African Americans had longer DNAMTL compared
with other race groups; the difference between TL in
African Americans and Whites was statistically
significant (p=0.003), but no difference was noted
between Whites and other race groups (p=0.95) (Figure
1B). In a multivariable regression model including all
previously tested variables, DNAMTL decreased by 21
bp per year (p<0.0001), and was 116 bp longer in
women than men (p<0.0001), 213 bp longer in African
Americans than whites (p<0.0001), and 83 bp shorter in
CMV seropositive individuals than those who were
seronegative (p<0.0001) (Table 2).

DNAMTL reliability and comparisons with gPCR or
flow FISH TL

In 48 samples with blinded duplicate of
MethylationEpic array data, the mean coefficient of
variation (CV) of calculated DNAMTL was 1% (range=
0.08-3.1%). These blinded duplicate samples also had
high  DNAmMTL correlation (r=0.93, p<0.0001).
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Table 1. Characteristics of study participants.

Variable Total (n=635) N (%0)
Age
19-24 118 (19%)
25-29 124 (19%)
30-34 96 (15%)
35-39 107 (17%)
40-44 91 (14%)
45-61 99 (16%)
Sex
Male 425 (67%)
Female 210 (33%)
Race
White 478 (75%)
African American 40 (6%)
Other 93 (15%)
Missing 24 (4%)
CMYV serostatus
Positive 239 (38%)
Negative 370 (58%)
Missing 26 (4%)
Telomere length (TL) Median (Range)
DNAmMTL (kb) 7.4 (6.6-8.4)
flow FISH TL (kb)! 7.0 (3.7-11.2)

gPCR (z-score) -0.17 (-2.34-4.96)

"flow FISH TL was available for 144 participants.
Abbreviations: CMV indicates cytomegalovirus;
DNAmMTL (kb) indicates DNA methylation-based
estimator of telomere length in kilobases; flow FISH TL
(kb) indicates lymphocyte telomere length measured
by fluorescent in situ hybridization with flow
cytometry in kilobases; gPCR (z-score) indicates
calculated z-score of telomere length measured by

guantitative polymerase chain reaction.

Comparison of the TL estimated by DNAmMTL and
measured by flow FISH in the 144 individuals with
both measures showed a statistically significant
difference (median 7.4 vs. 7 kb respectively, p<0.0001),
and moderate correlation (r = 0.56, p <0.0001; Figure
2A). In the full cohort (N=635), predicted TL by
DNAmMTL and gPCR measured TL were also
statistically significantly different (median z-score TL
=0.05 vs. -0.17 standard deviations from the mean,
respectively, p=0.03), and showed modest correlation
(r=0.41, p<0.0001; Figure 2B). No statistically
significant differences in the correlations between TL

from DNAmMTL and gPCR were noted by sex
(p-interaction=0.31), race (p-interaction=0.10), or age
(p-interaction=0.11).

Bland Altman analysis of DNAmMTL compared with flow
FISH TL demonstrated a mean bias of 0.35 kb (standard
deviation [SD]=1.86), and a wide limit of agreement
(LoA = -151 to 2.21 kb). DNAmMTL resulted in a
narrower range of TL compared with flow FISH with
overestimation of the shortest TL and underestimation of
the longest (Figure 3A). The mean bias was 0.023 (SD=
1.09) for DNAMTL and gPCR TL (Figure 3B).
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We then used classifier matrices to assess the agreement
between DNAMTL or gPCR TL with that of flow FISH
when categorized as long versus short based on the TL
median. DNAmMTL correctly classified 72% of the
individuals as having long (TL above median) or short

(TL below the median) with 77% sensitivity and 66%
specificity, relative to flow FISH. Similarly, agreement
between gPCR and flow FISH showed 79% accuracy,
79% sensitivity, and 79% specificity (Figure 4A, 4B).
When the analysis was repeated to evaluate the ability
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Table 2. Adjusted associations between DNAmMTL
and selected participant characteristics.

Variables! B p-value
Age -0.021 <0.0001
Sex

Male REF

Female 0.116 <0.0001
Race

White REF

African American 0.213 <0.0001
Other 0.010 0.68
CMV serostatus

Negative REF

Positive -0.083 <0.0001

1All variables in the table were included in the same

model.

Abbreviation: CMV indicates cytomegalovirus.

of DNAMTL or qPCR to correctly classify TL in tertiles
or quartiles, accuracy of both methods decreased. For
DNAmMTL, the TL accuracy for the tertile
classifier=57%, and for the quartile classifier =42%.
Similar results were noted with gPCR TL (tertile
accuracy=67%, quartile accuracy=52%). Of note, both
DNAmMTL and qPCR TL showed highest agreement
with flow FISH at the longest and shortest TL
categories for both tertiles and quartiles.
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DISCUSSION

In this study, we found that DNAmMTL detected the
expected variations in TL by age, sex, race, and CMV
serostatus (a marker of chronic infection). However, its
correlation with TL measured by flow FISH or gPCR
was modest and the limits of measurement agreement
were wide. On the binary scale, both DNAMTL and
gPCR correctly classified approximately two-thirds of
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Figure 2. Correlation of telomere length (TL) measurement tools. (A) DNA methylation telomere length (DNAmMTL) and flow FISH TL
in kilobases (kb); (B) DNAMTL and gPCR in z-scores. Dashed line represents perfect agreement. Solid red line represents regression line.
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the individuals into long or short TL (cutoff at the
median) when tested against flow FISH. The accuracy
of both methods declined when TL was classified into
more than two categories. These results suggest there
may be opportunities for using methylation array data to
explore TL variability in large epidemiological studies

but call for caution in directly comparing DNAmMTL
results with standard TL measurement methods because
of its limited accuracy.

The current study showed a modest correlation between
DNAMTL and flow FISH (r=0.56), or gPCR (r=0.41).
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Figure 4. Classifier matrices comparing telomere length (TL) categories (above and below median). (A) between flow FISH and
DNA methylation telomere length (DNAMTL); (B) between flow FISH and gPCR.
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A previously published report showed a consistent
correlation between DNAMTL and TRF (N of datasets=4,
N of samples = 4788, range of r= 0.41- 0.5), but the
correlation between DNAmMTL and gPCR was variable (N
of datasets=3, N of samples = 2136, range of r= -0.01-
0.38) [22]. This may reflect the known lab-to-lab variation
for qPCR TL assay or be affected by assay
reproducibility. Here, we showed a mean CV for
DNAMTL of 1% indicating a high reproducibility of TL
estimates based on 48 replicates. A previous study
showed a CV of 1.7% for TRF and >5% for gPCR [23].

In line with previous studies using the Bland Altman
analysis comparing agreements between TL measurement
methods [24-26], DNAmMTL showed acceptable
agreement with TL measured by gPCR (mean bias = SD
= 0.023 £ 1.09) or flow FISH assay (mean bias + SD =
0.35 + 1.86) with almost all observations falling within
two standard deviations for the limits of agreement.
However, the observed wide limits of agreement (e.g., -
1.51 to 2.21 kb in the flow FISH comparison) reflect a
lack of accuracy that may limit the applicability of
DNAMTL. When evaluating the ability of DNAmMTL or
gPCR to accurately categorize TL as compared with flow
FISH, the study showed attenuated accuracy as the
number of categories increased. This may highlight the
importance of taking assay measurement error into
account when calculating the minimum required sample
size for new studies to be able to detect significant
differences [27, 28].

Despite the modest correlation between DNAMTL and
measured TL by evaluated assays, DNAMTL showed the
expected negative TL-age correlation. Of note, the
observed DNAMTL correlation with age was stronger (r=
-0.64) than that reported with other TL measurement
assays in this dataset (r = -0.30 for gPCR TL, and r=-0.33
for flow FISH TL) [25]. Additionally, in a meta-analysis
of 124 cross-sectional and 5 longitudinal studies, the
pooled TL-age correlation for TRF was r= -0.34 and for
gPCR r= -0.29 [29]. On the other hand, comparisons of
DNAMTL differences across age groups in the current
cross-sectional study suggested that for every year
increase in age, DNAMTL decreased by 21 bp. This is
slightly lower than other methods in which a decrease of
30-60 bp per year was detected [30]. Notably, the
majority of previous literature on TL dynamics also used
a cross-sectional approach; longitudinal studies with serial
samples are needed to address this question. DNAMTL
also detected known TL relationships with sex, race [31,
32] and chronic infections [33, 34]. Of interest, DNAMTL
in the current study detected greater TL differences by
race and sex than those reported by TRF in a study
including 1510 individuals (of whom 142 were African
Americans and 888 were females) [35]. This may
be influenced by sex- or race-specific methylation

differences [36]. Yet, it is also possible that the relatively
small sample size of certain subgroups in our study may
have resulted in imprecise estimates. DNAMTL also
demonstrated the expected associations with BMI and
smoking behavior in another study [22]. These
observations, despite modest correlations with other
methods, support that DNAMTL may be capturing a
broader aspect of the biological processes underlying
cellular aging than just telomere shortening. Previously
reported in vitro examination of cultured somatic cells
showed that DNAmMTL captured cellular proliferation
independent of telomere attrition and telomerase activity
[22]. Therefore, more robust associations between
DNAMTL and TL-related factors that may themselves be
more strongly linked to cellular aging than to telomere
shortening are biologically plausible and point to the
utility of future studies of DNAMTL in capturing such
variations.

The strengths of the current study included the availability
of TL measurements from multiple assays allowing for a
comprehensive comparison with the new DNAmMTL
estimator in a relatively large sample size of healthy
individuals. Flow FISH data provided an accurate TL
measurement comparison with DNAmMTL, and gPCR data
allowed us to compare DNAMTL to a method widely
used in epidemiological studies. Our study was limited by
the age range (19-61 years), so our estimates may not be
generalizable to all ages. Additionally, our DNAmMTL
associations with TL-known factors were not adjusted for
other possible confounders such as socioeconomic status,
smoking, or BMI, due to lack of information. However,
the association between these factors and TL is not firmly
established [37-40]. In addition, the study population
consisted of pre-screened, healthy, HCT donors, therefore
these factors are unlikely to have significant effects on our
results. Although we measured TL using several assays
(flow FISH and gPCR), we were limited by the absence of
TL measurement by TRF, the gold standard in TL
research. Of note, a strong correlation between TL
measured by flow FISH and TRF has been reported (R? =
0.73; p<0.001) [41].

In conclusion, the results of this study suggest that
DNAMTL holds promise as a method for approximating
TL as long as its limitations are understood. In the current
era of genomic data sharing there is an opportunity to use
DNAMTL to explore different avenues of telomere and
aging research using methylation data in the public
domain. The sensitivity of DNAMTL in detecting known
TL associations and its ability to approximate average TL
suggest it may have utility in epidemiologic studies.
However, because DNAMTL correlation and agreement
with other methods is only modest, researchers should
exercise caution when using DNAMTL in contexts where
accuracy is of primary importance. Additional studies are
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needed to better understand what specific aspects of
cellular aging or telomere maintenance are being captured
by DNAMTL.

MATERIALS AND METHODS
Study participants

The study participants were HCT donors in the TOAA
project, a collaboration between NCI and CIBMTR
[42]. Blood samples (frozen whole blood (N=416), or
peripheral blood mononuclear cells (PBMC; N=219)
collected before hematopoietic stem cell donation were
available at the CIBMTR biorepository (https://www
.cibmtr.org/Pages/index.aspx).

Telomere length measurement

For the flow FISH assay, total leukocytes were isolated
from cryopreserved PBMCs. The fluorescence intensity
in total lymphocytes and lymphocyte subsets, defined
by labeled antibodies specific for CD20, CD45RA and
CD57, relative to internal control cells and unstained
controls were measured on a FACSCalibur instrument
(Becton Dickinson) to calculate the median telomere
length from duplicate measurements. For the present
study, we analyzed TL measurements for total
lymphocytes. More detailed description of flow FISH
methods used in this study can be found elsewhere [42].

DNA for gPCR assays was extracted with the QlAamp
Maxi Kit procedure (Qiagen, Inc., Valencia, CA). We
used Telo_RP and Telo_FP primers (for the telomeric
PCR) and 36B4_FP and 36B4_RP primers for the
single-copy gene (36B4). Raw T/S ratio was
standardized by dividing the raw ratio with the average
T/S ratio of internal quality control (QC) calibrator
samples. All samples were measured in triplicate and
averages were used in the final calculations. More
detailed description of the gPCR method used in this
study can be found elsewhere [42]. gPCR analysis was
completed in stages; to ensure comparability between
TOAA sub-cohorts, we standardized TL based on the
TL distribution within the sub-cohorts using z-scores

(z :X%‘) where X is the observed TL, u is the mean

TL, and ¢ is the TL standard deviation. Calculated
z-score is interpreted as the number of standard
deviations from the mean.

Prediction of telomere length using DNA methylation
array data

For DNA methylation profiling, we used TOAA blood
extracted DNA and the Hlumina Infinium Methylation
EPIC Bead™ array which covers more than 850,000
methylation sites across the genome. We excluded

samples where >4% of probes failed detection (n=2).
Functional normalization was used to account for
potential batch effects using the “minfi” R package. Forty-
eight blinded duplicate samples included to assess within
and across plate differences had a high concordance rate
(Pearson’s r > 0.98). The Horvath DNAMTL was used for
TL estimation as previously published [22]. In the original
study, machine learning techniques were used to identify
CpG sites (cytosine-phosphate-guanine dinucleotides)
predictive of TRF-measured leukocyte TL,; this resulted in
the selection of 140 specific CpG sites using data from a
diverse sample of 2,256 individuals. The use of linear
regression models allowed for the transformation of DNA
methylation levels to express TL predictions in kb.

Statistical analysis

We used Pearson’s correlation coefficient to evaluate
the strength of linear association between DNAmMTL
and other TL measurement methods (flow FISH, and
gPCR). A multivariable linear regression model was
used to assess the association between DNAmMTL and
participant characteristics (age, sex, race, and CMV
serostatus). All tests were two-sided with statistical
significance defined as p < 0.05.

Bland Altman analysis was used to assess agreement
between TL measurement methods by studying the mean
difference between the two methods and constructing
limits of agreement (defined as area within two standard
deviations of the mean difference). The Y-axis shows the
measurement difference, and the X-axis represents the
average of the two measures. Bias is estimated as the
mean difference between TL measurements in each
comparison, with the zero line representing perfect
agreement [43]. We used a classifier matrix (also known
as confusion matrix) to assess the ability of gPCR and
DNAMTL to accurately classify categories of TL in
comparison with flow FISH using the R package (caret).
Performance metrics included accuracy, sensitivity,
specificity, and negative and positive predictive values.
Data analysis and visualization was performed using
SAS® statistical software, version 9.4 and RStudio,
version 1.3.959.

Data availability

Data from this study are available and can be shared
after fulfilling data sharing requirements; all relevant
data and methods are reported in the article.
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ABSTRACT

DNA methylation (DNAm) age estimators are widely used to study aging-related conditions. It is not yet
known whether DNAm age is associated with the accumulation of stochastic epigenetic mutations (SEMs),
which reflect dysfunctions of the epigenetic maintenance system. Here, we defined epigenetic mutation
load (EML) as the total number of SEMs per individual. We assessed associations between EML and DNAm
age acceleration estimators using biweight midcorrelations in four population-based studies (total n =
6,388). EML was not only positively associated with chronological age (meta r = 0.171), but also with four
measures of epigenetic age acceleration: the Horvath pan tissue clock, intrinsic epigenetic age acceleration,
the Hannum clock, and the GrimAge clock (meta-analysis correlation ranging from r = 0.109 to 0.179). We
further conducted pathway enrichment analyses for each participant’s SEMs. The enrichment result
demonstrated the stochasticity of epigenetic mutations, meanwhile implicated several pathways: signaling,
neurogenesis, neurotransmitter, glucocorticoid, and circadian rhythm pathways may contribute to faster
DNAm age acceleration. Finally, investigating genomic-region specific EML, we found that EMLs located
within regions of transcriptional repression (TSS1500, TSS200, and 1stExon) were associated with faster age
acceleration. Overall, our findings suggest a role for the accumulation of epigenetic mutations in the aging
process.

INTRODUCTION epigenetic age acceleration) have been linked to a large
number of age-related conditions [6, 7, 13-20].

Epigenetic changes are an important hallmark of aging

[1-3]. DNA methylation analysis provided promising
molecular biomarkers of aging [4], with several
epigenetic aging clocks having been introduced and
used by aging researchers in recent years [5-12]. Age-
adjusted epigenetic age estimates (referred to as

Here we set out to investigate whether DNAmM clocks
possibly capture any dysfunction of the epigenetic
maintenance system (EMS) of a cell [5, 13, 21]. Age is
known to greatly increase the variability of DNA
methylation levels and the epigenetic profiles of
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monozygotic twins diverge considerably with age [22,
23]. Gentilini et al [24] proposed that stochastic
epigenetic mutations (SEMs) increase exponentially
with chronological age. The association of SEMs and
aging was for the first time longitudinally assessed in
the Swedish twin cohort [25] which confirmed that
epigenetic mutations accumulate with age in an
individual. In addition, SEMs have recently been
associated with hepatocellular carcinoma staging [26],
exposure to endocrine-disrupting compounds [27],
socioeconomic position, and lifestyle factors [28].
Despite extensive research in this field, to our
knowledge, most previous studies focused on
chronological age rather than epigenetic age and
epigenetic age acceleration. One study found SEM
counts to be positively associated with epigenetic age
acceleration based on both the Horvath and Hannum
clocks [27]. Another recent study focused on Hannum,
GrimAge, and intrinsic epigenetic age estimators within
the Generation Scotland and the Lothian Birth Cohort,
and reported positive associations between SEM counts
and all three epigenetic age measurements [29]. To
address the complexity of the aging process and the
biological mechanisms underlying different epigenetic
clocks, it may be useful to systematically study multiple
clocks at the same time. In addition, biologic pathway
enrichment analysis may help us gain an understanding
of the pathophysiology of accelerated aging.

We pooled four population-based studies (total n =
6,388) to systematically investigate whether SEM
counts are associated with epigenetic age acceleration.
We included four DNAm aging clocks that represent
different manifestations of the epigenetic aging
processes, including: the pan-tissue chronological age
estimator by Horvath (2013, Horvath clock) [5]; an
intrinsic epigenetic age measure derived from the
Horvath clock by additionally regressing out cell
compositions (intrinsic clock) [30]; the leukocyte-based
chronological age estimator by Hannum et al. (2013,
Hannum clock) [11]; and the epigenetic mortality risk
predictor developed recently by Lu et al. (2019,
GrimAge clock) [7]. Age-adjusted versions of these
biomarkers are generally being referred to as measures
of epigenetic age acceleration and denoted as
AgeAccelHorvath, intrinsic epigenetic age acceleration
(IEAA), AgeAccelHannum, and AgeAccelGrim,
respectively. We also coined the new term “epigenetic
mutation load (EML)” as representing the total number
of SEMs observed for each individual. In this article,
we will 1) relate EML to different epigenetic age
acceleration measures; 2) functionally annotate mutated
CpG sites; 3) conduct biological pathway enrichment
analysis; 4) relate DNA region-specific EMLs to
epigenetic measures of age acceleration; and 5) compare
SEMs with the Shannon entropy measure as the latter

can be interpreted as alternative measure for the decline
of epigenetic maintenance.

RESULTS
Study population demographics

Our study includes 6,388 individuals from 4 studies: the
Framingham Heart Study (FHS) Offspring Cohort, the
Women’s Health Initiative (WHI), the Jackson Heart
Study (JHS), and the Parkinson’s Environment and
Genes (wave 1) known as the PEG1 study.

The main characteristics of the study populations are
shown in Table 1. Briefly, FHS provided data for 2,326
individuals, with nearly half of them male (n = 1077; 46%)
and all are white. Of the 2,091 female participants from the
WHI, 989 (47%) are non-Hispanic white, 431 (21%)
Hispanic, and 671 (32%) African American. JHS
investigated 1,734 African American individuals with a
majority of female participants (n = 1086; 63%). The 237
PEG1 control study participants were mostly non-Hispanic
white (n = 207; 87%), and half were male (n = 126; 53%).
The age ranges varied with the JHS having the largest
range (22-93; mean = 56.2), and WHI the smallest (50-80;
mean = 65.4). Mean ages of all populations ranged
between 56.2 and 67.4. Additional details on cohorts and
participant characteristics can be found in the Methods.

Epigenetic mutation load is the number of SEMs

All DNA methylation data was extracted from blood
samples with the Illumina Infinium platform (450K
array for PEG1, FHS, and WHI studies; EPIC array for
WHI). Following a published and validated approach
[24, 26, 31], a SEM is observed for a given person at a
specific CpG site if an individual’s methylation level is
more than three times the interquartile range (IQR)
lower than the 25™ percentile (Q1 — 3 x IQR), or more
than three times the IQR hiq}her than the 75" percentile
(Q3 + 3 x IQR). The 25" and 75™ percentile, and
correspondingly the IQR, for each CpG locus was
estimated across all samples. Furthermore, we defined
the epigenetic mutation load (EML) of each study
participant according to the total number of SEMs.

EML was highly variable across people (Supplementary
Table 1), with a mean value ranging from 1647 to 3401
depending on the total number of CpGs measured on
different arrays (FHS: 2433; WHI: 1647; JHS: 3401,
PEG1: 2137). Since EMLs were not normally
distributed, natural log-transformed EML values were
used in all analyses.

EML was not associated with microarray slides
(ANOVA p = 0.135) or position on the array (ANOVA
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Table 1. Distribution of demographics and DNAm aging clocks.

FHS (n = 2326) WHI (n=2091) JHS (n=1734) PEG 1 (n=237)

Age

Min 40 50 22 35

Max 92 80 93 92

Mean (SD) 66.36 (8.94) 65.34 (7.10) 56.21 (12.30) 67.42 (12.82)
Sex

Male (%) 1,077 (46) 0 (0) 648 (37) 126 (53)

Female (%) 1,249 (54) 2,091 (100) 1,086 (63) 111 (47)
Race/Ethnicity

White (%) 2,326 (100) 989(47) 0 (0) 207 (87)

Hispanic (%) 0 (0) 431 (21) 0 (0) 19 (8)

African American (%) 0 (0) 671 (32) 1734 (100) 0 (0)

Native American (%) 0 (0) 0 (0) 0 (0) 11 (5)
AgeAccelHorvath

Min -16.03 -22.56 -16.57 -13.44

Median -0.38 -0.07 -0.07 -0.13

Max 41.62 29.35 22.81 22.98

Mean (SD) -0.08 (4.81) 0.10 (5.18) 0.04 (4.45) 0.00 (5.31)
IEAA

Min -21.83 -21.46 -15.67 -12.17

Median -0.17 -0.05 0.07 -0.13

Max 26.93 24.89 22.40 20.28

Mean (SD) -0.03 (4.59) 0.02 (4.88) 0.05 (4.34) 0.00 (4.92)
AgeAccelHannum

Min -19.25 -19.50 -11.59 -12.92

Median -0.18 0.02 -0.15 -0.27

Max 27.97 18.19 19.35 12.53

Mean (SD) -0.02 (4.83) 0.02 (4.80) 0.03 (3.49) 0.00 (4.42)
AgeAccelGrim

Min -10.92 -10.03 -13.66 -8.74

Median -0.76 -0.47 -0.81 -0.64

Max 22.51 16.35 24.94 14.62

Mean (SD) 0.02 (4.86) 0.01 (3.80) 0.01 (4.81) 0.00 (4.50)

p = 0.458). Also, EML was not correlated with the
average intensity of bisulfite conversion controls
(Pearson r = -0.085, p = 0.194). Thus, we concluded
that the EML was independent of batches or other
technical aspects.

Correlations among DNAm aging clocks

We calculated all DNAm aging estimators including the
Horvath clock, the Hannum clock, the GrimAge clock,
the PhenoAge clock, the SkinBlood clock, as well as an
epigenetic estimate of telomere length (DNAmMTL)
using the online DNA Methylation Age Calculator
(https://dnamage.genetics.ucla.edu/).

As expected, chronological age was strongly positively
correlated with all epigenetic age estimators (Pearson r
ranging from 0.79 to 0.93, Supplementary Figure 1),
and these aging clocks were also strongly correlated
with each other (Pearson r ranging from 0.73 to 0.90,

Supplementary Figure 1). Meanwhile, the epigenetic
estimate of telomere length, DNAMTL, was negatively
correlated with chronological age and the epigenetic age
estimates (Pearson r ranging from -0.63 to -0.72,
Supplementary Figure 1).

For each clock, we calculated DNA methylation-based
age acceleration based on the residuals of the regression
of DNA methylation age on each participants’
chronological age. Thus, due to this approach, none of
the epigenetic measures of age accelerations are
correlated with chronological age (Pearson r = 0) as can
be seen from Figure 1 and Supplementary Figure 2.
AgeAccelHorvath is highly correlated (Pearson r = 0.93)
with IEAA because both are based on the Horvath pan
tissue clock. AgeAccelHannum was moderately
associated with both AgeAccelHorvath and IEAA
(Pearson r = 0.48 and 0.4 respectively). AgeAccelGrim
showed only weak correlations with the other epigenetic
measures of age acceleration which reflects the fact that
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GrimAge clock is a mortality risk predictor as opposed to
an age estimator. Overall, the moderate pairwise
correlations between the DNAm based biomarkers reflect
different properties: some are highly confounded by
blood cell composition and capture immunosenescence
(Hannum, GrimAge, DNAmMTL) while others are not
(Horvath pan tissue, IEAA) [13, 32].

Association between EML and DNAmMm aging clocks

We estimated the association between EML,
chronological age, cell composition, and DNAmM age
acceleration using biweight midcorrelation (bicor) for
each dataset separately and calculated pooled statistics
using Stouffer’s method. Bicor is a median-based
measurement of correlation that is robust to outliers [33].
We adjusted for potential confounders including age, sex,

Pearson
Correlation

-1.0 -0.5 0.0 0.5 1.0

AgeAccelGrim

AgeAccelHannum

IEAA

AgeAccelHorvath

Age

race/ethnicity, and cell compositions (naive CD8 cells,
CD8+CD28-CD45RA- T cells, Plasma Blasts, CD4 T
cells, and Granulocytes) by regressing out the effects of
these factors and retaining the residuals only for analysis.
Results for AgeAccelHorvath, IEAA, AgeAccelHannum,
and AgeAccelGrim are shown in Table 2 and Figure 2,
while other clocks can be found in Supplementary Table
2. These analyses show that EML per study participant
was positively correlated with chronological age (meta r =
0.171, meta P-value = 1.64E-42). Furthermore, EML was
negatively correlated with CD4+ T cells (meta r = -0.121,
meta P-value = 4.24E-22), plasmablasts (metar = -0.085,
meta P-value = 1.14E-11), and granulocytes (meta r = -
0.064, meta P-value = 3.70E-07), but positively with
exhausted CD8+ (defined as CD8+CD28-CD45RA-) T
cells. These results are consistent with known age-related
changes in blood cell composition [34, 35].

Figure 1. Heatmap of pairwise correlations of chronological age and epigenetic age accelerations. The heat map color-codes the
pairwise Pearson correlations of chronological age and epigenetic age accelerations in the Framingham Heart Study (N=2326). Age represents
the chronological age. AgeAccelHorvath, IEAA, AgeAccelHannum, and AgeAccelGrim represent measures of epigenetic age acceleration
derived from the Horvath pan tissue clock, the intrinsic clock, the Hannum clock, and the GrimAge clock, respectively. The shades of color
(blue, white, and red) visualize correlation values from -1 to 1. Each square reports a Pearson correlation coefficient.
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Table 2. Biweight midcorrelation analysis of EML.

FHS (n = 2326)

WHI (n= 2091)

JHS (n=1734)

PEG 1 (n =237)

Bicor r P value

Bicor r P value

Bicor r P value

7.15E-33

3.11E-07
1.26E-07
4.12E-28
3.74E-17

5.20E-04
3.90E-05
8.94E-03
1.68E-12

o Meta
Outcome = log(EML) Meta r Meta P_value Bicor r P value
Age 0.171 164E-42 0.244
DNAm Age Acceleration
AgeAccelHorvath 0.109 3.25E-18 0.106
IEAA 0.112  4.04E-19 0.109
AgeAccelHannum 0.179  2.43E-46 0.225
AgeAccelGrim 0.162 2.25E-38  0.173
Cell types
CD8.naive -0.021  9.19E-02  -0.072
CD8pCD28nCD45RAN 0.077  9.23E-10  0.085
PlasmaBlast -0.085 1.14E-11  -0.054
CDAT -0.121  4.24E-22  -0.146
Gran -0.064  3.70E-07  -0.075

2.72E-04

0.104

0.140
0.144
0.156
0.180

0.020
0.086
-0.070
-0.113
-0.016

1.73E-06

1.34E-10
3.85E-11
6.55E-13
9.91E-17

3.66E-01
8.16E-05
1.39E-03
2.17E-07
4.74E-01

0.145

0.079
0.080
0.148
0.111

-0.011
0.052
-0.140
-0.096
-0.091

1.50E-09

9.68E-04
8.50E-04
6.33E-10
3.46E-06

6.58E-01
2.88E-02
4.89E-09
6.79E-05
1.60E-04

0.176

0.071
0.073
0.095
0.224

0.042
0.082
-0.110
-0.118
-0.170

6.45E-03

2.75E-01
2.63E-01
1.46E-01
5.23E-04

5.23E-01
2.07E-01
9.23E-02
6.95E-02
8.67E-03

*Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each

data set.
Adjusted for Age, Sex, Race/ethnicity, Cell types.

EML was also positively correlated  with
AgeAccelHorvath, [EAA, AgeAccelHannum, and
AgeAccelGrim, with AgeAccelHannum exhibiting the
strongest correlation (meta r = 0.179; meta P-value =
2.43E-46).

We further distinguished between epigenetic age
acceleration and deceleration to determine correlations
with EML. The correlation between EML and age
acceleration was largely the same as what we presented
originally. Interestingly, the correlation between EML
and age deceleration was much smaller in size and less
statistically significant (see Supplementary Table 3).

Sensitivity analyses

We evaluated associations between EML, chronological
age, cell compositions, and age accelerations in males
and females separately (Supplementary Table 4). For
both sexes, EML remained positively correlated with
chronological age, exhausted CD8+ T cells, and age
acceleration suggesting that EML and age acceleration
are independent of sex.

Several sensitivity analyses were conducted to ensure
the reliability and reproducibility of the observed
associations. To address a possibly non-linear
relationship between epigenetic aging and chronological
age, we additionally adjusted for a square term in age,
(age?, Supplementary Table 5). Also, to assess the
potential for additional confounding, we adjusted for
body mass index (Supplementary Table 6). This led to
qualitatively similar results.

In order to explore whether the criteria used to define
SEM will change results, we conducted another
sensitivity analysis using two new SEM measures: 1)

loose SEM: defined as a specific CpG site with its
methylation level exceeding two times the interquartile
range (IQR) of the first quartile (Q1 — 2 x IQR) or the
third quartile (Q3 + 2 x IQR) across all subjects; and 2)
stringent SEM: defined as a specific CpG site with its
methylation level exceeding four times the interquartile
range (IQR) of the first quartile (Q1 — 4 x IQR) or the
third quartile (Q3 + 4 x IQR) across all subjects. We
then calculated the total number of SEMs according to
the loose and stringent definition for each person (loose
or stringent EML, respectively). The biweight
midcorrelations between loose or stringent EMLs and
measures of epigenetic age accelerations were very
similar to the original results (Supplementary Table 7).

We also explored the effect of different normalization
methods for the methylation data (Illumina background
correction, functional normalization, Noob, and quantile
normalization). We found that the association between
EML and age acceleration was not influenced by the
normalization method (Supplementary Table 8).

Functional annotations

To test whether individual SEMs were randomly
distributed across the genome or were more likely to be
found in certain genomic regions or biological
pathways, we conducted enrichment analyses to assess
whether SEMs were enriched in clock-CpGs (Horvath
clock, PhenoAge clock, Hannum clock), genomic
regions (transcription start sites (TSS1500, TSS200),
untranslated regions (5’UTR, 3°UTR ), 1* Exon, and
gene body), or regulatory features (i.e., enhancers,
DNase hypersensitive sites, open chromatin regions,
transcription factor binding site, promoters). For each
participant, we first annotated the probes and each
mutation based on the location related to genes (i.e.,
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TSS1500, TSS200, 5°UTR, 1 EXON, gene body, separately using a nominal significance threshold of

3’UTR), or regulatory features using the manifest 0.05. Last, for each region, we summarized the number
provided by Illumina. Then we conducted of individuals for which the test was significant
hypergeometric tests for each region and each subject (Supplementary Tables 9-11).
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Figure 2. Correlations between EML and epigenetic age accelerations. Scatter plots of DNAm age acceleration estimators (x-axis;
AgeAccelHorvath, IEAA, AgeAccelHannum, and AgeAccelGrim in each column, respectively) versus natural log-transformed EMLs (y-axis).

Data from FHS, WHI, JHS, and PEG1 are plotted in four rows respectively. Each panel reports a biweight midcorrelation coefficient and
correlation test p-value.
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The results show that for each clock-CpG set or region,
only a small proportion of participants have their SEMs
enriched which illustrating both the stochastic nature
and inter-personal variation of SEMs.

Pathway enrichment analysis

Next, we examined whether, among study participants
who exhibit faster age accelerations, SEMs are enriched
in particular biological pathways. We first conducted
KEGG pathway enrichment analyses for each study
participant. Then for each KEGG pathway, we
calculated the number of people with enriched SEMs
for this particular pathway. Finally, we investigated the
association between SEMs enrichment in a particular
pathway and age accelerations using linear regression.
Additional details can be found in the method section.

Supplementary Tables 12-16 showed the top 10
pathways that were commonly enriched in each study,
and generally we found that SEMs enriched in these
pathways were also statistically significantly associated
with faster age accelerations (AgeAccelHorvath, IEAA,
AgeAccelHannum, and AgeAccelGrim, respectively).

Briefly, in all four study populations, we identified similar
enrichment patterns, and SEMs enriched in signaling
pathways, axon guidance, glutamatergic synapse,
morphine addiction, glucocorticoid pathway (Cushing
syndrome), or circadian rhythm pathways were associated
with faster AgeAccelHorvath, AgeAccelHannum, and
IEAA. Whereas the associations between pathway
enrichment and AgeAccelGrim or AgeAccelPheno were
less strong and not necessarily statistically significant. We
only observed SEMSs enriched in neuroactive ligand-
receptor interaction was associated with faster
AceAccelGrim and AgeAccelPheno.

Region-specific EML

To address the functionality of SEMs on biological age
acceleration, we calculated the number of SEMs co-
located with clock CpGs for each study participant (i.e.,
clock-specific SEMs) and assessed whether there were
any clock-specific EMLs corresponding to age
acceleration (Supplementary Table 17), but we
observed no statistically significant association with the
three clocks tested (Horvath clock: 353 CpGs; Hannum
clock: 71 CpGs; PhenoAge clocks: 513 CpGs).

Next, we divided CpGs into different genomics
region/regulatory feature groups based on the
annotations, and then calculated EMLs within each
region for each study participant (i.e., genomic region-
specific EML,; regulatory region-specific EML) (Table
3 and Supplementary Table 18). EMLs in TSS1500,

TSS200, and the 1stExon regions were related to faster
age accelerations. Also, EML in DNase hypersensitive
regions was positively correlated with faster age
accelerations. In contrast, 3’UTR specific-EML was
associated with younger chronologic age and slower age
acceleration.

The direction of SEM

Based on the direction of the mutation, we separated
SEMs into hypomethylated SEM (Q1 — 3 x IQR) and
hypermethylated SEM (Q3 + 3 x IQR) and calculated
hypomethylated and hypermethylated EMLs
respectively within FHS. We assessed the correlations
between the newly calculated directional EMLs and
epigenetic age acceleration. The results remained
largely the same (See Supplementary Table 19).
Furthermore, consistent with previous studies [29],
hypermethylated SEMs were mainly located in CpG
islands, while hypomethylated SEMs were enriched in
the open seas (see Supplementary Tables 20, 21).

Shannon entropy, EML, and DNAmM age
acceleration

As an alternate measure for a well-functioning EMS
that maintains genomic stability, we calculated the
Shannon entropy of the whole methylome based on the
450K or EPIC array. An increase in entropy means that
the methylome becomes less predictable across the
population of cells, i.e. when the methylation fractions
(beta values) tend towards 50%.

We found the Shannon entropy to be positively correlated
with chronologic age (meta r = 0.046, meta P-value =
2.16E-04), EML (metar = 0.234, meta P-value = 7.71E-
78), and all four measures of age accelerations (meta P-
value: AgeAccelHorvath = 8.79E-09, IEAA = 6.56E-04,
AgeAccelHannum = 1.80E-22, AgeAccelGrim = 1.67E-
22) (Table 4 and Supplementary Table 22).

DISCUSSION

It has previously been proposed that aging-related
decline in epigenetic maintenance increases the
occurrence of SEMs in individuals [24, 25]. Our data
suggest that the EML per study participant are weakly
but statistically significantly associated with several
widely used measures of epigenetic age acceleration
based on epigenetic clocks.

It has been hypothesized that DNA methylation clocks
may capture the imperfection of the EMS resulting in
epigenetic instability [5, 13, 21]. Our study provides
new evidence for this hypothesis showing that the
accumulation of stochastic epigenetic mutations is
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Table 3. Meta-analysis*: Biweight midcorrelation analysis of genomic region-specific EML.

TSS1500 TSS200 5'UTR 1stExon Gene Body 3'UTR
Outcome = log(Region- (50999 CpGs) (41175 CpGs) (23024 CpGs) (7669 CpGs) (135960 CpGs) (14010 CpGs)
EML)™ Meta Meta Meta Meta Meta Meta Meta Meta Meta Meta Meta  Meta
r P value r P value r P value r P_value r P value r P value

Age 0.103 1.42E-16 0.074 3.39E-09 -0.046 2.44E-04 0.126 7.86E-24 -0.122 1.81E-22 -0.085 1.38E-11
DNAm Age Acceleration

AgeAccelHorvath 0.050 7.35E-05 -0.004 7.52E-01 -0.055 9.43E-06 0.074 4.13E-09 -0.060 1.96E-06 -0.064 3.35E-07

IEAA 0.058 3.16E-06 -0.006 6.52E-01 -0.052 2.94E-05 0.067 9.83E-08 -0.063 4.04E-07 -0.064 2.66E-07

AgeAccelHannum 0.098 5.06E-15 0.076 1.62E-09 -0.044 4.93E-04 0.154 1.00E-34 -0.140 4.87E-29 -0.111 6.74E-19

AgeAccelGrim -0.001 9.40E-01 0.054 145E-05 -0.012 3.57E-01 0.082 6.30E-11 -0.053 1.94E-05 -0.073 5.52E-09
Cell types

CD8.naive -0.048 1.23E-04 -0.035 5.18E-03 -0.023 6.55E-02 -0.044 4.66E-04 0.053 1.96E-05 0.037 3.10E-03

CD8pCD28nCD45RANn  0.043 551E-04 -0.032 1.07E-02 0.015 2.25E-01 -0.020 1.08E-01 0.016 2.06E-01 -0.018 1.41E-01

PlasmaBlast 0.041 1.04e-03 -0.019 1.28E-01 -0.019 1.23E-01 -0.022 7.45E-02 -0.023 6.96E-02 -0.012 3.32E-01

CDAT 0.043 5.19E-04 -0.066 1.34E-07 -0.013 291E-01 -0.095 297E-14 0.002 8.74E-01 0.024 5.09E-02

Gran -0.008 543E-01 -0.082 5.17E-11 -0.039 1.85E-03 -0.113 1.82E-19 0.067 9.65E-08 0.065 1.72E-07

’ Meta-analysis using Stouffer’'s method with weights given by the square root of the number of (non-missing) samples in

each data set.

** Adjusted for Age, Sex, Race/ethnicity, Cell types, Log(total EML).

Table 4. Association between Shannon entropy and age, AgeAccel, EML.

Outcome =Entropy ™ Meta” FHS (n = 2326) WHI (n= 2091) JHS (n=1734) PEG1(n=237)
Meta r Meta P_value Bicor r P _value Bicorr P value Bicorr P value Bicorr P value
Age 0.046 2.16E-04 0.001 9.55E-01 0.068  2.01E-03 0.071 2.92E-03 0.117 7.30E-02
DNAm Age Acceleration
AgeAccelHorvath 0.072 8.79E-09 0.081 9.11E-05 0.160 1.76E-13 -0.039 1.02E-01 0.006 9.22E-01
IEAA 0.043 6.56E-04 0.035 9.02E-02 0.131  1.70E-09 -0.052 3.16E-02 0.018 7.83E-01
AgeAccelHannum 0.122 1.80E-22 0.155 6.23E-14 0.136 4.60E-10 0.063 9.10E-03 0.096 1.41E-01
AgeAccelGrim 0.122 1.67E-22 0.077 1.89E-04 0.228  3.86E-26 0.043 7.17E-02 0.164 1.14E-02
EML 0.234 7.71E-78 0.089 1.63E-05 0.294  6.87E-43 0.325 7.22E-44 0.281 1.10E-05

*Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each

data set.
Adjusted for Age, Sex, Race/ethnicity, Cell types.

associated with epigenetic age acceleration according to
four clocks: the Horvath, the intrinsic, the Hannum, and
the GrimAge clock. The first three clocks have been
built to predict chronological age while the GrimAge
clock was designed as a mortality risk predictor that
explicitly uses chronological age as one of its
predictors. We observed statistically significant
associations between EML and age acceleration
measured by all four clocks, with the AgeAccelHannum
and AgeAccelGrim being most strongly associated with
EML. One explanation might be that these clocks have
different relationships to blood cell composition. While
measures of epigenetic age acceleration based on
Horvath's pan tissue clock, AgeAccelHorvath and
IEAA, are at best weakly related to changes in blood
cell composition, AgeAccelHannum and
AgeAccelGrim correlate more strongly with blood cell
counts and markers of immunosenescence. Therefore,
similar to the Hannum and GrimAge clocks, EML also
reflects changes in blood cell composition i.e. the
immune system. Previously, studies showed that DNAmM

biomarkers of aging that capture altered immune cell
composition are better predictors of mortality [7, 13].
Thus, not only the intracellular accumulation of
epigenetic mutations we investigated here, but also
changes in cell composition contribute to EML as part
of the biological aging processes that diverge from
chronological age. This finding is also consistent with
several previous studies [25, 27, 29].

It is worth noting that only the intracellular
accumulation of epigenetic mutations suggests that an
insufficient EMS may be involved in increasing the
EML, thus we ascribe greater weight and importance to
the correlations with the Horvath clock and IEAA. The
relatively weak correlations between EML and
AgeAccelHorvath or IEAA indicate that these DNAmM
age estimators also capture other hallmarks of the aging
process apart from a dysfunctional EMS [3]. The size
of the correlations for these age acceleration measures
and EML are comparable to those reported for many
other known risk factors of aging. For example, in the
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WHI cohort, the correlation between BMI and
AgeAccelGrim is 0.14; the correlation between
exercise and AgeAccelGrim is -0.1; and the
correlations for many other risk factors are below +/-
0.3 (See Lu et al) [7]. Correlations between risk factors
and IEAA are even smaller (r between 0.08 and -0.06,
see Quach et al. Figure 1) [36]. Nevertheless, the fact
that associations between EML and AgeAccelHorvath
or IEAA are, at best, weak reminds us that other
mechanisms and factors apart from EMS also play
important roles in the ageing process. Indeed, future in
Vvivo or in vitro studies are needed to better understand
the causal relationship between EML and epigenetic

aging.

EML exhibited much stronger correlations with age
acceleration than deceleration. This result suggests that
epigenetic age acceleration and deceleration may have
different biological mechanisms, and that the
maintenance of epigenetic stability plays more of a role
in the acceleration of epigenetic age than the
deceleration.

Our finding that EML is statistically significantly albeit
weakly correlated with various measures of epigenetic
age acceleration is consistent with several previous
studies [27, 29]. In order to understand the biological
foundation for EML contributions to the epigenetic
aging process, we conducted several functional and
pathway enrichment analyses. Functional annotation
and pathway enrichment analysis showed no
predominant regions or biological pathways as being
enriched with SEMSs. This is in line with previous
observations that a majority of SEMs are randomly
distributed across the genome and that the locations
necessarily differ between individuals as the name
suggests [27]. Despite this inherent inter-individual
variation, we found that individuals with SEMSs
enriched in signaling pathways, neurogenesis,
neurotransmission, glucocorticoid, or circadian rhythm
pathways were more likely to show age acceleration as
measured by  AgeAccelHorvath, IEAA, and
AgeAccelHannum. These non-random patterns — if
confirmed — may very well reflect the accumulation of
SEMs in pathways related to biological mechanisms
that are involved in aging. For example, some signaling
pathways such as oxytocin signaling and MAPK/ERK
signaling pathway have been associated with age-
related muscle maintenance and regeneration [37],
while excess glucocorticoid levels may reflect a lifelong
accumulation of stressors and this pathway plays a key
role in frailty [38] and the aging process [21].
Furthermore, some clock-CpGs are located in
glucocorticoid response elements [39]. We also found
SEMs enriched in several neurogenesis or
neurotransmission-related pathways that may be

contributing to the ticking rate of clocks. This is
consistent with the previous finding that DNAm age
acceleration is linked to neuropathology [18, 40],
especially Parkinson’s disease [16] and Down syndrome
[15]. Moreover, our finding of SEM enrichment in the
circadian entrainment pathway supports the hypothesis
that the DNAmM age estimators are related to the
oscillation of the circadian rhythm [13]. Interestingly,
although patterns were similar, we found less evidence
for pathway enrichment with SEMs and age
acceleration based on the GrimAge and PhenoAge
clocks. This may again underscore that different clocks
indeed capture different aspects of the aging process.

EMLs within TSS1500, TSS200, and especially the
1stExon regions were found to be associated with faster
age accelerations, and for these regions methylation
levels have been shown to be related to gene expression
[41, 42]. Therefore, our result may suggest that the
accumulation of random epigenetic mutations in these
regions may influence biological aging processes
through gene expression regulation. Interestingly, even
though we would also have expected this, we did not
observe such associations for promoter regions. Further
studies are needed to investigate the biologic
consequences of region-specific effects of epigenetic
mutations on aging.

The Shannon Entropy measure reflects higher levels of
entropy such that the methylome becomes less
predictable across the population of cells due to the
failure of DNAmM maintenance [11]. Epigenetic
Shannon entropy as well as this measure’s variability
increase with age [10, 11, 43, 44]. In our study, EML
and Shannon entropy was strongly correlated,
confirming that both measure aspects of the EMS, even
though EML and entropy capture different aspects of
epigenetic stability. SEM represents rare methylation
value extremes at a site due to the accumulation of
maintenance failures whereas entropy reflects an
ongoing ‘smoothing’ of the epigenetic landscape such
that beta values tend towards 50% [45].

There are limitations of our study. First, it is possible
that some unmeasured confounders biased our results.
Sensitivity analyses, however, showed that the SEM
measure was not affected by potential technical artifacts
or poor sample quality, and the association between
EML and age acceleration was independent of potential
confounders including chronological age, sex,
race/ethnicity, and BMI. Hence, although technical
effects and confounding are hard to avoid, the observed
associations between EML and age accelerations were
robust to adjustments for a number of covariates.
Second, from all four studies, we only had cross-
sectional data available. Therefore, we were unable to
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investigate the accumulation of epigenetic mutations
over time within individuals. Finally, DNA methylation
was measured in blood samples only. Therefore,
pathway results need to be interpreted with caution as
many of the identified pathways listed above have no
direct relevance to the function of the blood tissue.
While this seems to support the inherent randomness of
SEMs, stochastic epigenetic mutations may still
accumulate in a non-random pattern within certain
biological pathways if repair mechanisms fail
systematically due to properties related to these
pathways across different tissues. Also, it has been
shown that epigenetic changes in blood may indeed
reflect epigenetic fingerprints of other target tissues [46,
47]. Nevertheless, tissue- and cell-specific analyses are
needed to better understand the relationship between
stochastic epigenetic mutations and aging processes in
different tissues.

In summary, using large datasets from multiple
population-based studies, we were able to show that
EML per study participant is associated with different
epigenetic aging markers (aging clocks) and importantly
with epigenetic age acceleration. Moreover, epigenetic
mutations enriched in particular biological pathways or
genomic regions related to gene expression were
associated with accelerated aging and these may
contribute to the ticking of the epigenetic clock. Our
findings from pathway enrichment analyses also suggest
some interesting biological mechanisms that may
influence the ticking of the epigenetic aging clocks and
drive the acceleration of the biological aging process.

MATERIALS AND METHODS
Study population

Our study is based on data from four studies: the
Framingham Heart Study (FHS) Offspring Cohort, the
Women’s Health Initiative (WHI), the Jackson Heart
Study (JHS), and the Parkinson’s Environment and
Genes (wave 1) known as the PEG1 study.

We used 2,326 individuals from the FHS Offspring cohort
[48]. The FHS cohort is a large-scale longitudinal study
started in 1948, initially investigating the common factors
of characteristics that contribute to cardiovascular disease
(CVvD)  (https://www.framinghamheartstudy.org/index.
php). The study at first enrolled participants living in the
town of Framingham, Massachusetts, who were free of
overt symptoms of CVD, heart attack, or stroke at
enroliment. In 1971, the study started FHS Offspring
Cohort to enroll a second generation of the original
participants’ adult children and their spouses (n= 5124)
for conducting similar examinations. The FHS Offspring
Cohort collected medical history and measurement data,

immunoassays at exam 7, and blood DNA methylation
profiling at exam 8. Participants from the FHS Offspring
Cohort were eligible for our study if they attended both
the seventh and eighth examination cycles and consented
to have their molecular data used for the study. We used
the 2,326 participants from the group of Health/
Medical/Biomedical (IRB, MDS) consent and available
for both Immunoassay array DNA methylation array data.
The FHS data are available in dbGaP (accession number:
phs000363.v16.p10 and phs000724.v2.p9).

The WHI is a national study that enrolled
postmenopausal women aged 50-79 years into the
clinical trials (CT) or observational study (OS) cohorts
between 1993 and 1998 [49, 50]. We included 2,091
WHI participants with available phenotype and DNA
methylation array data from “Broad Agency Award 23”
(WHI BA23). WHI BA23 focuses on identifying
miRNA and genomic biomarkers of coronary heart
disease (CHD), integrating the biomarkers into
diagnostic and prognostic predictors of CHD and other
related phenotypes, and other objectives can be found in
https://www.whi.org/researchers/data/WHIStudies/Stud
ySites/BA23/Pages/home.aspx.

The JHS is a large, population-based observational
study evaluating the etiology of cardiovascular, renal,
and respiratory diseases among African Americans
residing in the three counties (Hinds, Madison, and
Rankin) that make up the Jackson, Mississippi
metropolitan area [51]. The age at enrollment for the
unrelated cohort was 35-84 years; the family cohort
included related individuals >21 years old. Participants
provided extensive medical and social history, had an
array of physical and biochemical measurements and
diagnostic procedures, and provided genomic DNA
during a baseline examination (2000-2004) and two
follow-up examinations (2005-2008 and 2009-2012).
Annual follow-up interviews and cohort surveillance are
ongoing. In our analysis, we used the visits at baseline
from 1,734 individuals as part of project JHS ancillary
study ASNO0104, available with both phenotype and
DNA methylation array data.

The PEG1 study was conducted during 2000-2007 to
investigate the causes of Parkinson's disease (PD) in
agricultural regions of the California central valley. We
analyzed blood samples from 238 healthy controls
enrolled from Kern, Tulare, or Fresno counties.
Controls were required to be over the age of 35, having
lived within one of the counties for at least 5 years prior
to enrollment, and do not have a diagnosis of
Parkinsonism. Demographic information, lifestyle
factors, and medication use were collected in
standardized interviews, including lifetime information
of cigarette smoking and coffee/ tea consumption.
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For PEG1, FHS, and WHI, peripheral blood samples
were collected, and bisulfite conversion using the
Zymo EZ DNA Methylation Kit (Zymo Research,
Orange, CA, USA) as well as subsequent hybridization
of the HumanMethylation450k Bead Chip (Illumina,
San Diego, CA), and scanning (iScan, lllumina) were
performed according to the manufacturer’s protocols
by applying standard settings. For JHS, DNA
methylation quantification was conducted using
HumanMethylation EPIC Bead Chip (lllumina, San
Diego, CA).

Preprocess

For PEG1 samples, raw signal intensities were retrieved
using the function read.metharray.exp of the R package
minfi from the Bioconductor open-source software
(http://www.bioconductor.org/), followed by linear dye
bias correction, noob background correction, and
functional normalization using the same R package
[52-55]; B-value was used for all the analyses. One
sample was identified as low quality due to low
median methylated and unmethylated signal intensities
across the entire array and thus removed from the
study population. Detection p-values were derived
using the function detectionP as the probability of the
total signal (methylation + unmethylated) being
detected above the background signal level, as
estimated from negative-control probes. All in all,
845 probes with a detection p-value above 0.05 in at
least 5% of samples were removed. Also, 645 probes
with a bead count <3 in at least 5% of samples; 11,334
probes on the X or Y chromosome; 7,306 probes
containing a SNP at the CpG interrogation site and/or
at the single nucleotide extension for 5% maf; and
27,332 cross-reactive probes were also removed. In
total, 438,050 probes were included for downstream
analyses.

For FHS and WHI samples, 11,334 probes on the X or
Y chromosome; 7,306 probes containing a SNP at the
CpG interrogation; and 27,332 cross-reactive probes
were also removed. In total, 439,540 probes were
included for downstream analyses.

For JHS samples, 19,532 probes on the X or Y
chromosome; 53,435 probes containing a SNP at the
CpG interrogation and cross-reactive were also
removed. In total, 793,869 probes were included for
downstream analyses.

SEM calculation
The calculation of SEM was consistent with a

previously published and validated approach [24, 26,
31]. CpG with methylation levels three times the

interquartile range above the third quartile or below
the first quartile was identified as a SEM. Toward this
end, we calculated the IQR for each of the 438,050
probes in each dataset (for PEG1, FHS, and WHI) or
the 793,969 probes (for JHS). Then, SEMs were
identified based on extreme methylation levels.
Finally, we summed across the count of all SEMs per
sample and defined the total number of SEMs of each
study participant as epigenetic mutation load (EML).
EML was not normally distributed; therefore, we used
the natural log of the number of SEMs for all
regression analyses.

In FHS, we separated SEMs into hypermethylated and
hypomethylated SEMs based on the direction of the
mutation. We also defined consistently hypermethylated
or hypomethylated SEMs as a CpG mutated in the same
direction in more than 10 participants.

In order to assess whether the criteria used for SEMs
will change the results, we defined loose SEM and
stringent SEM as described above. We then calculated
the total numbers of loose and stringent SEMs for each
person.

DNA methylation age

We included eight different DNAm aging biomarkers in
this study. Utilizing our online DNA Methylation Age
Calculator  (https://dnamage.genetics.ucla.edu/), we
calculated DNA methylation-based ages and the age
accelerations based on the residuals of the regression of
DNA methylation age on each participants’
chronological age for each clock.

Four types of DNA methylation-based biomarkers
were included in the main analyses. Briefly, Horvath
clock was calculated using a linear combination of 353
CpGs that have previously been shown to predict
chronological age in multiple tissues [5]; and the
intrinsic clock was derived from the Horvath clock by
additionally regressing out cell compositions [30];
Hannum clock was calculated using a linear
combination of 71 CpGs to predict chronological age
in blood [11]; and GrimAge clock) was calculated
from a linear combination of 7 DNAm plasma protein
surrogates and a DNAm-based estimator of smoking
pack-years designed to predict mortality [7].

Other DNAm aging biomarkers were included in the
Supplementary analyses, including: the extrinsic clock
[30], PhenoAge clock [6], SkinBlood clock [56],
DNAm based estimator of telomere length [57], each of
the 7 DNAm protein surrogates underlying the
definition of the GrimAge clock [7], as well as DNAm
based estimate of smoking pack-years.
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Cell composition

White blood cell composition was imputed for each
study participant using our online published DNA
Methylation Age Calculator, https://dnamage.genetics.
ucla.edu/. The following imputed blood cell counts
were included in downstream analyses: CD4+ T,
naive CD8+ T, exhausted cytotoxic CD8+ T cells
(defined as CD8 positive CD28 negative CD45R
negative, CD8+CD28-CD45RA-), plasmablasts, and
granulocytes. Naive CD8+ T, exhausted cytotoxic
CD8+ T cells, and plasmablasts were calculated based
on the Horvath method [58]. The remaining cell types
were imputed using the Houseman method [59].

Shannon entropy

The formula of Shannon entropy is:

Entropy = —
N x |092(E)

x Y15 xlog, () + (1~ )

i=1

x log, (1-£)]

where f; represents the methylation beta value for the i
probe (CpG site) in the array, N represents the total
number of probes included in the formula [11].

Statistical analysis

All analyses were conducted using R v3.6.1. We used
Pearson correlations to assess the relations between
different DNAm ages and age accelerations. We
evaluated potential batch effects by assessing the
difference of EMLs in microarray slides or position on
the array with the ANOVA test. To eliminate the
possibility that SEMs are driven by incomplete bisulfite
conversion, Pearson correlations between EMLs and the
average intensity of bisulfite conversion controls were
also calculated. Average intensity of bisulfite
conversion controls was derived using the ENmix R
package [60].

To assess the association between EML and age/age
accelerations/cell compositions, we applied biweight
midcorrelation (bicor) implemented in the WGCNA R
package. We adjusted for potential confounders
including age, sex, race/ethnicity, and cell compositions
(naive CD8 cells, CD8+CD28-CD45RA- T cells,
Plasma Blasts, CD4 T cells, and Granulocytes) by
regressing out the effects of these factors and retaining
the residuals of log(EML)only for analysis.

We also conducted stratified analyses to evaluate the
associations between EML, chronological age,
epigenetic estimates of cell composition, and
epigenetic age acceleration in males and females
separately for the PEG1, FHS, and JHS studies. To
ensure the reliability and reproducibility of the
associations, several sensitivity analyses were
conducted. In addition to the potential confounders
mentioned above, we adjusted for a quadratic term in
age (age”?2) to account for non-linear relationships and
body mass index.

To evaluate the effect of data preprocessing steps,
we repeated the analysis using four different
normalization  methods  (lllumina  background
correction, noob, functional normalization, and quantile
normalization implemented in the minfi package) in the
PEG dataset.

We analyzed each dataset separately, therefore in order
to obtain an overall p-value across all four studies, we
conducted meta-analyses using Stouffer’s method for
meta-analysis estimates of the correlation coefficient
(meta r), and the corresponding two-sided p-values
(meta p-value).

Functional annotation, region-specific SEMs, and
pathway enrichment analysis

For each participant, we annotated the probes and SEMs
based on the location in relation to genes (TSS1500,
TSS200, 5’UTR, 1 Exon, gene body, and 3’UTR), or
regulatory  features  (enhancer region, DNase
hypersensitive  region, open chromatin  region,
transcription factor binding site, and promoter region)
using the manifest provided by Illumina. To test
for region specific enrichment, we conducted
hypergeometric tests for each region and each subject
separately. A p-value less than 0.05 was considered
statistically  significant. For biological pathway
enrichment analysis, the enrichKEGG function
implemented in the ClusterProfiler package [61] was
used to assess whether study participant’s SEMs were
enriched in particular KEGG pathways (P-value
threshold = 0.05). For each genomic region or KEGG
pathway, we then summarized how many study
participants had their SEMs enriched. We also
investigated the association between SEMSs enrichment
in each KEGG pathway and age accelerations using
linear regression, adjusted for the total number of SEMs
per study participant:

For pathway j : AgeAccel;
= [y + p Enrichy
+ 3, log (Total EML;) +¢;
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where AgeAccel stands for age accelerations
(AgeAccelHorvath, IEAA, AgeAccelHannum,
AgeAccelGrim); Enrich stands for enrichment for
pathway j (significant: 1, non-significant: 0); Total
EML stands for log transformed total EML for
participant i.
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SUPPLEMENTARY MATERIALS

Supplementary Figures

Pearson
Correlation
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Supplementary Figure 1. Heatmap of pairwise correlations of chronological age and epigenetic ages. The heatmap color-codes
the pairwise Pearson correlations of chronological age and epigenetic age in the Framingham Heart Study (N=2326). Age represents the
chronological age. HorvathAge, HannumAge, GrimAge, PhenoAge, SkinBloodAge represent measures of epigenetic age derived from the
Horvath pan tissue clock, the Hannum clock, the GrimAge clock, the PhenoAge clock, and the SkinBloodAge clock, respectively. DNAMTL
represent DNAm-based surrogate markers of telomere length. The shades of color (blue, white, and red) visualize correlation values from -1
to 1. Each square reports a Pearson correlation coefficient.
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Supplementary Figure 2. Heatmap of pairwise correlations of chronological age and epigenetic age accelerations. The
heatmap color-codes the pairwise Pearson correlations of chronological age and epigenetic age accelerations in the Framingham Heart Study
(N=2326). Age represents the chronological age. AgeAccelHorvath, AgeAccelHannum, IEAA, EEAA, AgeAccelGrim, AgeAccelPheno, and
AgeAccelSkinBlood represent measures of epigenetic age acceleration derived from the Horvath pan tissue clock, the Hannum clock, the
intrinsic clock, the extrinsic clock, the GrimAge clock, the PhenoAge clock, the SkinBloodAge clock, respectively. DNAMTLAdjAge represents
age adjusted DNAm-based surrogate markers of telomere length. The shades of color (blue, white, and red) visualize correlation values from -
1 to 1. Each square reports a Pearson correlation coefficient.
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Supplementary Tables

Supplementary Table 1. Distribution of EML for each dataset.

FHS (450K) WHI (450K) JHS (EPIC) PEG1 (450K)
min(EML) 264 213 1194 603
max(EML) 52783 43768 56691 11645
mean(EML) 2433 1647 3401 2137
sd(EML) 4183 3937 4512 1953
% of probes as SEM 86% 85% 77% 45%
Supplementary Table 2. Biweight midcorrelation analysis of EML.
- Meta” FHS (n = 2326) WHI (n=2091) JHS (n=1734) PEG 1 (n = 237)
Outcome = log(EML) - - - -
Metar Meta P_value Bicor r P_value Bicor r P_value Bicor r P_value Bicor r P_value
Age 0.171 1.64E-42 0.244 7.15E-33 0.104 1.73E-06 0.145 1.50E-09 0.176 6.45E-03
BMI 0.005 7.94E-01 0.017 4.23E-01 -0.009 6.91E-01
DNAm Age Acceleration
AgeAccelHorvath 0.109 3.25E-18 0.106 3.11E-07 0.140 1.34E-10 0.079 9.68E-04 0.071 2.75E-01
IEAA 0.112 4.04E-19 0.109 1.26E-07 0.144 3.85E-11 0.080 8.50E-04 0.073 2.63E-01
EEAA (Unadjusted for cell types) 0.236 5.82E-79 0.297 1.12E-48 0212 1.31E-22 0.166 3.09E-12 0.211 1.05E-03
AgeAccelHannum 0.179 2.43E-46 0.225 4.12E-28 0.156 6.55E-13 0.148 6.33E-10 0.095 1.46E-01
AgeAccelGrim 0.162 2.25E-38 0.173 3.74E-17 0.180 9.91E-17 0.111 3.46E-06 0.224 5.23E-04
DNAmMADMAdjAge 0.068 4.75E-08 0.121 4.58E-09 0.070 1.41E-03 -0.017 4.71E-01 0.157 1.58E-02
DNAmMB2MAdjAge 0.143 3.47E-30 0.189 4.69E-20 0.129 3.44E-09 0.074 2.05E-03 0.287 7.20E-06
DNAmCystatinCAdjAge 0.153 3.02E-34 0.119 8.71E-09 0.241 6.48E-29 0.081 7.30E-04 0.183 4.64E-03
DNAmMGDF15AdjAge 0.148 3.64E-32 0.167 6.09E-16 0.127 5.80E-09 0.142 3.01E-09 0.162 1.27E-02
DNAmLeptinAdjAge -0.025  4.65E-02 -0.021 3.19E-01 -0.035 1.11E-01 -0.031 2.03E-01 0.063 3.34E-01
DNAmMPACKYRSAdjAge 0.161 8.96E-38 0.166 7.99E-16 0.172 2.23E-15 0.137 1.10E-08 0.150 2.13E-02
DNAmMPAI1AdjAge 0.031 1.47E-02 0.024 2.49E-01 -0.004 8.59E-01 0.061 1.07E-02 0.173 7.56E-03
DNAMTIMP1AdjAge 0.028 2.35E-02 0.070 7.04E-04 0.010 6.41E-01 -0.001 9.72E-01 -0.010 8.80E-01
AgeAccelPheno 0.123 7.28E-23 0.178 4.45E-18 0.106 1.13E-06 0.078 1.20E-03 0.042 5.22E-01
DNAMTLAdjAge -0.065  1.91E-07 -0.080 1.17E-04 -0.033 1.36E-01 -0.082 6.05E-04 -0.082 2.11E-01
DNAmAgeSkinBloodClockAdjAge  0.047 1.93E-04 0.102 8.32E-07 0.022 3.17E-01 0.019 4.27E-01 -0.080 2.22E-01

Biweight midcorrelation analyses of EML with chronological age, BMI, AgeAccelHorvath, IEAA, extrinsic epigenetic age
acceleration (EEAA) derived from the Hannum clock by up-weighting the contribution of age-related blood cell counts,
AgeAccelHannum, AgeAccelGrim, age adjusted DNAm-based surrogate markers of adrenomedullin (DNAMADMAdjAge), beta-
2 microglobulin (DNAmMB2MAdjAge), cystatin C (DNAmCystatinCAdjAge), growth differentiation factor 15
(DNAMGDF15AdjAge), leptin (DNAmLeptinAdjAge), plasminogen activation inhibitor 1 (DNAmMPAI1AdjAge), tissue inhibitor
metalloproteinase 1 (DNAMTIMP1AdjAge), smoking pack-years (DNAMPACKYRSAdjAge), AgeAccelPheno, age adjusted
DNAm-based surrogate markers of telomere length (DNAMTLAdjAge), and age adjusted SkinBlood clock.
*Meta-analysis using Stouffer’s method with weights given by the square root of the number of (non-missing) samples in each

data set.

“All analyses except EEAA were adjusted for Age, Sex, Race/ethnicity, Cell types; EEAA was not adjusted for cell types.
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Supplementary Table 3. Biweight midcorrelation analysis of EML in FHS, stratified by the direction of acceleration.

Acceleration

Deceleration

Outcome = log(EML) "

Bicor r P value Bicor r P value

AgeAccelHorvath 0.178 3.81E-09 -0.039 1.71E-01
IEAA 0.150 4.09E-07 -0.064 2.66E-02
EEAA (Unadjusted for cell types) 0.299 4.74E-25 0.089 2.20E-03
AgeAccelHannum 0.239 3.96E-16 0.085 3.12E-03
AgeAccelGrim 0.136 1.64E-05 0.060 2.77E-02
DNAmMADMAdjAge 0.149 5.88E-07 0.029 3.14E-01
DNAmMB2MAdjAge 0.130 1.90E-05 0.070 1.34E-02
DNAmCystatinCAdjAge 0.135 8.79E-06 -0.026 3.54E-01
DNAmMGDF15AdjAge 0.149 1.61E-06 0.078 4.90E-03
DNAmLeptinAdjAge 0.015 6.04E-01 0.068 2.26E-02
DNAmMPACKYRSAdjAge 0.077 2.43E-02 0.049 6.15E-02
DNAmPAI1AdjAge 0.075 1.33E-02 -0.035 2.25E-01
DNAmMTIMP1AdjAge 0.092 2.17E-03 -0.058 4.30E-02
AgeAccelPheno 0.206 4.49E-12 0.036 2.08E-01
DNAmMTLAdjAge 0.064 2.51E-02 -0.127 2.27E-05
DNAmAgeSkinBloodClockAdjAge 0.168 1.40E-08 -0.023 4.17E-01

* Adjusted for Age, Sex, Cell types.

Supplementary Table 4. Stratification analysis: biweight midcorrelation analysis of EMIL, stratified by sex.

PEG 1 FHS WHI JHS
Female Male Female Femal Male Female

Qutcome = Male (n = 126)
logEML)* (n=111) (n=1077) (n=1249) (n=2091) (n=648) (n =1086)
of
g Bicorr  P_value Bicorr  P_value Bicor r P _value Bicorr P_value Bicorr P_value Bicorr P_value Bicorr P_value
Age 0.201 2.40E-02 0.200  3.53E-02 0.225 7.53E-14 0.259 1.54E-20 0.104 1.73E-06 0.134 5.98E-04 0.150 7.24E-07
BMI 0.026 3.90E-01 0.025 3.75E-01 -0.009 6.91E-01
DNAmM Age
Acceleration
AgeAccelHorvath 0.105 2.43E-01 0.041  6.71E-01 0.086 4.69E-03 0.126 7.67E-06 0.140 1.34E-10 0.068 8.27E-02 0.082 6.87E-03
IEAA 0.110 2.21E-01 0.033  7.32E-01 0.108 4.02E-04 0.116 4.06E-05 0.144 3.85E-11 0.076 5.19E-02 0.086 4.63E-03
EEAA (Unadjusted

0.205 2.13E-02 0.245  9.45E-03 0.305 1.27E-24 0.315 3.35E-30 0.212 1.31E-22 0.180 4.20E-06 0.155 2.90E-07
for cell types)
AgeAccelHannum 0.080 3.73E-01 0.106  2.66E-01 0.215 9.77E-13  0.257 3.02E-20 0.156 6.55E-13 0.158 5.16E-05 0.144 2.05E-06
AgeAccelGrim 0.192 3.13E-02 0.299  1.43E-03 0.218 4.20E-13 0.167 2.71E-09 0.180 9.91E-17 0.082 3.79E-02 0.134 9.43E-06
DNAmMADMAdjAge 0.100 2.67E-01 0.223  1.88E-02 0.207 6.85E-12 0.091 1.35E-03 0.070 1.41E-03 -0.024 5.37E-01 0.011 7.06E-01
DNAmMB2MAdjAge 0.300 6.40E-04 0.230  1.50E-02 0.238 2.16E-15 0.147 1.94E-07 0.129 3.44E-09 0.063 1.08E-01 0.077 1.13E-02
DNAmMCystatinCAdj
A 0.195 2.86E-02 0.187  4.89E-02 0.181 2.42E-09 0.075 7.81E-03 0.241 6.48E-29 0.039 3.25E-01 0.105 5.43E-04
ge
DNAmMGDF15AdjAg

0.129 1.49E-01 0.172  7.03E-02 0.211 2.85E-12 0.134 2.06E-06 0.127 5.80E-09 0.097 1.37E-02 0.167 2.91E-08
e
DNAmLeptinAdjAge -0.073  4.19E-01 0.138  1.49E-01 0.071 1.94E-02 -0.037 1.89E-01 -0.035 1.11E-01 0.043 2.75E-01 0.046 1.27E-01
DNAmMPACKYRSAd
A 0.184 3.89E-02 0.120  2.10E-01 0.161 1.06E-07 0.179 2.09e-10 0.172 2.23E-15 0.113 4.05E-03 0.147 1.19E-06
JAge
DNAmMPAIL1AdjAge 0.026 7.70E-01 0.362  9.25E-05 0.028 3.66E-01 0.039 1.65E-01 -0.004 8.59E-01 0.053 1.76E-01 0.065 3.21E-02
DNAmMTIMP1AdjAg

-0.038  6.72E-01 0.031  7.50E-01 0.100 1.07E-03 0.060 3.41E-02 0.010 6.41E-01 -0.031 4.27E-01 0.016 5.97E-01
e
AgeAccelPheno 0.123 1.68E-01 -0.080  4.02E-01 0.211 2.66E-12 0.152 6.90E-08 0.106 1.13E-06 0.079 4.47E-02 0.080 8.40E-03
DNAmMTLAdjAge -0.052  5.64E-01 -0.166  8.26E-02 -0.061 4.61E-02 -0.101 3.63E-04 -0.033 1.36E-01 -0.088 2.56E-02 -0.069 2.21E-02
DNAmAgeSkinBloo

. -0.029  7.45E-01 -0.141  1.40E-01 0.105 5.37E-04 0.102 2.90E-04 0.022 3.17E-01 -0.010 7.99E-01 0.032 2.88E-01

dClockAdjAge
Cell types
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CD8.naive 0.043
CD8pCD28nCD45R

0.018
An
PlasmaBlast -0.089
CD4T -0.134
Gran -0.182

6.32E-01

8.44E-01

3.19E-01
1.35E-01
4.18E-02

0.044  6.47E-01

0.179  6.00E-02

-0.125  1.92E-01
-0.133  1.65E-01
-0.128  1.80E-01

-0.076 1.27E-02 -0.068

0.076 1.26E-02 0.096

-0.012 6.90E-01 -0.088
-0.150 7.97E-07 -0.143
-0.065 3.37E-02 -0.084

1.62E-02  0.020

7.00E-04  0.086

1.81E-03  -0.070
4.03E-07 -0.113
2.81E-03  -0.016

3.66E-01 -0.008 8.30E-01 -0.010 7.32E-01

8.16E-05 0.068 8.43E-02 0.030 3.28E-01

1.39E-03 -0.148 1.60E-04 -0.139 4.57E-06
2.17E-07 -0.049 2.17E-01 -0.120 7.55E-05
4.74E-01 -0.065 9.80E-02 -0.111 2.57E-04

Al analyses except EEAA were adjusted for Age, Sex, Race/ethnicity, Cell types; EEAA was not adjusted for cell types.

Supplementary Table 5. Sensitivity analysis: biweight midcorrelation analysis of EML, additionally adjusted for age’.

PEG 1 (n = 237)

FHS (n = 2326)

WHI (n= 2091)

JHS (n= 1734)

Model 1"

Model 2

Model 1°

Model 2

Model 1°

Model 2"

Model 1”

Model 2"

Outcome = log(EML)

Bicor r P_value Bicor r P_value

Bicor r P_value

Bicor r P_value

Bicor r P_value Bicor r P_value

Bicor r P_value Bicor r P_value

AgeAccelHorvath

IEAA

EEAA (Unadjusted for cell

types)

AgeAccelHannum

AgeAccelGrim
DNAmMADMAdjAge
DNAmMB2MAdjAge
DNAmCystatinCAdjAge
DNAMGDF15AdjAge
DNAmLeptinAdjAge
DNAMPACKYRSAdjAge
DNAmMPAI1AdjAge
DNAmMTIMP1AdjAge

AgeAccelPheno

DNAmMTLAdjAge

DNAmAgeSkinBloodClockAdj

Age

0.071
0.073

0.211

0.095
0.224
0.157
0.287
0.183
0.162
0.063
0.150
0.173

-0.010

0.042

-0.082

-0.080

2.75E-01
2.63E-01

1.05E-03

1.46E-01
5.23E-04
1.58E-02
7.20E-06
4.64E-03
1.27E-02
3.34E-01
2.13E-02
7.56E-03
8.80E-01
5.22E-01
2.11E-01

2.22E-01

0.089 1.72E-01
0.091 1.61E-01

0.225 4.80E-04

0.111 8.81E-02
0.219 7.01E-04
0.156 1.63E-02
0.288 6.61E-06
0.182 4.96E-03
0.162 1.26E-02
0.061 3.46E-01
0.144 2.64E-02
0.170 8.84E-03
-0.008 9.08E-01
0.051 4.36E-01
-0.087 1.84E-01

-0.045 4.91E-01

0.106 3.11E-07
0.109 1.26E-07

0.297 1.12E-48

0.225 4.12E-28
0.173 3.74E-17
0.121 4.58E-09
0.189 4.69E-20
0.119 8.71E-09
0.167 6.09E-16

-0.021 3.19E-01

0.166 7.99E-16
0.024 2.49E-01
0.070 7.04E-04
0.178 4.45E-18

-0.080 1.17E-04

0.102 8.32E-07

0.106 3.08E-07
0.109 1.23E-07

0.298 7.40E-49

0.225 3.79E-28
0.173 3.87E-17
0.121 4.65E-09
0.188 4.84E-20
0.119 8.84E-09
0.167 6.12E-16
-0.021 3.23E-01
0.166 8.60E-16
0.024 2.48E-01
0.070 7.11E-04
0.178 4.22E-18
-0.080 1.16E-04

0.102 7.97E-07

0.140 1.34E-10
0.144 3.85E-11

0.212 1.31E-22

0.156 6.55E-13
0.180 9.91E-17
0.070 1.41E-03
0.129 3.44E-09
0.241 6.48E-29
0.127 5.80E-09
-0.035 1.11E-01
0.172 2.23E-15
-0.004 8.59E-01
0.010 6.41E-01
0.106 1.13E-06
-0.033 1.36E-01

0.022 3.17E-01

0.141 9.63E-11
0.144 3.19E-11

0.210 2.35E-22

0.156 8.30E-13
0.180 1.09E-16
0.069 1.56E-03
0.128 4.33E-09
0.240 8.64E-29
0.126 7.40E-09

-0.034 1.20E-01

0.173 1.67E-15

-0.001 9.57E-01

0.008 7.01E-01
0.107 9.47E-07

-0.033 1.30E-01

0.024 2.79E-01

0.079 9.68E-04
0.080 8.50E-04

0.166 3.09E-12

0.148 6.33E-10
0.111 3.46E-06
-0.017 4.71E-01
0.074 2.05E-03
0.081 7.30E-04
0.142 3.01E-09
-0.031 2.03E-01
0.137 1.10E-08
0.061 1.07E-02
-0.001 9.72E-01
0.078 1.20E-03
-0.082 6.05E-04

0.019 4.27E-01

0.100 2.84E-05
0.102 2.18E-05

0.168 2.13E-12

0.158 3.69E-11
0.118 8.87E-07

-0.019 4.34E-01

0.072 2.75E-03
0.075 1.69E-03
0.143 2.11E-09

-0.031 2.02E-01

0.148 6.41E-10
0.067 5.03E-03

-0.002 9.42E-01

0.083 5.33E-04

-0.093 1.08E-04

0.047 5.25E-02

* Adjusted (Age, Sex, Race/ethnicity, Cell types)
** Adjusted (Age, Age2, Sex, Race/ethnicity, Cell types)

Supplementary Table 6. Sensitivity analysis: biweight midcorrelation analysis of EML, additionally adjusted for BMI.

FHS (n = 2326)

WHI (n= 2091)

Outcome = log(EML) _ Model 1” _ Model 2™ _ Model 1” _ Model 2™
Bicor r P value Bicor r P_value Bicor r P_value Bicor r P_value
AgeAccelHorvath 0.106 3.11E-07 0.110 1.16E-07 0.140 1.34E-10 0.144 4.13E-11
IEAA 0.109 1.26E-07 0.113 4.37E-08 0.144 3.85E-11 0.148 1.36E-11
EEAA (Unadjusted for cell types) 0.297 1.12E-48 0.298 1.29E-48 0.212 1.31E-22 0.216 2.92E-23
AgeAccelHannum 0.225 4.12E-28 0.226 3.19E-28 0.156 6.55E-13 0.157 5.85E-13
AgeAccelGrim 0.173 3.74E-17 0.172 8.56E-17 0.180 9.91E-17 0.181 1.02E-16
DNAmMADMAdjAge 0.121 4.58E-09 0.123 2.93E-09 0.070 1.41E-03 0.074 7.79E-04
DNAmMB2MAdjAge 0.189 4.69E-20 0.190 2.84E-20 0.129 3.44E-09 0.130 2.44E-09
DNAmMCystatinCAdjAge 0.119 8.71E-09 0.117 1.51E-08 0.241 6.48E-29 0.244 1.31E-29
DNAmMGDF15AdjAge 0.167 6.09E-16 0.165 1.37E-15 0.127 5.80E-09 0.127 7.21E-09
DNAmLeptinAdjAge -0.021 3.19E-01 -0.021 3.21E-01 -0.035 1.11E-01 -0.029 1.93E-01
DNAMPACKYRSAdjAge 0.166 7.99E-16 0.164 1.88E-15 0.172 2.23E-15 0.169 1.09E-14
DNAmMPAI1AdjAge 0.024 2.49E-01 0.021 3.16E-01 -0.004 8.59E-01 0.007 7.34E-01
DNAMTIMP1AdjAge 0.070 7.04E-04 0.068 1.03E-03 0.010 6.41E-01 0.016 4.71E-01
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AgeAccelPheno 0.178 4.45E-18
DNAmMTLAdjAge -0.080 1.17E-04
DNAmAgeSkinBloodClockAdjAge  0.102 8.32E-07

0.180 2.10E-18
-0.079 1.47E-04
0.104 5.72E-07

0.106 1.13E-06
-0.033 1.36E-01
0.022 3.17E-01

0.111 4.26E-07
-0.033 1.35E-01
0.024 2.71E-01

*Adjusted (Age, Sex, Race/ethnicity, Cell types)
Adjusted (Age, Sex, Race/ethnicity, Cell types, BMI)

Supplementary Table 7. Sensitivity analysis: Biweight midcorrelation analysis of EML in FHS using different SEM

cutoffs in FHS.

_ . EML (3IQR) EML (2IQR) ™ EML (41QR)™
Outcome = log(EML) Bicor r P value Bicor r P value Bicor r P value
Age 0.244 7.15E-33 0.223 1.02E-27 0.247 1.13E-33
BMI 0.017 4.23E-01 0.006 7.60E-01 0.019 3.49E-01
DNAm Age Acceleration

AgeAccelHorvath 0.106 3.11E-07 0.073 4.38E-04 0.112 5.44E-08
IEAA 0.109 1.26E-07 0.077 2.00E-04 0.135 5.28E-11
EEAA (Unadjusted for cell types) 0.297 1.12E-48 0.281 1.89E-43 0.293 2.46E-47
AgeAccelHannum 0.225 4.12E-28 0.224 5.97E-28 0.204 1.98E-23
AgeAccelGrim 0.173 3.74E-17 0.147 1.03E-12 0.180 1.75E-18
DNAmMADMAdjAge 0.121 4.58E-09 0.084 4.41E-05 0.133 1.31E-10
DNAmMB2MAdjAge 0.189 4.69E-20 0.178 3.79E-18 0.180 2.28E-18
DNAmCystatinCAdjAge 0.119 8.71E-09 0.116 2.03E-08 0.111 6.85E-08
DNAmMGDF15AdjAge 0.167 6.09E-16 0.157 2.52E-14 0.161 4.38E-15
DNAmLeptinAdjAge -0.021 3.19E-01 -0.019 3.62E-01 -0.027 1.97E-01
DNAmMPACKYRSAdjAge 0.166 7.99E-16 0.142 5.64E-12 0.176 1.05E-17
DNAmMPAILAdjAge 0.024 2.49E-01 0.005 8.17E-01 0.037 7.75E-02
DNAMTIMP1AdjAge 0.070 7.04E-04 0.068 9.46E-04 0.071 6.02E-04
AgeAccelPheno 0.178 4.45E-18 0.173 3.96E-17 0.164 1.37E-15
DNAMTLAdjAge -0.080 1.17E-04 -0.068 1.04E-03 -0.073 4.37E-04
DNAmAgeSkinBloodClockAdjAge 0.102 8.32E-07 0.072 5.20E-04 0.116 1.77E-08
Cell types
CD8.naive -0.072 5.20E-04 -0.038 6.97E-02 -0.084 4.77E-05
CD8pCD28nCD45RAN 0.085 3.90E-05 0.112 6.64E-08 0.038 6.37E-02
PlasmaBlast -0.054 8.94E-03 -0.096 3.13E-06 -0.021 3.10E-01
CD4T -0.146 1.68E-12 -0.176 9.14E-18 -0.149 5.34E-13
Gran -0.075 2.72E-04 -0.074 3.37E-04 -0.066 1.52E-03

’ Adjusted for age, sex, cell types.

" SEMs (21QR) were defined as DNA methylation mutations that were greater than 2 times the IQR above the upper quartile

of a given CpG or less than 2 times the IQR below the lower quartile of a given CpG.

" SEMs (41QR) were defined as DNA methylation mutations that were greater than 4 times the IQR above the upper quartile

of a given CpG or less than 4 times the IQR below the lower quartile of a given CpG.
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Supplementary Table 8. Sensitivity analysis: biweight midcorrelation analysis of EML derived from methylation data
with various normalization methods (lllumina, Noob and Quantile normalization).

PEG 1 (n =237)

_ IHlumina Functional Noob Quantile
Outcome = log(EML) Bicorr P value Bicorr P value Bicorr P value Bicorr P _value
Adjusted (Age, Sex,

Race/ethnicity, Cell types)
AgeAccelHorvath 0.075  2.49E-01 0.070 2.82E-01 0.077 2.40E-01 0.021 7.50E-01
IEAA 0.080 2.17E-01 0.067 3.07E-01 0.074 2.59E-01 0.029 6.55E-01
AgeAccelHannum 0.109  9.29E-02 0.093 1.52E-01 0.104 1.10E-01 0.036 5.86E-01
AgeAccelGrim 0.203  1.71E-03 0.213  9.69E-04 0.241 1.82E-04  0.134 3.93E-02
Cell types
CD8.naive 0.070  2.84E-01 0.042 5.23E-01 0.029 6.52E-01 0.066 3.10E-01
CD8pCD28nCD45RAN 0.063  3.34E-01 0.082 2.07E-01 0.097 1.36E-01  0.074 2.58E-01
PlasmaBlast -0.104 1.11E-01 -0.110  9.23E-02 -0.111 8.91E-02 -0.068 2.98E-01
CDAT -0.080  2.20E-01 -0.118  6.95E-02 -0.115 7.66E-02  0.018 7.85E-01
Gran -0.152  1.90E-02 -0.170  8.67E-03 -0.163 1.21E-02 -0.013 8.48E-01

Supplementary Table 9. SEMs enriched within clock CpGs.

FHS (n = 2326) WHI (n=2091) JHS (n=1734) PEG 1 (n=237)

Clock N N N N
HorvathClock (353 CpGs)

Significant 46 34 22 4

Non-Significant 2280 2057 1712 233
PhenoClock (513 CpGs)

Significant 151 97 121 19

Non-Significant 2175 1994 1613 218
HannumClock (71 CpGs)

Significant 26 10 19 5

Non-Significant 2300 2081 1715 232

Supplementary Table 10. SEMs enriched within gene regions

FHS (n = 2326) WHI (n=2091) JHS (n=1734) PEG 1 (n =237)

Genomic region N N N N
TSS1500

Significant 545 110 229 23

Non-Significant 1781 1981 1505 214
TSS200

Significant 908 385 372 142

Non-Significant 1418 1706 1362 95
5'UTR

Significant 213 71 64 8

Non-Significant 2113 2020 1670 229
1stExon

Significant 595 346 322 84

Non-Significant 1731 1745 1412 153
Gene Body

Significant 296 693 357 24

Non-Significant 2030 1398 1377 213
3'UTR

Significant 110 276 179 6

Non-Significant 2216 1815 1555 231
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Supplementary Table 11. SEMs enriched within regulatory regions.

JHS (n=1734)

Genomic region N
Enhancer from FANTOMS5

Significant 54

Non-Significant 1680
DNase hypersensitive from ENCODE

Significant 284

Non-Significant 1450
Open chromatin from ENCODE

Significant 436

Non-Significant 1298
Transcription factor binding site from ENCODE

Significant 383

Non-Significant 1351
Promoter from Methylation Consortium

Significant 165

Non-Significant 1578

Supplementary Table 12. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelHorvath.

Number of

KEGG Description people with AgeAcch AgeAccel_Pv
Pathway SEMs enriched _Coef alue
hsa05165 Human papillomavirus infection 355 1.664 7.62E-07
hsa04360 Axon guidance 347 1.726 8.53E-07
hsa05032 Morphine addiction 346 2.138 1.13E-11
hsa04713 Circadian entrainment 341 1.796 4.97E-08
FHS hsa05033 Nicotine addiction 339 2.239 4.33E-13
(n =2326) hsa04510 Focal adhesion 332 1.684 1.25E-06
hsa04080 Neuroactive ligand-receptor interaction 326 2.487 2.84E-15
hsa04724 Glutamatergic synapse 300 2412 7.38E-13
hsa04934 Cushing syndrome 297 2.041 1.15E-08
hsa04727 GABAergic synapse 294 2419 7.00E-13
hsa00053 Ascorbate and aldarate metabolism 312 0.800 1.88E-02
hsa04514 Cell adhesion molecules (CAMs) 237 1.255 8.19E-04
hsa04724 Glutamatergic synapse 231 1.220 5.95E-03
hsa04360 Axon guidance 229 2.071 8.38E-06
WHI hsa04713 Circadian entrainment 208 2.083 4.77E-06
(n=2091) hsa05166 Human T-cell leukemia virus 1 infection 193 -1.660 5.10E-05
hsa05032 Morphine addiction 189 2.541 1.45E-08
hsa04934 Cushing syndrome 171 1.504 3.23E-03
hsa04921 Oxytocin signaling pathway 167 1.445 6.29E-03
hsa04020 Calcium signaling pathway 165 2.235 8.79E-06
hsa05032 Morphine addiction 402 1.167 9.84E-04
hsa04713 Circadian entrainment 395 0.830 2.73E-02
hsa04921 Oxytocin signaling pathway 372 0.798 3.33E-02
hsa04020 Calcium signaling pathway 327 1.258 8.01E-04
JHS hsa04512 ECM-receptgr interaction 317 1.032 1.44E-02
(n= 1734) hsa04727 GABAergic synapse 282 1.093 9.28E-03
hsa04934 Cushing syndrome 249 1.370 1.00E-03
hsa04014 Ras signaling pathway 245 0.957 3.90E-02
Arrhythmogenic right ventricular
hsa05412 cardiomyopathy (ARVC) 227 1.690 1.44E-04
hsa04261 Adrenergic signaling in cardiomyocytes 226 1.006 2.95E-02
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hsa04360 Axon guidance 59 0.319 9.06E-01

hsa04713 Circadian entrainment 52 0.226 9.06E-01
hsa05224 Breast cancer 46 0.586 8.45E-01
hsa05165 Human papillomavirus infection 45 2.202 3.04E-01
PEG 1 hsa05032 Morphine addiction 44 0.182 9.21E-01
(n=237) hsa05226 Gastric cancer 44 0.868 7.78E-01
hsa04934 Cushing syndrome 43 0.907 7.78E-01
hsa04390 Hippo signaling pathway 39 0.916 7.78E-01
hsa04724 Glutamatergic synapse 39 1.630 5.97E-01
hsa04015 Rap1 signaling pathway 37 -0.390 8.94E-01

*Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML)

Supplementary Table 13. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelHannum

KEGG o Number_of AgeAccel_Co AgeAccel_Pval
Pathway Description people V\_/lth of e
SEMs enriched
hsa05165 Human papillomavirus infection 355 1.143 1.14E-03
hsa04360 Axon guidance 347 0.792 3.98E-02
hsa05032 Morphine addiction 346 2.222 1.67E-12
hsa04713 Circadian entrainment 341 1.959 2.24E-09
FHS hsa05033 Nicotine addiction 339 2.083 1.69E-11
(n =2326) hsa04510 Focal adhesion 332 1.074 3.35E-03
hsa04080 Neuroactive ligand-receptor interaction 326 2.262 1.13E-12
hsa04724 Glutamatergic synapse 300 2.029 1.84E-09
hsa04934 Cushing syndrome 297 2.283 1.57E-10
hsa00053 Ascorbate and aldarate metabolism 296 0.917 5.61E-03
hsa04724 Glutamatergic synapse 231 1.461 5.59E-04
hsa04360 Axon guidance 229 1477 1.19E-03
hsa04713 Circadian entrainment 208 1.987 7.57E-06
hsa05166 Human T-cell leukemia virus 1 infection 193 -1.133 5.13E-03
WHI hsa05032 Morphine addiction 189 2.373 5.72E-08
(n=2091) hsa04934 Cushing syndrome 171 2.160 9.38E-06
hsa04921 Oxytocin signaling pathway 167 1.330 9.42E-03
hsa04020 Calcium signaling pathway 165 1.844 1.77E-04
hsa04510 Focal adhesion 145 -1.175 4.02E-02
hsa04024 CAMP signaling pathway 137 2.147 3.52E-05
hsa04360 Axon guidance 451 0.630 3.43E-02
hsa05032 Morphine addiction 402 0.927 5.24E-04
hsa04713 Circadian entrainment 395 0.582 3.85E-02
hsa04020 Calcium signaling pathway 327 0.898 1.62E-03
IHS hsa04512 ECM—receptqr interaction 317 0.841 6.33E-03
(n= 1734) hsa04727 GABAEergic synapse 282 1.503 4.07E-08
hsa05165 Human papillomavirus infection 277 0.685 3.43E-02
hsa04934 Cushing syndrome 249 1.445 9.84E-07
hsa04024 CAMP signaling pathway 239 0.906 7.88E-03
Arrhythmogenic right ventricular
hsa05412 cardiomyopathy (ARVC) 227 0.865 1.91E-02
hsa04360 Axon guidance 59 0.418 8.86E-01
hsa04713 Circadian entrainment 52 1.182 7.74E-01
hsa05224 Breast cancer 46 -0.554 8.86E-01
PEG 1 hsa05165 Human papillomavirus infection 45 0.654 8.68E-01
(N=237)  hsa05032 Morphine addiction 44 0.060 9.81E-01
hsa05226 Gastric cancer 44 0.345 8.86E-01
hsa04934 Cushing syndrome 43 0.820 8.66E-01
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hsa04390 Hippo signaling pathway 39 0.524 8.86E-01
hsa04724 Glutamatergic synapse 39 1.877 6.22E-01
hsa04015 Rap1 signaling pathway 37 -0.117 9.61E-01

*Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML)

Supplementary Table 14. Top SEMs enriched KEGG pathways significantly associated with faster IEAA.

Number of
KEGG Pathway Description people with AgéACfCS |_ AgeAccel Pvalu
SEMs enriched o¢ ¢
hsa05165 Human papillomavirus infection 355 0.887 2.56E-02
hsa05032 Morphine addiction 346 1.055 3.76E-03
hsa04713 Circadian entrainment 341 0.939 1.50E-02
hsa05033 Nicotine addiction 339 1.560 3.24E-06
FHS hsa04080 Neuroactive ligand-receptor interaction 326 1.678 1.16E-06
(n=2326) hsa04724 Glutamatergic synapse 300 1.392 2.08E-04
hsa04934 Cushing syndrome 297 1.055 1.22E-02
hsa04727 GABAergic synapse 294 1.400 2.06E-04
hsa04020 Calcium signaling pathway 292 1.850 7.65E-07
hsa05224 Breast cancer 291 1.021 1.53E-02
hsa04724 Glutamatergic synapse 231 1.048 1.74E-02
hsa04360 Axon guidance 229 1.439 2.09E-03
hsa04713 Circadian entrainment 208 1.645 2.88E-04
hsa05166 Human T-cell leukemia virus 1 infection 193 -1.187 4.08E-03
WHI hsa05032 Morphine addiction 189 2.108 3.21E-06
(n=2091) hsa04921 Oxytocin signaling pathway 167 1.072 4.54E-02
hsa04020 Calcium signaling pathway 165 1.789 3.44E-04
hsa04015 Rap1 signaling pathway 163 1.306 1.63E-02
hsa04024 CAMP signaling pathway 137 2.296 1.60E-05
hsa05033 Nicotine addiction 135 2.201 1.11E-05
hsa05032 Morphine addiction 402 0.884 3.66E-02
hsa04934 Cushing syndrome 249 1.005 4.40E-02
Arrhythmogenic right ventricular
hsa05412 cardiomyopathy (ARVC) 227 1.322 8.85E-03
IHS hsa05033 Nicotin(_a addiction 222 1.367 3.57E-03
(n= 1734) hsa05226 _ C?astnc cancer _ 166 1.293 2.91E-02
hsa04080 Neuroactive ligand-receptor interaction 164 2.127 2.41E-05
hsa05414 Dilated cardiomyopathy (DCM) 155 1.893 2.23E-04
hsa04721 Synaptic vesicle cycle 115 2.110 2.54E-04
hsa05410 Hypertrophic cardiomyopathy (HCM) 108 2.627 1.26E-05
hsa04950 Maturity onset diabetes of the young 81 1.958 8.00E-03
hsa04360 Axon guidance 59 -0.324 9.32E-01
hsa04713 Circadian entrainment 52 -0.461 9.10E-01
hsa05224 Breast cancer 46 -0.076 9.81E-01
hsa05165 Human papillomavirus infection 45 2.479 1.66E-01
PEG 1 hsa05032 Morphine addiction 44 -0.302 9.32E-01
(n=237) hsa05226 Gastric cancer 44 0.063 9.81E-01
hsa04934 Cushing syndrome 43 0.413 9.32E-01
hsa04390 Hippo signaling pathway 39 0.472 9.10E-01
hsa04724 Glutamatergic synapse 39 1.412 7.33E-01
hsa04015 Rapl signaling pathway 37 -1.111 8.06E-01

*Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML)
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Supplementary Table 15. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelGrim.

Number of

KEGG o . AgeAccel_C AgeAccel_Pval
Pathway Description people Wlth oef” e
SEMs enriched
hsa04360 Axon guidance 347 -0.798 4.97E-02
hsa04510 Focal adhesion 332 -0.855 3.24E-02
hsa04080 Neuroactive ligand-receptor interaction 326 -0.742 4.31E-02
hsa04390 Hippo signaling pathway 284 -1.431 5.72E-04
FHS hsa04151 PI3K-Akt signalipg pathway 265 -0.956 2.56E-02
(n = 2326) hsa05205 Proteoglygans in cancer 263 -1.454 8.02E-04
hsa05226 Gastric cancer 256 -1.399 1.04E-03
hsa04512 ECM-receptor interaction 252 -0.865 3.81E-02
Signaling pathways regulating pluripotency
hsa04550 of stem cells 249 -1.59%8 1.57E-04
hsa04010 MAPK signaling pathway 240 -1.168 9.80E-03
hsa04510 Focal adhesion 145 -1.069 2.69E-02
hsa04010 MAPK signaling pathway 135 -1.251 1.37E-02
hsa05033 Nicotine addiction 135 0.969 2.45E-02
hsa04080 Neuroactive ligand-receptor interaction 130 1.157 8.32E-03
WHI hsa04072 Phospholipase D signaling pathway 129 -1.556 1.20E-03
(n=2091) hsa04310 Whnt signaling pathway 117 -1.251 1.72E-02
hsa04152 AMPK signaling pathway 111 -1.792 4.40E-04
hsa04911 Insulin secretion 102 1.178 1.86E-02
hsa04014 Ras signaling pathway 95 -1.463 1.03E-02
hsa04144 Endocytosis 91 -1.763 1.12E-03
hsa04724 Glutamatergic synapse 573 -0.148 9.05E-01
hsa04360 Axon guidance 451 0.254 8.92E-01
hsa04725 Cholinergic synapse 437 0.164 9.05E-01
hsa04510 Focal adhesion 413 -0.163 9.07E-01
JHS hsa05032 Morphine addiction 402 0.352 7.97E-01
(n=1734) hsa00053 Ascorbate and aldarate metabolism 400 0.093 9.38E-01
hsa04713 Circadian entrainment 395 0.240 8.92E-01
hsa04015 Rapl signaling pathway 391 0.228 8.95E-01
hsa00040 Pentose and glucuronate interconversions 374 -0.038 9.62E-01
hsa04080 Neuroactive ligand-receptor interaction 164 1.793 9.56E-03
hsa04360 Axon guidance 59 -0.468 9.20E-01
hsa04713 Circadian entrainment 52 -0.521 9.20E-01
hsa05224 Breast cancer 46 -2.263 4.84E-01
hsa05165 Human papillomavirus infection 45 -1.114 8.36E-01
PEG 1 hsa05032 Morphine addiction 44 -0.895 9.20E-01
(n =237) hsa05226 Gastric cancer 44 -1.497 6.67E-01
hsa04934 Cushing syndrome 43 0.378 9.20E-01
hsa04390 Hippo signaling pathway 39 -0.786 9.20E-01
hsa04724 Glutamatergic synapse 39 0.526 9.20E-01
hsa04015 Rap1 signaling pathway 37 -1.882 6.67E-01

*Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(EML)
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Supplementary Table 16. Top SEMs enriched KEGG pathways significantly associated with faster AgeAccelPheno.

KEGG Description Number of people with AgeAcc*eI_C AgeAccel_Pv
Pathway SEMs enriched oef alue
hsa05165 Human papillomavirus infection 355 0.003 1.00E+00
hsa04360 Axon guidance 347 -1.074 2.14E-01
hsa05032 Morphine addiction 346 0.409 8.14E-01
hsa04713 Circadian entrainment 341 0.078 9.62E-01
FHS hsa05033 Nicotine addiction 339 0.300 8.43E-01
(n =2326) hsa04510 Focal adhesion 332 0.049 9.74E-01
hsa04080 Neuroactive ligand-receptor interaction 326 0.120 9.13E-01
hsa04724 Glutamatergic synapse 300 -0.022 9.84E-01
hsa04934 Cushing syndrome 297 -0.255 8.99E-01
hsa00053 Ascorbate and aldarate metabolism 296 0.168 9.02E-01
hsa04940 Type | diabetes mellitus 493 -0.525 4.15E-01
hsa05330 Allograft rejection 337 -0.167 8.74E-01
hsa05332 Graft-versus-host disease 313 -0.344 6.60E-01
hsa00053 Ascorbate and aldarate metabolism 312 0.285 7.38E-01
WHI hsa00040 Pentose and g!ucuronate in_te;rconversions 305 0.127 9.19E-01
(n=2091) hsa05416 Viral myocarditis 299 -0.086 9.67E-01
hsa00860 Porphyrin and chlorophyll metabolism 272 0.048 9.81E-01
hsa05320 Autoimmune thyroid disease 272 -0.228 8.32E-01
hsa04612 Antigen processing and presentation 257 -0.228 8.32E-01
hsa00980 Metabolism of xengzgcgics by cytochrome 253 0017 9.88E-01
hsa04724 Glutamatergic synapse 573 0.029 9.58E-01
hsa04360 Axon guidance 451 0.290 8.08E-01
hsa04725 Cholinergic synapse 437 0.150 8.98E-01
hsa04510 Focal adhesion 413 -0.604 5.25E-01
JHS hsa05032 Morphine addiction 402 0.785 3.30E-01
(n=1734) hsa00053 Ascorbate and aldarate metabolism 400 0.464 5.82E-01
hsa04713 Circadian entrainment 395 1.052 1.57E-01
hsa04080 Neuroactive ligand-receptor interaction 164 2.014 3.77E-02
hsa05414 Dilated cardiomyopathy (DCM) 155 2.054 3.77E-02
hsa05410 Hypertrophic cardiomyopathy (HCM) 108 2.306 4.22E-02
hsa04360 Axon guidance 59 -0.606 9.29E-01
hsa04713 Circadian entrainment 52 0.351 9.53E-01
hsa05224 Breast cancer 46 -1.177 9.29E-01
hsa05165 Human papillomavirus infection 45 0.292 9.62E-01
PEG 1 hsa05032 Morphine addiction 44 -0.684 9.29E-01
(n=237) hsa05226 Gastric cancer 44 0.589 9.29E-01
hsa04934 Cushing syndrome 43 0.075 9.86E-01
hsa04390 Hippo signaling pathway 39 -2.425 7.03E-01
hsa04724 Glutamatergic synapse 39 1.064 9.29E-01
hsa04015 Rap1 signaling pathway 37 -0.464 9.29E-01

*Age acceleration residual as dependent variable, significant enrichment as independent variable, adjusted for nlog(SEM)
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Supplementary Table 17. Association between Clock region-specific EML and corresponding DNAm AgeAccel.

Outcome = log(clock EML)
Model

PEG1(n=237) FHS(n=2326) WHI (n=2091) JHS (n=1734)
Bicor r P _value Bicorr P value Bicorr P value Bicorr P value

HorvathClock (353 CpGs) v. AgeAccel
PhenoClock (513 CpGs) v. AgeAccelPheno
HannumClock (71CpGs) v. AgeAccelHannum

0.008 9.07E-01 0.020 8.35E-01 0.034 1.23E-01 0.180 4.16E-14
0.008 9.03E-01 0.013 5.29E-01 0.058 8.26E-03 0.064 7.57E-03
0.071 2.77E-01 -0.030 1.51E-01 0.017 4.28E-01 0.044 6.84E-02

*Adjusted for Age, Sex, Cell types, Race/ethnicity, Log(total EML)

Supplementary Table 18. Biweight midcorrelation analysis of regulatory region-specific EML in JHS.

Open

. Enhancer DNAse Chromatin TFBS Promoter
Outcorpe = log(Region (CpGs = 26395) (CpGs = (CpGs = (CpGs = (CpGs =
EML) 466862) 108758) 122647) 110008)
Bicor r P value Bicorr P value Bicor r P _value Bicorr P value Bicorr P value
Age -0.045 6.01E-02  0.169 1.24E-12 0.019 4.34E-01 -0.065 7.11E-03 -0.027 2.58E-01
DNAm Age Acceleration
AgeAccelHorvath -0.027 2.66E-01  0.129 6.75E-08 0.026 2.73E-01 -0.012 6.14E-01 -0.003 8.94E-01
IEAA -0.027 2.64E-01 0.132 3.26E-08 0.025 3.04E-01 -0.023 3.34E-01 -0.002 9.32E-01
AgeAccelHannum -0.059 1.36E-02 0.236 2.08E-23 0.002 9.26E-01 -0.089 1.94E-04 -0.029 2.35E-01
AgeAccelGrim 0.022 3.66E-01 0.098 4.01E-05 0.018 4.56E-01 -0.038 1.17E-01 -0.013 5.99E-01
Cell types
CD8.naive -0.004 8.69E-01 -0.101 2.40E-05 0.029 2.20E-01 0.027 2.67E-01 -0.029 2.23E-01
CD8pCD28nCD45RAN 0.016 5.10E-01  0.073 2.33E-03 -0.004 8.57E-01 -0.024 3.21E-01 0.038 1.12E-01
PlasmaBlast -0.020 3.98E-01 -0.011 6.41E-01 0.038 1.11E-01 0.016 4.99E-01 -0.040 9.44E-02
CDAT -0.012 6.05E-01 -0.090 1.79E-04 0.086 3.33E-04 0.109 5.20E-06 0.016 5.03E-01
Gran -0.067 5.15E-03 -0.181 3.39E-14 0.106 8.95E-06 0.151 2.47E-10 -0.049 4.21E-02

’ Adjusted for Age, Sex, Cell types, Log(total EML).

Supplementary Table 19. Biweight midcorrelation analysis of EML in FHS, stratified by the direction of SEM.

_ * All EML Hypermethylated EML Hypomethylated EML
Outcome = log(EML) Bicor r P_value Bicor r P_value Bicor r P_value
Age 0.244  7.15E-33 0.271 1.81E-40 0.139 1.53E-11
BMI 0.017 4.23E-01 0.016 4.49E-01 0.012 5.53E-01
DNAm Age Acceleration

AgeAccelHorvath 0.106  3.11E-07 0.101 1.19E-06 0.092 9.46E-06
IEAA 0.109 1.26E-07 0.100 1.34E-06 0.107 2.22E-07
EEAA (Unadjusted for cell types) 0.297 1.12E-48 0.268 1.20E-39 0.286 7.07E-45
AgeAccelHannum 0.225 4.12E-28 0.225 3.85E-28 0.192 1.05E-20
AgeAccelGrim 0.173  3.74E-17 0.167 5.80E-16 0.125 1.29E-09
DNAmMADMAdjAge 0.121  4.58E-09 0.121 4.26E-09 0.076 2.62E-04
DNAmMB2MAdjAge 0.189  4.69E-20 0.197 7.10E-22 0.088 2.26E-05
DNAmCystatinCAdjAge 0.119 8.71E-09 0.125 1.39E-09 0.031 1.29E-01
DNAMGDF15AdjAge 0.167 6.09E-16 0.181 1.58E-18 0.093 7.75E-06
DNAmLeptinAdjAge -0.021  3.19E-01 -0.003 8.74E-01 -0.047 2.23E-02
DNAMPACKYRSAdjAge 0.166  7.99E-16 0.142 5.10E-12 0.172 7.31E-17
DNAMPAILAdjAge 0.024  2.49E-01 0.056 6.70E-03 -0.053 1.12E-02
DNAMTIMP1AdjAge 0.070  7.04E-04 0.083 5.69E-05 0.021 3.06E-01
AgeAccelPheno 0.178  4.45E-18 0.168 3.52E-16 0.133 1.14E-10
DNAMTLAdjAge -0.080 1.17E-04 -0.088 1.99E-05 -0.057 5.93E-03
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DNAmAgeSkinBloodClockAdjAge 0.102  8.32E-07 0.127 7.26E-10 0.044 3.36E-02
Cell types

CD8.naive -0.072  5.20E-04 -0.071 5.91E-04 -0.040 5.38E-02
CD8pCD28nCD45RAN 0.085 3.90E-05 0.045 2.83E-02 0.104 5.07E-07
PlasmaBlast -0.054 8.94E-03 -0.043 3.92E-02 -0.060 3.98E-03
CDAT -0.146  1.68E-12 -0.138 2.08E-11 -0.096 3.89E-06
Gran -0.075 2.72E-04 -0.106 3.10E-07 -0.017 4.15E-01

*Adjusted for age, sex, cell types.

Supplementary Table 20. FHS: Distribution of hype- and hypomethylated SEMs in relation to CpG island.

Constantly Hypermethylated SEM * Constantly Hypomethylated SEM ™
Open Sea 8403 41533
Island 45807 5366
N_Shelf 711 5101
N_Shore 11205 6769
S_Shelf 619 4913
S _Shore 8483 5233

' Constantly hypermethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that
were greater than three times the IQR above the upper quartile of a given CpG.

” Constantly hypomethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that
were less than three times the IQR above the lower quartile of a given CpG.

Supplementary Table 21. FHS: Distribution of hype- and hypomethylated SEMs in relation to genomic region.

Constantly Hypermethylated SEM * Constantly Hypomethylated SEM ™
TSS1500 11769 5841
TSS200 13399 1639
5'UTR 4536 3350
1st Exon 2160 628
Gene body 12757 26197
3'UTR 559 3442

’ Constantly hypermethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that
were greater than three times the IQR above the upper quartile of a given CpG.

” Constantly hypomethylated SEMs were defined as DNA methylation mutations identified in more than 10 participants that
were less than three times the IQR above the lower quartile of a given CpG.
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Supplementary Table 22. Association between Shannon entropy and age, AgeAccel, EML.

Outcome =Entropy* FHS (n = 2326) WHI (n=2091) JHS (n=1734) PEG 1 (n =237)
Bicorr P value Bicorr P value Bicorr P value Bicorr P value
Age 0.001 9.55E-01 0.068 2.01E-03 0.071 2.92E-03 0.117 7.30E-02
DNAm Age Acceleration
AgeAccelHorvath 0.081 9.11E-05 0.160 1.76E-13 -0.039 1.02E-01 0.006 9.22E-01
IEAA 0.035 9.02E-02 0.131 1.70E-09 -0.052 3.16E-02 0.018 7.83E-01
EEAA (Unadjusted for cell types) 0.038 6.39E-02 0.090 3.60E-05 0.017 4.73E-01 0.123 5.93E-02
AgeAccelHannum 0.155 6.23E-14 0.136 4.60E-10 0.063 9.10E-03 0.096 1.41E-01
AgeAccelGrim 0.077 1.89E-04 0.228 3.86E-26 0.043 7.17E-02 0.164 1.14E-02
DNAMADMAUdjAge 0.001 9.62E-01 0.205 2.80E-21 -0.022 3.49E-01 0.075 2.53E-01
DNAmMB2MAdjAge 0.033 1.12E-01 0.057 9.76E-03 -0.019 4.19E-01 0.157 1.59E-02
DNAmMCystatinCAdjAge 0.110 9.87E-08 0.422 5.62E-91 0.075 1.67E-03 0.200 1.93E-03
DNAmMGDF15AdjAge 0.095 4.70E-06 0.226 1.53E-25 0.230 2.54E-22 0.076 2.45E-01
DNAmLeptinAdjAge -0.023 2.68E-01 -0.060 6.11E-03 0.031 2.01E-01 -0.034 6.05E-01
DNAMPACKYRSAdjAge 0.091 1.17E-05 0.125 9.64E-09 0.054 246E-02 0.112 8.44E-02
DNAmMPAI1AdjAge -0.036 8.02E-02 0.009 6.68E-01 -0.007 7.78E-01 0.099 1.30E-01
DNAMTIMP1AdjAge 0.015 4.73E-01 -0.041 5096E-02 -0.085 4.17E-04 -0.113 8.17E-02
AgeAccelPheno 0.079 1.35E-04 0.069 1.68E-03 -0.008 7.47E-01 -0.018 7.88E-01
DNAMTLAdjAge 0.002 9.36E-01 0.042 5.41E-02 0.017 4.78E-01 0.010 8.80E-01
DNAmAgeSkinBloodClockAdjAge -0.025 2.35E-01 -0.063 4.18E-03 -0.001 9.81E-01 -0.072 2.67E-01
SEM 0.089 163E-05 0.294 6.87E-43 0325 7.22E-44 0.281 1.10E-05
’ Adjusted for Age, Sex, Race/ethnicity, Cell types.
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ABSTRACT

DNA methylation has fundamental roles in gene programming and aging that may help predict mortality.
However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause
mortality. We used the lllumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites
associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in
Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths
across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with
mortality (P < 9.3x107) independently of age and other mortality predictors. Six sites (cg14866069,
€g23666362, cg20045320, cg07839457, cg07677157, cg09615688)—mapping respectively to BMPRI1B,
MIR1973, IFITM3, NLRC5, and two intergenic regions—were associated with reduced mortality risk. The
remaining three sites (cg17086398, ¢g12619262, cg18424841)—mapping respectively to SERINC2, CHST12,
and an intergenic region—were associated with increased mortality risk. DNA methylation at each site
predicted 5%—15% of all deaths. We also assessed the causal association of those sites to age-related chronic
diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and
cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157)
were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking
and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was
associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to
immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality
risk assessment and preventative care.
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INTRODUCTION

The human epigenome contains DNA methylation marks
that progressively change as we age. DNA methylation
can influence gene expression and manifests in response
to both environmental and hereditary factors [1, 2].
Biological age estimations, constructed from DNA
methylation marks and referred to as “epigenetic aging
clocks”, have been associated with environmental
exposures, morbidities, and mortality [9-13]. As these
clocks were designed to track chronological age, not to
predict mortality, further study is necessary to fully
elucidate indicators of all-cause mortality. To date, no
large-scale analysis has been conducted to identify
variations in DNA methylation at individual 5’-cytosine-
phosphate-guanosine-3° (CpG) sites associated with
future mortality risk. Here, we present an epigenome-
wide methylation analysis of 12,300 participants and 2,
561 (21%) deaths from 12 American and European
cohorts to determine whether site-specific DNA
methylation predicts all-cause mortality, independent of
age, lifestyle factors, and clinical predictors of mortality
including comorbidities. We also assessed the causal
relationship of identified sites with age-related chronic

diseases using Mendelian randomization approaches, and
we related the sites to epigenetic aging clocks and a
mortality risk score, an epigenetic indicator of mortality
previously created and validated with DNA methylation
arrays in two European cohorts.

RESULTS
Cohorts

Across studies in the Cohorts of the Heart and Aging
Research in Genetic Epidemiology (CHARGE)
Consortium, mortality rates ranged from 3%-70% of all
participants, and the average time to death or censoring
ranged from 4.4-16.6 years (Supplementary Table 1).
Each study conducted epigenome-wide mortality
analyses, adjusting for two sets of harmonized risk
factors and confounders, and shared results for meta-
analysis (Figure 1).

Meta-analysis

Inverse variance-weighted fixed-effects meta-analysis of
426, 724 CpGs identified 51 Bonferroni-significant and

Pre-specified cohort specific epigenome-wide all-cause mortality analysis
Mortality ~ DNA methylation + covariates*

ARIC FHS 1 FHS 2 InChianti KORA LBC 1921
N=2780 N=2144 N =485 N =480 N=1257 N =384
Deaths=1026 Deaths = 162 Deaths = 76 Deaths =91 Deaths = 42 Deaths = 267
TtD=16.6 TtD=6.1 TtD=5.9 TtD=14.6 TtD=4.4 TtD=9.3
LBC 1936 NAS TwinsUK WHI-BAA23 | [WHI-EMPC-EA] [WHI-EMPC-AA
N=719 N =647 N =775 N =998 N= 1077 N= 554
Deaths = 84 Deaths = 221 Deaths = 30 Deaths = 309 Deaths = 180 Deaths =73
TtD=7.4 TtD =10.6 TtD=8.9 TtD=14.4 TtD=11.5 TtD=10.6

Statistical Validation for each cohort

=~

Inverse Variance-Weighted Fixed Effect Meta-Analysis* (N = 12300, Deaths = 2561)
Statistical Validation + Sensitivity Analysis (leave one cohort out)
Results: 9 CpGs associated with all-cause mortality
(mapped to 6 genes and 3 intergenic regions)

=~ ~

~ ~

Association with GWAS + Genomic

mortality risk Enrichment
predictors Overlap of the
Covariates, mapping genes with

Epigenetic age mortality and

mortality risk factors

meQTL analysis
Association of
methylation levels

eQTM analysis
Association of
methylation levels

with genetic with gene
polymorphisms expression
(cis-meQTL)

* Analysis with two sets of harmonized covariates; TtD=average time (years) to death/follow-up

Figure 1. Workflow of the study.
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257 FDR-significant (P < 3.03x10°) CpGs in a basic
model adjusting for age, sex, technical covariates, and
white blood cell proportions (Figure 2A and
Supplementary Table 2). We also identified three
Bonferroni-significant and nine FDR-significant (P <
9.3x107) CpGs in a fully-adjusted model also adjusting
for education, smoking status, pack-years smoked, body
mass index, recreational physical activity, alcohol
consumption, hypertension, diabetes, and history of
cancer and coronary heart disease (Figures 2B, 3A
and Supplementary Table 3). For 188 (73%) basic-
adjusted FDR-significant CpGs and six (67%) fully-
adjusted CpGs, higher blood DNA methylation was
associated with lower all-cause mortality (Figure 2 and
Supplementary Tables 2, 3).

All nine fully-adjusted FDR-significant CpGs had
similar magnitude of associations with mortality in the
basic model, although only five were also FDR-
significant in the basic model (Figure 3B). Hazard ratios
(HRs) of the nine fully-adjusted FDR-significant CpGs
ranged 0.53-1.26 per 10% increase in DNA methylation

_____ Sl e s N
* 5,
' o, . o v

1 23456

Chromosome

levels, where 1 represents 100% methylation
(Supplementary Table 4). Six sites (cgl4866069,
€023666362, cg20045320, cg07839457, cg07677157,
€g09615688) were associated with reduced mortality
risk, while the remaining three sites (cgl7086398,
€g12619262, ¢gl18424841) were associated with
increased mortality risk (Figure 3A and Supplementary
Tables 3, 4). Three fully-adjusted CpGs (cg07677157,
cg09615688, cg18424841) were in intergenic regions; the
remaining six (cgl17086398, cgl4866069, cg23666362,
€gl12619262, ¢g20045320, cg07839457) were within
10,000 bp of a gene, with two CpGs (cg07839457,
€g23666362) mapped respectively to nucleotide-binding
oligomerization domain-like receptor caspase recruitment
domain containing 5 (NLRC5) and microRNA 1973
(MIR1973) within 1,500 bp of transcription start sites,
and one (cgl7086398) in the serine incorporator 2
(SERINC2) gene body (Supplementary Table 3).

Meta-analysis results did not appear to suffer from
systematic bias due to unmeasured confounding, as
assessed by genomic inflation (basic model: A = 1.12,
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Figure 2. Quantile-Quantile plots, Manhattan and Volcano for the basic model (Panel A) and for the fully adjusted model (Panel B).
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fully adjusted model X 0.94, Figure 2 and
Supplementary Table 5). Cohort-specific inflation was
also minimal, with lambdas close to one for most cohorts.
Volcano plots showed symmetry in the direction of the
associations with all-cause mortality (Figure 2). All
nine fully-adjusted FDR-significant CpGs showed
low/medium heterogeneity (Supplementary Tables 7) and
consistent magnitude of the estimated HRs across studies
(Figure 3A). We further validated our results by
excluding cohorts with high proportion of deaths (30%)
and inflation (A > 1.5). In these sensitivity analyses, HRs
for the nine FDR-significant CpGs were consistent with
main results in terms of direction, magnitude, and
statistical significance (Supplementary Figure 1 and
Supplementary Tables 8, 9).

Three of the nine fully-adjusted FDR-significant
CpGs (cg20045320, cg07677157, cg07839457) were
associated with lower incidence of coronary heart
disease rates (P < Bonferroni threshold of 0.005)
(Figure 4 and Supplementary Table 10).

Miettinen’s population attributable factor, epigenetic
aging clocks, and mortality risk score

To assess the extent that methylation levels of each CpG
predict all-cause mortality, we calculated Miettinen’s

population attributable fraction on data from the
Normative Aging Study (NAS) and the Women Health
Initiative-Epigenetic Mechanisms of Particulate Matter-
Mediated Cardiovascular Disease (WHI-EMPC) for
European and African American ancestries. DNA
methylation levels above the average at each CpG
predicted, individually and independently of other
factors, 5%-15% of all deaths (Figure 3C and
Supplementary Table 11). In the same datasets, all nine
CpGs were associated with age, cumulative smoking,
body mass index, and physical activity (P < 0.05). Seven
out of nine CpGs (cgl7086398, cgl14866069,
€g23666362, €g20045320, cg7677157, cg07839457,
cg09615688) had negative relationships with age
(Supplementary Table 12). Seven CpGs were strongly
associated with epigenetic aging clocks and mortality
risk scores; all significant associations had the same
direction and similar magnitude across the four
epigenetic aging clocks (Supplementary Table 13), even
if none of those sites was included in any of the clocks.
Those CpGs had consistent and independent association
with all-cause mortality when adjusted for epigenetic
aging clocks and mortality risk scores (Supplementary
Tables 14, 15). In overall meta-analysis, we identified 57
out of 58 CpGs of the risk score, and those sites had low
to moderate association with DNA methylation levels at
our FDR-significant CpGs with a balance between

A ¢cg17086398 ¢g14866069 €023666362 012619262 920045320 ¢cg07677157 ¢cg07839457 909615688 cg18424841 B cg18424841 o
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FHS Study 1 — —— —_— ——t s H—s 9096156881 25—,
FHS Study 2 . T T I = = A &+ = ©g07839457 -
InChianti —— —— i —— s e N ——
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LBC1921 e —— —— - - - &
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NAS b * * Tl H - - i 0g12619262 S
TwinsUK
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Figure 3. (A) Forest Plots for the association of methylation levels of the FDR-significant fully-adjusted CpGs with risk of all-cause mortality in
the CHARGE consortium. (B) Sensitivity analysis. Comparison of the hazard ratio of the basic-adjusted and the fully-adjusted fixed effect
meta-analysis. (C) Attributable factor. Predicted Contribution (%) of increased methylation levels (above the mean) of each CpG to the all-
cause mortality associations in NAS, WHI-EMPC (EA) and WHI-EMPC (AA). (D) Functional Mapping and Annotation results in order to examine
tissue specificity of the genes mapped to the FDR-significant fully-adjusted CpGs.
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positive and negative correlations (Supplementary
Figure 2A, 2B). In overall meta-analysis, the association
between all-cause mortality and DNA methylation levels
at the majority (34 out of 58) of mortality risk score
CpGs had consistent direction with previous results.
Among those CpGs, only two (cg25193885 and
€g19859270) showed nominally significant association
with mortality (Supplementary Figure 2A, 2B).

Pathways analyses and DNA methylation integration
with quantitative trait loci analysis (meQTL) and
with gene expression (eQTM)

Extended genome-wide enrichment analysis showed that
two of the CpGs (cg07839457 and cg17086398) mapped
to genes (NLRC5 and SERINC2, respectively) previously
associated with high-density lipoprotein cholesterol
levels (FDR P =0.02) and alcohol dependence (FDR
P =0.004) in genome-wide association studies (GWAS)
analyses (Supplementary Table 16) [14]. We confirmed
these results using Database for Annotation,
Visualization and Integrated Discovery (DAVID) and
KEGG, identifying and testing for enriched underlying
biological processes in publicly available gene ontology
databases (Supplementary Tables 17, 18).

To characterize the functional relevance of FDR-
significant CpGs, we performed covariate-adjusted
methylation quantitative trait locus (meQTL) analyses
using available unique single-nucleotide-polymorphism
(SNP)-CpG combinations from 713 participants
in the Cooperative Health Research in the Region
Augsburg (KORA) study [15]. We identified
nine Bonferroni-significant unique cis-regulatory
polymorphisms associated with two 1000 bp-distant
CpGs (cg09615688, ¢g18424841) (Supplementary
Figure 3A and Supplementary Table 19). None of the
nine identified polymorphisms overlapped with
previous genetic results from the National Human
Genome Research Institute-EBI GWAS Catalog
(Supplementary Table 16).

€g17086398 ¢g14866069 €g23666362 ©g12619262

We also evaluated expression quantitative trait
methylation (eQTM) associations using 998 KORA
participants. We identified three CpGs with FDR-
significant associations with decreased leukocyte
expression levels of nearby genes, among the 13, 351
unique associations between gene-expression and DNA
methylation levels at FDR-significant fully-adjusted
CpGs. Namely, DNA methylation levels of cg07839457
(in NLRC5) were associated with NLRC5 expression as
well as with that of a ~300 Mb-distant set of
metallothionein (MT) 1 and 2 genes, which are linked to
oxidative stress and immune responses [16, 17]. DNA
methylation of ¢g17086398 in SERINC2 was inversely
associated with myristoylated alanine-rich C-kinase
substrate like 1 (MARCKSL1) expression, which is
involved in migration of cancer cells [18]. DNA
methylation at ¢g20045320 in IFITM3 was associated
with lower expression of IFITM3 and IRF, which have a
critical role in immune responses (Supplementary
Figure 3B and Supplementary Table 20) [6, 19].

We finally used functional mapping and annotation to
examine tissue-specific expression. Genes identified in
the fully-adjusted model showed universal expression at
varying levels across tissues. IFITM3 was highly
expressed in all tissues; BMPR1B showed low
expression across all tissues, except for moderate
expression in the prostate and tibial nerve. Remaining
genes had moderate or low expression in a wide range
of tissues, except for SERINC2, which showed high
expression in the liver, kidney, salivary gland, and
esophagus. MIR1973 was not represented in the dataset
(Figure 3D).

Mendelian randomization

To evaluate the causal relationship of FDR-significant
CpGs to mortality-related risk factors and diseases, we
included two sets of Mendelian randomization analysis
using methQTL data from KORA and publicly available
ARIES data. Only two FDR-significant CpGs

€g20045320 €g07677157 cg07839457 €g09615688 cg18424841
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Figure 4. Forest Plots for the association of methylation levels of the FDR-significant fully-adjusted CpGs with risk of future

incident coronary heart disease in the CHARGE consortium.
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(cg18424841 and c¢g09615688) overlapped with
methQTLs in either KORA or ARIES and with SNPs
associated with coronary heart disease (CHD) or kidney
function. A GWAS assessing longevity and age-related
chronic diseases (CHD and kidney function) [34-38]
showed no overlap with KORA and ARIES methQTLs
even when using a moderate threshold for proxy variants
(proxy r?2 > 0.75). In KORA, cg09615688 showed
evidence of a positive causal effect on CHD (OR = 1.51;
95% CI = 1.02, 2.23; Wald ratio method), directionally
consistent with the association of overall meta-analysis
on mortality. However, this causal estimate at this site
was not represented in ARIES methQTL data.
Cg18424841 had multiple variants in KORA methQTL
data and a single variant in ARIES methQTL data. We
did not observe consistent evidence of a causal effect of
€g18424841 on CHD. Indeed, weak evidence for a
causal effect of cg18424841 on CHD was observed in
ARIES using the Wald ratio method but not in KORA
using pleiotropy-robust, multi-variant, or Wald ratio
methods. We did not find evidence for a causal effect of
€g18424841 on kidney function in either KORA or
ARIES (Supplementary Table 21).

Cell-type fractions and all-cause mortality

Cell-type fractions, mostly neutrophil-lymphocyte ratio
(NLR), have been often associated with comorbidities
and mortality and have been recognized to influence
DNA methylation levels [20-22]. We identified that
NLR was significantly associated with all-cause
mortality only when data were not adjusted for
Houseman cell proportions using NAS data
(Supplementary Table 22). Interestingly, NLR had no
significant association with all-cause mortality when we
adjusted for DNA methylation levels at cg07839457,
mapped to immune-related gene NLRC5. However, the
contribution of NLR on mortality at that specific site
may be minimized due to adjustment of prior history of
cancer and comorbidities in all models.

DISCUSSION

This study is the largest to date investigating site-
specific DNA methylation and all-cause mortality. We
identified new whole blood DNA methylation marks
that predict all-cause mortality risk, independent from
chronological age, lifestyle habits, and morbidity. These
newly identified sites may be useful in developing
clinical tools for risk assessment and mortality
preventive intervention strategies.

All nine FDR-significant CpGs demonstrated novel
association with all-cause mortality and were not part of
epigenetic aging clocks or mortality risk scores [9, 11—
13]. Further, the CpGs were associated with mortality

independent from epigenetic aging and mortality
signatures. All-cause mortality was associated with a
mortality risk score in a model including seven FDR-
significant CpGs, although those associations may be
driven by the inclusion of CpGs related to our FDR-
significant sites. This suggests that whole blood DNA
methylation levels at FDR-significant CpGs may be
sentinels for epigenetic disruptions leading to aging
acceleration and contributing to mortality. In addition,
the association between DNA methylation levels at
FDR-significant CpGs with chronological aging may
suggest that those CpGs are stronger independent
biomarkers of aging than other epigenetic aging
signatures.

In previous CHARGE meta-analyses [3, 4], DNA
methylation of two of the newly-identified CpGs,
€g20045320 and cg07839457 (mapping to interferon
induced transmembrane protein 3 [IFITM3] and NLRC5)
were respectively associated with smoking and
cardiovascular-related chronic inflammation, both
factors of mortality. Cardiovascular disease, especially
CHD, is a major contributor to mortality [23]. The
direction of association with incident heart disease was
consistent with that of all-cause mortality. Thus, DNA
methylation at these CpGs may contribute to
development and progression of CHD and,
consequently, to risk of death. To validate this idea, we
used a Mendelian randomization approach and identified
one site, cg09615688, with a causal effect on CHD in
KORA data and weak evidence for the causal effect of
€g18424841 on CHD in ARIES data.

Expression of several genes mapped to the fully-
adjusted FDR-significant CpGs has been associated
with mortality predictors and mortality. Elevated and
persistent gene expression levels of NLRC5, a master
regulator of the immune response [16], has
demonstrated an inverse correlation with familial
longevity and mortality predictors, such as elevated
blood pressure, arterial stiffness, chronic levels of
inflammatory cytokines, metabolic dysfunction, and
oxidative stress [5]. In addition, expression of IFITM3
provides an essential barrier to influenza A virus
infection in vivo and in vitro. Absence of IFITM3 leads
to uncontrolled viral replication and a predisposition to
morbidity and subsequent mortality [6]. Further,
expression of BMPR1B enhances cancer cell migration,
and approaches targeting BMPR1B inhibit metastatic
activity in breast cancer [7]. Finally, expression of
MIR1973, part of a family of microRNAs, increases
resistant lung adenocarcinoma cells, with subsequent
low apoptosis intensity [8]. This body of evidence may
suggest an active role of DNA methylation levels in
regulating relevant gene expression and reducing all-
cause mortality risk.
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The overall meta-analyses included 12 cohorts with
varying biological age and mortality. There was a
balance between six studies with long (>10 years) and
six cohorts with short (<10 years) average time to
follow-up or death. All cohorts showed consistency in
magnitudes and directionality for the association with
mortality of four CpGs (cg12619262, cg20045320,
cg07839457, cg18424841). Two studies (FHS study 1
and KORA) showed non-significant opposing
directionality when compared with the rest of the
cohorts for several CpGs (FHS-Study 1: cg14866069,
€g23666362, ¢g09615688; KORA: ¢gl7086398,
€g14866069, cg23666362). However, both cohorts had
among the shortest average time-to-death (FHS-Study
1: 6.1 years; KORA: 4.4 years) and youngest average
population age (FHS-Study 1: 65 years; KORA: 61
years). Both cohorts also had limited contribution in our
meta-analysis due to reduced number of deaths (FHS-
Study 1: 62; KORA: 42). Our results may indicate that
DNA methylation levels at these select CpGs were
relevant for mortality risk prediction of longer time-to-
death in both adults and older-age adults.

Cell-type fractions, including NLR, as related to cancer
and systemic inflammation have been related to
mortality in different populations [20-22]. When we
excluded Houseman cell proportions, NLR was strongly
associated with mortality at all CpGs except
cg07839457, which is mapped to the immune-related
gene NLRCS5. This may suggest that the contribution of
NLR on mortality is minimized when controlled for
prior history of cancer and related comorbidities.

In summary, we identified nine CpGs with a novel
association with all-cause mortality, responsive to
several external stimuli including alcohol consumption
and smoking, and more than 10 years before death.
These sites thus may be considered sentinels for
epigenetic disruptions leading to age-related disease,
such as cardiovascular disease, and contributing to
mortality. Further studies have to confirm these
associations in other tissues and in different populations.

MATERIALS AND METHODS
Participating cohort studies

Our meta-analysis included 12300 participants from 12
population-based cohorts of the Heart and Aging
Research in  Genetic Epidemiology Consortium
(CHARGE; Supplementary material): Atherosclerosis
Risk In Communities (ARIC), two studies from the
Framingham Heart Study (FHS), Invecchiare in Chianti
(InChianti), Kooperative Gesundheitsforschung in der
Region Augsburg (KORA), Lothian Birth Cohort 1921
(LBC1921) and 1936 (LBC1936), Normative Aging

Study (NAS), UK Adult Twin Registry (TwinsUK), and
three studies from the Women’s Health Initiative
(WHI), including Broad Agency Announcement 23
(WHI-BAA23) and Epigenetic Mechanisms of PM-
Mediated CVD Risk (WHI-EMPC), both European
(WHI-EMPC-EA) and African American ancestries
(WHI-EMPC-AA). For each participant, we derived
years of follow-up using time between the blood draw
used for DNA methylation analysis and death or last
follow-up. Each cohort excluded participants with
diagnosed leukemia (ICD-9: 203-208) or undergoing
chemotherapy treatment, which both modify blood-
derived data [24, 25]. All participating cohorts shared
cohort descriptive statistics and results files from pre-
specified in-house mortality analyses (Figure 1). Further
information about death ascertainment, covariates
measurement and harmonization, protocols, and
methods of each cohort are included in the
Supplemental Materials. The institutional review
committees of each cohort approved this study, and all
participants provided written informed consent. Data
and analytical codes that support our findings are
available from the corresponding author upon request.

Blood DNA methylation measurements and quality
control

Each cohort independently conducted laboratory DNA
methylation measurements and internal quality control.
All samples underwent bisulfite conversion via the
EZ-96 DNA Methylation kit (Zymo Research) and
were processed with the IHlumina Infinium
HumanMethylation450 (450K) BeadChip (Illumina) at
Illumina or in cohort-specific laboratories. Quality
control of samples included exclusion on the basis of
Illumina’s detection P-value, low sample DNA
concentration, sample call rate, CpG specific percentage
of missing values, bisulfite conversion efficiency, gender
verification with multidimensional scaling plots, and
other quality control metrics specific to cohorts. Each
cohort used validated statistical methods for normalizing
methylation data on untransformed methylation beta
values (ranging 0-1). Some cohorts also made
independent probe exclusions. Further details are
provided in the Supplemental Material. For meta-
analysis, additional probe exclusions were made across
all cohorts. In detail, we also excluded control probes,
non-CpG sites, probes that mapped to allosomal
chromosomes, cross-reactive CpGs, probes with
underlying SNPs within 10 bp of the CpG sequence,
non-varying CpGs defined by interquartile range of
<0.1%, CpGs with >10% of missing information, and
CpGs with non-converging results [26-28]. We included
only CpGs that were available in more than three
cohorts. A total of 426, 724 CpGs were included in the
meta-analysis (Supplementary Table 5).
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The official gene name of each CpG site was noted via
lllumina’s genome coordinate. We used the name
provided by Illumina with the UCSC Genome Browser
and annotation data in Bioconductor. All annotations use
the human February 2009 (GRCh37/hg19) assembly.

Cohort-specific statistical analyses

Each cohort independently ran a common pre-specified
statistical analysis in R.version 3.5.1. We estimated the
association  between locus-by-locus blood DNA
methylation levels and all-cause mortality in each cohort
using a Cox-regression model. Proportional hazard
assumptions were confirmed for each model in all
cohorts. Familial relationship was also accounted for,
when appropriate, in the model; FHS analyses included
cluster for family structure, and TwinsUK analyses used
random intercepts for zygosity and family structure. To
avoid non-convergent results, cohorts with low deaths
(KORA and TwinsUK) used a two-step analysis, in
which covariates were first linearly regressed on each
probe, and then residuals were used to perform a Cox
mortality analysis.

Each cohort adjusted for harmonized covariates in the
basic model: age (categories for decades), sex, and
technical covariates (plate, chip, row, and column). A
second set of fully-adjusted analyses adjusted for this
initial list of covariates in addition to education level,
self-reported recreational physical activity, smoking
status, cumulative smoking (pack-years), body mass
index, alcohol intake, hypertension, diabetes, and any
personal history of cancer. Cohorts independently
estimated cell type proportions using the reference-based
Houseman method, which was subsequently extended by
Horvath. Cell type correction was applied by including
estimated cell type proportions (CDA4T, NK cells,
monocytes, granulocytes, plasma B cells, CD8T naive,
and memory and effector T cells) as covariates in cohort-
specific statistical models. Each cohort underwent
statistical validation of Cox-proportional hazard
assumptions before being included in the meta-analysis.

Meta-analysis

We performed inverse variance-weighted fixed-effects
meta-analysis. Due to the variability of available CpG
sites across cohorts after quality-control steps, we
included only CpG sites that were available in three or
more cohorts. We accounted for multiple testing by
controlling at 5% both the Bonferroni correction and
false discovery rate (FDR) using the Benjamini-
Hochberg procedure.

For FDR-significant CpGs, we confirmed robustness of
the models and results in additional analyses using the

leave-one-out cohort validation method, by excluding
one cohort at a time and then comparing model
estimates for each CpG. We compared effect hazard
ratio (HR) and 95% confidence interval (95% CI) for
the model to estimates for our models to evaluate the
consistency of our findings. For each CpG, we
evaluated goodness of the meta-analysis model using
the 12 statistic measure of inter-study variability from
random-effect meta-analyses.

Enrichment analysis

We enriched our results using a publicly available
catalog of all published GWAS relating genetic variants
with human diseases (National Human Genome
Research Institute-EBI GWAS Catalog) to elucidate
potential associations [14]. Enrichment analysis was
performed in R using one-sided Fisher exact test. We
controlled for false positives with the FDR procedure.

We evaluated whether CpG sites associated with
mortality were enriched with genomic features
provided in the Illumina annotation file (version 1.2;
http://support.illumina.com/array/array kits/infinium_hu
manmethylation450 beadchip_kit/downloads.html) to
identify CpG location relative to the gene (i.e., body,
first exon, 3’-UTR, 5-UTR, within 200 bp of
transcriptional start site [TSS200]), and within 1500 bp
of transcriptional start site [TSS1500]) and relation of
the CpG site to a CpG island, northern shelf, northern
shore, southern shelf, and southern shore.

We also tested each gene mapped to the newly
identified CpGs for tissue-specific expression using data
from the Genotype Tissue Expression (GTEX) project as
integrated by the Functional Mapping and Annotation
(FUMA) tool [29], which allowed us to extract and
interpret relevant biological information from publicly
available repositories and provide interactive figures for
prioritized genes. As a result, we obtained a heatmap of
genes with normalized gene expression values (reads
per kilo base per million). To obtain differentially
expressed gene sets for each of 53 tissue types in the
database, we used two-sided Student’s t-tests on
normalized expression per gene per tissue against all
other tissues. We controlled for multiple comparison
with Bonferroni correction. Finally, we distinguished
between genes upregulated and downregulated in a
specific tissue compared to other tissues by accounting
for sign of the t-score [29].

Pathway analyses
To functionally interpret the genomic information

identified from FDR-significant CpGs, we used the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
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pathway database, which links genomic information
with higher-order functional information. Genomic
information stored in the GENES database is a
collection of gene catalogs for all completely sequenced
genomes and some partial genomes with up-to-date
annotation of gene functions. Higher-order functional
information stored in the PATHWAY database contains
graphical representations of cellular processes, such as
metabolism, membrane transport, signal transduction,
and cell cycle [30]. We controlled our results for
multiple comparisons with the FDR approach. We
finally confirmed our results with the Database for
Annotation, Visualization and Integrated Discovery
(DAVID). We tested for enrichment in gene ontology
biological processes and applied the Benjamini-
Hochberg procedure to control for false positivity. We
mapped each CpG significantly associated with mortality
to genes on the basis of the 450K BeadChip annotation
file. We excluded CpGs lacking annotated genes within
10 Mb (n = 3). Using topGO in R, we tested for gene
enrichment over the background array (16, 119 unique
annotated Entrez Gene IDs) by using Fisher’s exact tests
with a minimum of two genes per node.

Integrating DNA methylation with quantitative trait
loci analysis (meQTL)

A subset of 713 KORA samples was genotyped on an
Affymetrix Axiom array. We removed variants with a
call rate of <0.98, Hardy-Weinberg equilibrium P <
5x10°, and minor allele frequency < 0.01. We
considered only variants with an information score > 3.
Imputation was performed using the 1000 Genomes
Project phase | version 3 reference panel with IMPUTE
2.3.0. Phasing of data was performed using SHAPEIT
v2. We retained approximately 10,000,000 variants for
analyses. In each model, we used DNA methylation
beta values as independent variables and SNPs as
dependent variables. We adjusted each model for age,
sex, body mass index, and white blood cell proportions.
We used OmicABEL [31] for the analyses and genotype
probabilities for each variant. Due to large size
of the output, we retained only variants with P < 1x10*.
We considered genome-wide significant results at
P < 1x10™*. We reported only associations with CpGs
significant in the epigenome-wide association study.

Integrating DNA methylation with gene expression
(eQTM)

In KORA, 998 individuals had both valid methylation
and blood gene expression data, which we used to
assess whether DNA methylation was correlated with
gene expression. Gene expression data (Illumina
HumanHT-12 v3 Expression BeadChip) was quality
controlled with GenomeStudio, and samples with

<6,000 detected genes were excluded from analysis. All
samples were log2-transformed and quantile-normalized
using the Bioconductor package lumi [32]. A total of
48,803 expression probes passed quality control. We
used R (version 3.3.1) to run a linear mixed effects
model adjusting for covariates (age, sex, blood cell
proportions, and technical variables of RNA integrity
number, sample storage time, and RNA amplification
batch) and a random intercept for RNA amplification
batch. Models were run for each of the nine newly-
identified CpGs associated with mortality. We filtered
results to report only CpG-expression probe pairs
located on the same chromosome. Start and end sites for
each gene were determined according to the Illumina
HT annotation file. A cutoff of 500,000 bp was used to
differentiate cis- vs. trans-eQTMs.

Miettinen’s population attributable factor and
mendelian randomization analysis

To assess the contribution of methylation levels of each
CpG to all-cause mortality, we calculated Miettinen’s
population attributable fraction on data from the in-
house Normative Aging Study (NAS) and Women
Health Initiative-Epigenetic Mechanisms of Particulate
Matter-Mediated Cardiovascular Disease (WHI-EMPC)
for European and African American ancestries.
Population attributable fraction takes into account
strength of association between the risk factor (DNA
methylation higher than the mean in specific CpG sites)
and outcome (mortality) as well as prevalence of the
risk factor in the population [33]. This metric provides
estimates of the public health importance of risk factors,
ascertaining what proportion of the outcome is due to
exposure to the risk factor, and distinguishes between
etiologic fraction attributable to or related to the given
risk factor depending on whether all or just some
confounding by extraneous factors was under control
[33]. To support information about the population
attributable factor, we also included two Mendelian
randomization approaches.

We identified the causal effect on all-cause mortality of
FDR-significant CpGs by using two sample Mendelian
randomization analyses and summary statistics from
published GWAS for chronic diseases and longevity [34]
and chronic diseases, including CHD [35], kidney
function (serum creatinine), [36] blood pressure, [37] and
type 2 diabetes [38]. We extracted GWAS information
with MR-base [14]. We also extracted SNP-methylation
association summary statistics from both KORA and
publicly available ARIES [39] methQTL data; for
ARIES, we used MR-base [40]. To account for multiple
variants and pleiotropy, we used multiple Mendelian
randomization methods—when only one variant was
present, we used the Wald Ratio method [41]; when we
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had multiple variants, we used MR Egger [42],
weighted median [43], and weighted mode [44], as
these three methods use different assumptions to
provide consistent causal effect estimates even with
invalid instruments arising from horizontal pleiotropy, a
primary source of bias in multi-variant Mendelian
randomization analyses.

FDR-significant CpGs, DNA methylation-related
aging measures, and mortality risk score

PhenoAge, a composite measure of CpG sites
representing phenotypic age, captures differences
between lifespan and health span. The Horvath clock is
a linear combination of sites identifying the cumulative
effect of an epigenetic maintenance system [1, 45].
Among the 513 CpGs comprising PhenoAge, 41 are
shared with the Horvath clock. While both aging
measures correlate strongly with age in every tissue and
cell type tested, and both captured risks for mortality
across multiple tissues and cells, PhenoAge is highly
predictive of nearly every morbidity [1, 10]. Blood
PhenoAge outperformed the Horvath clock with regard
to predictions for a variety of aging outcomes, including
all-cause mortality. The mortality risk score instead was
based on results using discovery cohort ESTHER (61
years old on average) and both ESTHER and KORA for
validation [11].

To investigate whether the association of FDR-
significant CpGs with mortality was independent of
DNA methylation aging measures and risk score, we
included acceleration of PhenoAge and Horvath clock,
defined respectively as discrepancies between age with
PhenoAge and Horvath clock age and the risk score. We
also identified the correlation between each CpG
included in the risk score and our FDR-significant
CpGs, and we compared our pooled meta-analysis
results with previous findings.

Cell-type fractions and all-cause mortality

Cell-type fractions, mostly NLR, influence DNA
methylation levels and have been associated with
comorbidities and mortality [20-22]. To elucidate which
cell proportions were associated with mortality when
adjusting for DNA methylation at FDR-significant CpGs,
we included NLR, which has been associated with lung
cancer risk and mortality [21] as well was cardiovascular
disease and mortality in prospective studies [22]. NLR
computation was performed using DNA methylation data
via Koestler et al. [46]
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SUPPLEMENTARY MATERIALS
Supplementary material - cohort description
The atherosclerosis risk in communities (ARIC) study

ARIC cohort description

The ARIC Study is a population-based prospective
cohort study of cardiovascular disease risk in four US
communities [1]. Between 1987 and 1989, 7,082 men
and 8,710 women aged 45-64 years were enrolled in
Forsyth County, North Carolina; Jackson, Mississippi
(African  Americans only); suburban Minneapolis,
Minnesota; and Washington County, Maryland. The
ARIC Study protocol was approved by the institutional
review board of each participating university, and
participants  provided written informed consent.
Participants underwent a baseline clinical examination
(Visit 1) and four subsequent follow-up clinical exams
(Visits 2-5). The present analysis is restricted to African
Americans from Jackson and Forsyth County centers.
Baseline for mortality follow-up is either Visit 2 (1990—
1992) or Visit 3 (1993-1995), when the DNA used for
methylation quantification was collected. Covariates were
measured at the time of blood draw, unless otherwise
specified. Data on education, smoking status, smoking
pack-years, alcohol intake, and physical activity were
obtained by self-report at Visit 1. Trained technicians
took fasting blood samples and measured height and
weight using standard protocols. Diabetes was defined as
a fasting blood glucose level of >126 mg/dL, non-fasting
blood glucose level of >200 mg/dL, self-reported
physician diagnosis of diabetes, or use of antidiabetic
medication in the past 2 weeks. Hypertension was
defined as systolic blood pressure >140 mm Hg, diastolic
blood pressure >90 mm Hg, or self-reported use of
antihypertensive medication in the past 2 weeks. History
of cancer was defined by self-report or incident cancer
cases found between Visit 1 and time of blood draw
found through cancer registry and hospital linkage.
History of coronary heart disease (CHD) was defined as
self-reported history at baseline or an adjudicated event
(Myocardial infarction (MI), silent MI, coronary artery
bypass surgery, or angioplasty) found between Visit 1
and time of blood draw.

ARIC death ascertainment

Deaths among cohort participants were identified through
December 2012 via annual telephone calls and by
surveillance of local death certificates and obituaries. If a
participant was lost to telephone follow-up, a National
Death Index search was conducted.

ARIC DNA methylation quantification
Genomic DNA was extracted from peripheral blood
leukocyte samples using the Gentra Puregene Blood Kit

(Qiagen; Valencia, CA, USA) according to the
manufacturer’s instructions (https://www.giagen.com).
Bisulfite conversion of 1 pg genomic DNA was
performed using the EZ-96 DNA Methylation Kit (Deep
Well Format) (Zymo Research; Irvine, CA, USA)
according to the manufacturer’s instructions
(https://www.zymoresearch.com). Bisulfite conversion
efficiency was determined by PCR amplification of
converted DNA before proceeding with methylation
analyses on the Illumina platform using Zymo
Research’s Universal Methylated Human DNA Standard
and Control Primers. The Illumina Infinium
HumanMethylation450K Beadchip array (HMA450K)
was used to measure DNA methylation (Illumina, Inc.;
San Diego, CA, USA). Background subtraction was
conducted with the GenomeStudio software using built-
in negative control bead types on the array. Positive and
negative controls and sample replicates were included on
each 96-well plate assayed. After exclusion of controls,
replicates, and samples with integrity issues or failed
bisulfite conversion, a total of 2,841 study participants
had HM450K data available for further quality control
(QC) analyses. We removed poor-quality samples with
pass rate of <99% (i.e., if the sample had at least 1% of
CpG sites with detection P-value > 0.01 or missing),
indicative of lower DNA quality or incomplete bisulfite
conversion, and samples with a possible gender
mismatch based on evaluation of selected CpG sites on
the Y chromosome. Additional details have been
published elsewhere [2 , 3].

Framingham heart study offspring cohort (FHS)

FHS study participants

The FHS Offspring Cohort began enrollment in 1971
and included 5,124 offspring of the FHS original
cohort as well as spouses of the offspring. Participants
were eligible for the current study if they attended the
eighth examination cycle (2005-2008) and consented
to have their DNA used for genetic research. All
participants provided written informed consent at the
time of each examination visit. The study protocol
was approved by the Institutional Review Board at
Boston University Medical Center (Boston, MA). FHS
data are available in dbGaP (accession number:
phs000724.v2.p9).

FHS death ascertainment

Deaths among FHS participants that occurred before
January 1, 2013 were ascertained using multiple
strategies, including routine contact with participants
for health history updates, surveillance at the local
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hospital, obituaries in the local newspaper, and queries
to the National Death Index. Death certificates, hospital
and nursing home records before death, and autopsy
reports were requested. When cause of death was
undeterminable, the next of kin were interviewed. The
date and cause of death were reviewed by an endpoint
panel of three investigators.

FHS DNA methylation quantification

Peripheral blood samples were collected at the 8"
examination. Genomic DNA was extracted from buffy
coats using the Gentra Puregene DNA extraction kit
(Qiagen) and bisulfite converted using the EZ DNA
Methylation kit (Zymo Research). DNA methylation
quantification was conducted in two laboratory batches
using the Illumina Infinium HumanMethylation450
array. Methylation beta values were generated using the
Bioconductor minfi package with  background
correction. Sample exclusion criteria included poor SNP
matching of control positions, missing rate >19%,
outliers from multi-dimensional scaling, and sex
mismatch. In addition, we excluded individuals with
leukemia and those who received chemotherapy.
Additional sample exclusions included those with
mismatches in their reported sex and methylation-
predicted sex as well as methylation-predicted
tissues that were not blood. Lastly, samples with
correlation with our reference population of r < 0.80
were excluded. Predicted sex, tissues, correlation
with reference population, and DNA methylation-
predicted ages were computed using our online age
calculator (http://labs.genetics.ucla.edu/horvath/dnamage).
Background subtraction was applied using the
preprocesslllumina command in the minfi Bioconductor
package [4]. In total, 2,635 samples and 443,304 CpG
probes remained for analysis.

Invecchiare in chianti (INCHIANT]) study

InChianti study participants

The INCHIANTI Study is a population-based
prospective cohort study of residents >20 years old from
two areas in the Chianti region of Tuscany, Italy.
Sampling and data collection procedures have been
described elsewhere [5]. Briefly, 1,326 participants
donated a blood sample at baseline (1998-2000), of
which 784 also donated a blood sample at 9-year
follow-up (2007-2009). DNA methylation was assayed
using the Illumina Infinium HumanMethylation450
platform in DNA samples corresponding to participants
with sufficient DNA at both baseline and Year
9 visits (n = 499). All participants provided written
informed consent to participate in this study. The
study complied with the Declaration of Helsinki.
The Italian National Institute of Research and Care on

Aging Institutional Review Board approved the study
protocol.

InChianti death ascertainment

Vital status was ascertained using data from the
Tuscany Regional Mortality General Registry. Deaths
were assessed until December 1, 2014.

InChianti DNA methylation quantification

Genomic DNA was extracted from buffy coat samples
using an AutoGen Flex and quantified on a
Nanodrop1000 spectrophotometer before bisulfite
conversion. Genomic DNA was bisulfite converted using
the Zymo EZ-96 DNA Methylation Kit (Zymo Research)
per the manufacturer’s protocol. CpG methylation status
of 485, 577 CpG sites was determined using the Illumina
Infinium HumanMethylation450 BeadChip per the
manufacturer’s protocol, as previously described [6].
Initial data analysis was performed using GenomeStudio
2011.1 (Model M Version 1.9.0, Illumina Inc.).
Threshold call rate for inclusion of samples was 95%.
Quality control of sample handling included comparison
of clinically reported sex versus sex of the same samples
determined by analysis of methylation levels of CpG sites
on the X chromosome [6]. Background subtraction was
applied using the preprocesslllumina command in the
minfi Bioconductor package [4].

Cooperative health research in the region of
augsburg (KORA) F4 cohort

KORA cohort description

The KORA study is an independent population-based
cohort from Augsburg, Southern Germany. Whole
blood samples of the KORA F4 survey (examination
2006-2008), a seven-year follow-up study of the
KORA S4 cohort, were used. Out of 4,621 participants
for the KORA S4 baseline study, 3,080 participants
participated in the KORA F4 follow-up study [7].
Participants provided written informed consent, and
the study was approved by the local ethics committee
(Bayerische Landesarztekammer). For 1,799 subjects,
methylation data as well as information about
death ascertainment was available. Before analyses,
all individuals with a detection P-value > 0.05 for >1%
of probes were removed (375 individuals). Sex
checks performed during calculation of DNAmMAge
resulted in the removal of another 167 individuals, 137
of whom had an “unsure” gender. This left 1,257
individuals for analysis. At the KORA F4 follow-up
examination, all individuals completed questionnaires
and physical examinations conducted by trained
staff covering demographics, lifestyle, and medical
history since the KORA S4 examination. Collected
information included age, sex, years of education,
smoking status (current regular, current irregular,
former, never), pack-years, alcohol consumption
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(g/day), physical activity (active, inactive), diabetes
status, hypertension status, self-reported cancer
diagnosis, and body mass index (BMI), among other
clinical variables [7].

KORA mortality ascertainment

The vital status of all F4 participants was ascertained
through the population registries inside and outside
the study area in 2011 (cut-off date: December 31,
2011). Record linkage was based on name, sex, date of
birth, and address. If the person died, the time and
location of death was assessed via population
registries, and a copy of the death certificate was
obtained from the Regional Health Department. If the
person moved out of the study area, time of the move
and information on the new address was typically
available. Vital status could not be assessed for those
who had moved to a foreign country or to an unknown
location in the country. Causes of death were ICD-9
revision coded. There were a total of 42 deaths,
including 16 from cardiovascular disease and 17 from
cancer.

KORA DNA methylation measures

Whole blood was drawn into serum gel tubes. We
bisulfite-converted 1 pg of genomic DNA using the EZ-
96 DNA Methylation Kit (Zymo Research) according to
the manufacturer’s procedure, with the alternative
incubation conditions recommended when using the
lllumina Infinium Methylation Assay. Genome-wide
DNA methylation was analyzed in 1,799 subjects using
the Hllumina Infinium HumanMethylation450 BeadChip
Array. Raw methylation data were extracted using the
lllumina Genome Studio (version 2011.1) with the
methylation module (version 1.9.0). Preprocessing was
performed with R (version 3.0.1). Probes with signals
from less than three functional beads and probes with a
detection P-value > 0.01 were defined as low-
confidence probes. Probes that covered SNPs (MAF in
Europeans > 5%) were excluded from the data set. A
color bias adjustment was performed with the R
package lumi (version 2.12.0) by smooth quantile
normalization and background correction based on
negative control probes present on the Infinium
HumanMethylation BeadChip. This was performed
separately for the two-color channels and chips. f-
values corresponding to low-confidence probes were set
to missing. A 95% call rate threshold was applied on
samples and CpG sites. Beta-mixture quantile
normalization (BMIQ) was applied by using the R
package wateRmelon, version 1.0.3. Plate and batch
effects were investigated by principle component
analysis and eigenR2 analysis, because KORA F4
samples were processed on 20 96-well plates across
nine different batches.

Probes with a detection P > 0.05 for > 1% of samples
were removed as well as all “ch” and “rs” probes,
leaving a total of 431, 217 probes for analysis. Although
raw beta values were used in Dr. Horvath’s online
calculator to determine cell counts, normalized data was

used for the final analyses.

To reduce non-biological variability between
observations, data were normalized using quantile
normalization on raw signal intensities. Precisely,
quantile normalization was stratified to six probe
categories based on probe type and color channel (i.e.,
Infinium | signals from beads targeting methylated CpG
sites obtained through red and green color channels,
Infinium 1| signals from beads targeting unmethylated
CpG sites obtained through red and green color
channels, and Infinium Il signals obtained through red
and green color channels [8]) using the R package
limma, version 3.16.5 [9]. Further, to correct the shift in
the distribution of methylation values observed for the
two different assay designs (Infinium I and Infinium I1)
on the BeadChip, BMIQ was applied [10] using the R
package wateRmelon, version 1.0.3 [11].

Lothian birth cohorts of 1921 and 1936 (LBC1921
and LBC1936)

LBC cohort description

LBC1921 and LBC1936 are two longitudinal studies of
aging [12, 13] that derive from the Scottish Mental
Surveys of 1932 and 1947, respectively, when nearly
all 11-year-old children in Scotland completed a
test of general cognitive ability [14]. Survivors living in
the Lothian area of Scotland were recruited in late-life
at a mean age of 79 years for LBC1921 (n = 550)
and mean age of 70 years for LBC1936 (n = 1,091).
Follow-up took place at ages 70, 73, and 76 years in
LBC1936 and ages 79, 83, 87, and 90 years in
LBC1921. Collected data include genetic information,
longitudinal epigenetic information, longitudinal brain
imaging (LBC1936), numerous blood biomarkers, and
anthropomorphic and lifestyle measures. Post-QC,
DNA methylation data were available for 920 LBC1936
participants at age 70 years and for 446 LBC1921
participants at age 79 years. At each in-person visit,
participants  completed questionnaires  regarding
demography, lifestyle, and medical history. They
reported chronological age, years of education, smoking
status (never, former, current), pack-years consumption
(continuous), alcohol consumption (light, moderate, and
heavy drinkers), self-reported type 2 diabetes, cancer,
and hypertension. BMI was computed from
anthropometric measures. Participants were asked to
remove their shoes before a SECA stadiometer was
used to assess height in centimeters. Weight (after
removing shoes and outer clothing) was measured in
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kilograms using a digital readout from electronic SECA
scales.

LBC mortality ascertainment

For both LBC1921 and LBC1936, mortality status was
obtained via data linkage from the National Health
Service Central Register, provided by the General
Register Office for Scotland (now National Records of
Scotland). Participant deaths and cause of death are
routinely flagged to the research team about every 12
weeks. The last update available for the current project
was 26th November 2014,

LBC DNA methylation measures

Detailed information about collection and QC steps on
LBC methylation data have been reported previously
[12, 15]. Briefly, the IHlumina  Infinium
HumanMethylation450 BeadChip was used to measure
DNA methylation in whole blood of consenting
participants. Background correction was performed, and
QC was used to remove probes with a low detection
rate, low quality (manual inspection), and low call rate
as well as samples with a poor match between
genotypes and SNP control probes or incorrect
predicted sex. Additional QC was performed to remove
samples and probes in which >1% of probes or samples,
respectively, had a detection P > 0.05. The working set
included 442,227 CpG probes.

Normative aging study (NAS)

NAS cohort description

The ongoing longitudinal US Department of Veterans
Affairs NAS was established in 1963 and included men
21-80 years old and free of known chronic medical
conditions at entry [16]. Participants were invited to
medical examinations every three to five years. At each
visit, men provided information on medical history,
lifestyle, and demographic factors and underwent
physical examinations and laboratory tests. DNA
samples were collected from 675 active participants
between 1999-2007 [16]. We excluded participants
who were non-white or who reported leukemia at the
time of DNA extraction, leaving a total of 646
individuals with a single observation each. Participants
provided written informed consent at each visit. The
NAS study was approved by the institutional review
boards of participating institutions. At each in-person
visit, participants completed questionnaires regarding
demography, lifestyle, and medical history. They
reported chronological age, years of education, smoking
status (never, former, current), pack-years consumption
(continuous), alcohol consumption (<2, >2 drinks/day),
physical activity (<12, 12-30, >30 metabolic equivalent
hours [MET-h] per week), type 2 diabetes (self-reported
diagnosis and/or use of diabetes medications), diagnosis
of CHD (validated on medical records, ECG, and

physician exams), diagnosis of malignant cancer in the
five years prior the visit (diagnosed with ICD-9 code).
High blood pressure was defined as antihypertensive
medication use, systolic blood pressure >140 mmHg, or
diastolic blood pressure >90 mmHg at study visit. BMI
was computed from anthropometric measures,
performed with participants in undershorts and
socks [17].

NAS mortality ascertainment

Official death certificates were obtained for decedents
from the appropriate state health departments and were
reviewed by a physician. An experienced research nurse
coded the cause of death using ICD-9. Both participant
deaths and causes of death were routinely updated by
the research team, and the last update available was
December 31, 2013 [12].

NAS DNA methylation measures

DNA was extracted from buffy coats using the QlAamp
DNA Blood Kit (Qiagen). We used 500 ng of DNA for
bisulfite conversion using the EZ-96 DNA Methylation
Kit (Zymo Research). To reduce chip and plate effects,
we used a two-stage age-stratified algorithm to
randomize samples and ensure similar age distributions
across chips and plates; 12 samples that were sampled
across all age quartiles were randomized to each chip,
and then chips were randomized to plates (8
chips/plate).

QC analysis was performed to remove samples and
probes, where >1% of probes or samples, respectively,
had a detection P > 0.05. Remaining samples were
preprocessed using the Illumina-type background
correction [18] and normalized with dye-bias [19] and
BMIQ [20] adjustments, which were used to generate
beta methylation values. The working set included 477,
928 CpG probes. DNA methylation age was computed
using the Horvath calculator from background-corrected
methylation data, and QC analysis was performed only
on samples, leaving 485, 512 CpG and CpH probes in
the working set.

TwinsUK

TwinsUK study participants

The TwinsUK cohort was established in 1992 and
recruited both monozygotic and dizygotic same-sex
twins in the United Kingdom. The majority of
participants are female, Caucasian, and mostly disease-
free at time of ascertainment. There are >13, 000 twin
participants in the cohort, of which 805 were included
in the current study. Whole blood samples were
collected during participants’ clinical visits, along with
questionnaire data on phenotype and lifestyle factors.
All subjects provided written informed consent [21].
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Information on physical activity, smoking pack-years,
plate number, and chip position number were not
available for subjects in the TwinsUK dataset and
therefore were not adjusted as covariates in all analyses.

TwinsUK death ascertainment

Mortality data were collected using two approaches: 1)
during routine contact for standard clinical visits in
TwinsUK, and 2) using queries to the National Death
Register. Date and cause of death were recorded.

TwinsUK DNA methylation quantification

DNA samples were extracted from whole blood using
the DNeasy kit (Qiagen). DNA was bisulfite converted
using the EZ DNA methylation kit (Zymo Research).
Methylation levels were profiled using the Illumina
Infinium HumanMethylation450 array, and methylation
betas were generated using the R package minfi with
background correction. Raw beta levels were subjected
to BMIQ dilation to correct for technical effects. Probe
exclusion criteria included probes that mapped to
multiple locations in the reference sequence and probes
in which >1% of subjects had detection P > 0.05.
Individuals with >5% missing probes, with mismatched
sex, and with mismatched genotypes were also excluded.
Methylation-predicted sex, methylation-predicted
blood cell types, correlations with the reference
population, and DNA methylation-predicted age were
computed using the online epigenetic age calculator
(http://labs.genetics.ucla.edu/horvath/dnamage).

Women’s health initiative-broad agency
announcement 23 (WHI-BAA23)

WHI-BAA23 cohort description

Subjects included a subsample of participants of the
WHI study, a national study that began in 1993 and
enrolled postmenopausal women 50-79 years of age
into one of three randomized clinical trials. Women
were selected from one of two WHI large sub-cohorts
that had previously undergone genome-wide genotyping
as well as profiling for 7 cardiovascular disease-related
biomarkers, including total cholesterol, high-density
lipoprotein, low-density lipoprotein, triglycerides, C-
reactive protein (CRP), creatinine, insulin, and glucose
through two core WHI ancillary studies [22]. The first
cohort is the WHI SNP Health Association Resource
(SHARe) cohort of minorities that includes >8,000
African American (AA) women and >3,500 Hispanic
women. Women were genotyped through the WHI
core study M5-SHARe (www.whi.org/researchers/data/
WHIStudies/StudySites/M5) and underwent biomarker
profiling through WHI Core study W54-SHARe
(...data/WHIStudies/StudySites/W54). The second cohort
consists of a combination of European Americans
(EA) from two hormonal therapy trials selected

for GWAS and biomarkers in core studies W58 (.../
data /WHIStudies/StudySites/W58) and W63 (.../data/
WHIStudies/StudySites/W63). From these two cohorts,
two sample sets were formed. Sample Set 1 is a sample
set of 637 CHD cases and 631 non-CHD cases as of Sept
30, 2010. Sample Set 2 is a non-overlapping sample of
432 cases of CHD and 472 non-CHD cases as of
September 17, 2012. The ethnic groups differed in terms
of age distribution, as Caucasian women tended to be
older. We acknowledge a potential for selection bias
using the above-described sampling scheme in WHI but
suspect that if such bias is present, it is minimal. First,
selection bias is introduced by restricting our methylation
profiling at baseline to women with GWAS and
biomarker data from baseline as well, given the
requirement that these subjects must have signed the
WHI supplemental consent for broad sharing of genetic
data in 2005. However, we believe that selection bias at
this stage is minimized by inclusion of subjects who died
between time of start of the WHI study and time of
supplemental consent in 2005, which excluded only
~6%-8% of all WHI participants. Subjects unable or
unwilling to sign consent in 2005 may not represent a
random subset of all participants who survived to 2005.
Second, some selection bias may also occur if similar
gross differences exist in the characteristics of
participants who consented to be followed in the two
WHI extension studies beginning in 2005 and 2010
compared to non-participants at each stage. We believe
these selection biases, if present, have minimal effects on
our effect estimates. Data are available from this page:
https://www.whi.org/researchers/Stories/June%202015
%20WHI%?20Investigators’%20Datasets%20Released.
aspx, as well as https://www.whi.org/researchers/data/
Documents/WHI1%20Data%20Preparation%20and%20

Use.pdf

WHI-BAA23 death ascertainment

We used the variable "DEATHALL" from form
124/120 that incorporated any report of death (as of
August 2015).

WHI-BAA23 DNA methylation quantification

In brief, bisulfite conversion using the Zymo EZ DNA
Methylation Kit (Zymo Research) as well as subsequent
hybridization of the Illumina HumanMethylation450k
Bead Chip and scanning (iScan, Illumina) were
performed according to the manufacturer’s protocols by
applying standard settings. DNA methylation levels
(B values) were determined by calculating the ratio of
intensities between methylated (signal A) and un-
methylated (signal B) sites. Specifically, p value was
calculated from the intensity of methylated (M
corresponding to signal A) and un-methylated
(U corresponding to signal B) sites, as the ratio of
fluorescent signals B = Max(M,0)/[Max(M,0)+Max
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(U,0)+100]. Thus, B values range from 0 (completely
un-methylated) to 1 (completely methylated).
Women’s health initiative—epigenetic mechanisms
of PM-Mediated CVD risk (WHI-EMPC)

WHI-EMPC cohort description

WHI-EMPC is an ancillary study of epigenetic
mechanisms underlying associations between ambient
particulate matter (PM) air pollution and cardiovascular
disease in the WHI clinical trials (CT) cohort. It is
funded by the National Institute of Environmental
Health Sciences (RO1-ES020836).

The WHI-EMPC study population is a stratified, random
sample of 2,200 WHI CT participants who were
examined in 1993-2001; had available buffy coats, core
analytes, electrocardiograms, and ambient concentrations
of PM; and were not taking anti-arrhythmic medications
at the time.

As such, WHI-EMPC is representative of the larger,
multiethnic WHI CT population from which it was
sampled: 68 132 participants aged 50-79 years who
were randomized to hormone therapy, calcium/vitamin
D supplementation, and/or dietary modification in 40
U.S. clinical centers at baseline exam (1993-1998) and
re-examined in the fasting state one, three, six, and nine
years later [23, 24]. During participant visits, data on
age, race/ethnicity, education, smoking status (current,
former, never), pack-years of smoking, alcohol
consumption (drinks per week), recreational physical
activity  (MET-hours/week),  weight/height/BMI,
systolic and diastolic blood pressure, medication use,
CHD, type 2 diabetes, and cancer diagnosis were
obtained.

Hypertension status was based on systolic blood
pressure >140 mmHg or diastolic blood pressure
>00 mmHg or antihypertensive medication use
(angiotensin converting enzyme inhibitors, angiotensin
Il receptor antagonists, beta blockers, calcium
channel blockers, thiazides). CHD was defined by a
history of myocardial infarction (acute, hospitalized,
definite or probable events supported by cardiac
pain, electrocardiogram, and biomarker data) or
revascularization procedure (coronary artery bypass
graft, percutaneous coronary angioplasty, stent) and
was self-reported at baseline and confirmed by
physician-review, classification, and local/central
adjudication of medical records during follow-up.
Type 2 diabetes was defined by a self-reported
history of physician-treated diabetes, fasting glucose
>126 mg/dL, non-fasting glucose >200 mg/dL,
or anti-diabetic medication use. Cancer was defined by
a diagnosis of any cancer, excluding leukemia
and other hematologic malignancies (Hodgkin’s

lymphoma, non-Hodgkin’s lymphoma, multiple
myeloma).

Current analyses involve information collected at the
first available visit with available DNA methylation
data and stratification by race/ethnicity [European
(WHI-EMPC-EA) and African American (WHI-EMPC-
AA) ancestries].

WHI-EMPC mortality ascertainment

All-cause mortality and sub-classification of the
underlying cause of death to cardiovascular or cancer
mortality were based on WHI physician review of death
certificates, medical records, and autopsy reports.
Cardiovascular disease mortality was defined as death
due to definite or possible CHD, cerebrovascular
disease, or other or unknown cardiovascular disease.
Cancer mortality was defined as death due to any
cancer. Participants affected by leukemia or other
hematologic malignancies (i.e., Hodgkin’s lymphoma,
non-Hodgkin’s lymphoma, multiple myeloma) were
excluded due to known effects on red cell, white cell,
and platelet counts.

WHI-EMPC DNA methylation quantification
Genome-wide DNA methylation at CpG sites was
measured using the Illumina 450K Infinium
Methylation BeadChip, quantitatively represented by
beta (percentage of methylated cytosines over the sum
of methylated and unmethylated cytosines) and quality-
controlled using the following filters: detection P > 0.01
in >10% of samples, detection P > 0.01 or missing in
>1% of probes, and probes with a coefficient of
variation <5%, yielding values of beta at 293171 sites.
DNA methylation data were normalized using BMIQ
[25] and stage-adjusted using ComBat [10]. Modeled
epigenome-wide associations also adjusted for cell
subtype proportions (CD8-T, CD4-T, B cell, natural
killer, monocyte, and granulocyte) [26] and for technical
covariates, including plate, chip, row, and column.
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Supplementary Figure 1. Sensitivity analysis comparing hazard ratios of the fully-adjusted meta-analysis, including all
cohorts, all excluding ARIC, or all excluding WHI-BAA23.
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Supplementary Figure 2. (A) All-cause mortality association of 57 out of 58 CpGs identified with mortality in Zhang et al. (black dots) and
all-cause mortality association of the same CpGs in the pooled meta-analysis (white dots with 95% confidence intervals). (B) Association of
methylation levels of 57 out of 58 CpGs identified with mortality in Zhang et al. and our FDR-significant CpGs in all cohorts.
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Supplementary Figure 3. (A) Methylation quantitative trait loci (meQTL) analysis and (B) expression quantitative quantitative trait
methylation (eQTM) analysis in KORA.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 6, 10, 12, 17.
Supplementary Table 1. Covariates included in the analysis of each cohort (*variables that differ across cohorts due
to type of cutoff used in data collection) SD = standard deviation; CHD = coronary heart disease.

Supplementary Table 2. CpG loci where blood DNA methylation was associated (FDR<0.05) with all-cause mortality
in fixed-effect meta-analysis from the basic model (i.e., age, gender, technical covariates, and white cell subtypes ).

Supplementary Table 3. CpG loci where blood DNA methylation was associated (FDR<0.05) with all-cause mortality
in the fixed-effect meta-analysis from the fully adjusted model.

FDR-

Distance ~ Nearest Gene Relation . Mean_ Bonferroni _significant Methylation
Probe name CHR to nearest gene group toCpG HR®> 95% CI p methylation significance _ in basic level

gene (bp) (10 Mp)? Island level model (MeanzSD)
cg17086398 1 0 SERINC2 Body 1.25 (1.15;1.36) 4.86E-07 0.29 1 0.29+0.06
€g14866069 4 579 BMPR1B 0.66 (0.56;0.78) 4.85E-07 0.85 0.85 +0.05
€g23666362 4 516 MIR1973 TSS1500 0.69 (0.59;0.8) 8.00E-07 0.82 0.81+0.04
€g12619262 7 6276 CHST12 1.26 (1.16;1.37) 1.76E-07 0.75 0.75+0.07
€g20045320 11 116 IFITM3 S Shore 0.85 (0.8;0.9) 4.06E-09 0.54 1 1 0.54 +0.09
cg07677157 12 NA?2 0.79 (0.72;0.86) 2.00E-07 0.16 1 0.18 +0.06
cg07839457 16 435 NLRC5  TSS1500 N_Shore 0.87 (0.84;0.91) 2.40E-09 0.46 1 1 045+0.11
cg09615688 16 NA2 0.53 (0.41;0.68) 9.32E-07 0.91 1 0.90 +0.03
€g18424841 20 NA?2 Island 1.2 (1.13;1.28) 2.80E-08 0.7 1 0.69 £ 0.09

@Nearest gene was far more than 10 Mp.
bEffect estimates represent hazard ratio per 10% increase in DNA methylation. CHR = chromosome; HR = hazard ratio; 95% ClI
= 95% confidence interval; p = p-value; SD = standard deviation.

Supplementary Table 4. Hazard ratios for FDR-significant fully-adjusted CpGs in basic and fully adjusted models CHR
= chromosome; HR = hazard ratio; 95% Cl = 95% confidence interval; p = p-value; SD = standard deviation.

Fully adjusted model Basic model

Probe name  CHR = 2 95% Cl 0 HR 95% ClI 0

cg17086398 1 1.25 (1.15; 1.36) 4.86E-07 1.37 (1.28; 1.47) 5.32E-20
cg14866069 4 0.66 (0.56; 0.78) 4.85E-07 0.84 (0.75; 0.94) 2.21E-03
€g23666362 4 0.69 (0.59; 0.8) 8.04E-07 0.81 (0.72; 0.9) 2.02E-04
912619262 7 1.26 (1.15; 1.38) 1.76E-07 1.13 (1.05; 1.21) 6.77E-04
€g20045320 11 0.85 (0.80; 0.90) 4.06E-09 0.82 (0.78; 0.86) 2.61E-16
cg07677157 12 0.79 (0.72; 0.86) 2.00E-07 0.78 (0.72; 0.84) 1.31E-10
cg07839457 16 0.87 (0.84; 0.91) 2.40E-09 0.88 (0.85; 0.92) 3.40E-11
cg09615688 16 0.53 (0.41; 0.68) 9.32E-07 0.60 (0.51; 0.72) 8.96E-09
€g18424841 20 1.20 (1.13; 1.28) 2.80E-08 1.10 (1.05; 1.15) 2.00E-04
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Supplementary Table 5. Summary of models.

. Basic model Fully adjusted model

Maximum #
Cohorts Model used probes _FDR- _FDR-

considered Lambda significant Lambda  significant

CpGs CpGs

ARIC Cox Regression 406712 2.46 226 1.63 5
FHS Study 1 Cox Regression® 417934 0.94 3 1.04 0
FHS Study 2 Cox Regression® 407580 1.32 17 1.16 1
InChianti Cox Regression 407179 141 0 1.44 0
KORA Cox Regression? 330133 0.96 4 0.94 0
LBC 1921 Cox Regression 393529 1.15 0 1.22 0
LBC 1936 Cox Regression 385450 1.04 0 1 0
NAS Cox Regression 395005 0.86 0 0.9 0
TwinsUK Cox Regression ¢ 426,120 1.02 0 0.98 0
WHI-BAA23 Cox Regression 419176 1.7 14 2.02 1
WHI-EMPC-EA Cox Regressiond 250537 1.23 9 0.93 0
WHI-EMPC-AA Cox Regressiond 218018 0.92 0 1.09 0
All cohorts Fixed effect meta-analysis® 426724 1.12 257 0.94 9

2Cohort used as predictor of residuals from linear regression analysis between each probe and sets of covariates.

bCohort included cluster for family structure.

‘Cohort included random intercepts for zygosity and family structure.

dCohort considered only CpGs with coefficient of variation >5%.

€Analysis of each CpG site included results of at least three cohorts.

Basic model: adjusted for age (categories), gender, technical variables, white blood cell count.

Fully adjusted model: adjusted for age (categories), gender, technical variables, white blood cell count, education level,
physical activity, smoking status, smoking consumption (packyears), body mass index (categories), alcohol consumption, prior
coronary heart disease (y/n), diabetes (y/n), hypertension (y/n), cancer (y/n).

Supplementary Table 6. I measure of heterogeneity from random-effect meta-analysis in each FDR-significant basic-
adjusted CpG.

Supplementary Table 7. I> measure of heterogeneity from random-effect meta-analysis in each FDR-significant fully-
adjusted CpG.

i Nearest gene i
Probe name CHR Dlsta;é:rt]eet?brsarest (10 Mg)a Gene group Esgt;;gr:g 12
cg17086398 1 0 SERINC2 Body 0.02
€g14866069 4 579 BMPR1B 0
€g23666362 4 516 MIR1973 TSS1500 0.01
€g12619262 7 6276 CHST12 0.01
€g20045320 11 116 IFITM3 S_Shore 53.53
cg07677157 12 NA?2 0
cg07839457 16 435 NLRC5 TSS1500 N_Shore 0
cg09615688 16 NA?2 29.9
€g18424841 20 NA?2 Island 2.65

2Nearest gene was far more than 10 Mp.
PEffect estimates represent hazard ratio per 10% increase in DNA methylation.
CHR = chromosome; HR = hazard ratio; 95% Cl = 95% confidence interval; p = p-value; SD = standard deviation.
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Supplementary Table 8. FDR-significant fully-adjusted CpGs in fixed effect meta-analysis with exclusion of ARIC.

Distance to Nearest gene Relation to Mean DNA

Probename CHR  nearest gene . Genegroup . HR 95% CI p methylation
(bp) (10 Mp) CpG island level
€g17086398 1 0 SERINC2 Body 1.25 (1.11;1.41) 3.80E-04 0.29
€g14866069 4 579 BMPR1B 0.65 (0.52;0.8) 6.86E-05 0.84
€g23666362 4 516 MIR1973 TSS1500 0.74 (0.62;0.89) 1.35E-03 0.8
€g12619262 7 6276 CHST12 1.27 (1.12;1.45) 3.31E-04 0.74
€g20045320 11 116 IFITM3 S_Shore 0.88 (0.82;0.95) 8.76E-04 0.54
cg07677157 12 NA? 0.76 (0.66;0.87) 4.78E-05 0.19
cg07839457 16 435 NLRC5 TSS1500 N_Shore 0.86 (0.81;0.92) 3.70E-06 0.45
€g09615688 16 NA? 0.53 (0.41;0.68) 9.32E-07 0.89
€g18424841 20 NA?2 Island 1.17 (1.08;1.27) 1.90E-04 0.68

#Nearest gene was far more than 10 Mp.
bEffect estimates represent hazard ratio per 10% increase in DNA methylation.
CHR = chromosome; HR = hazard ratio; 95% Cl = 95% confidence interval; p = p-value; SD = standard deviation.

Supplementary Table 9. FDR-significant fully-adjusted CpGs in fixed effect meta-analysis with exclusion of WHI-
Study 1.

Distance to Nearest gene Relation to Mean DNA
Probe name CHR nearest a Gene group . HR 95% ClI p methylation

gene (bp) (10 Mp) CpG island level
€g17086398 1 0 SERINC2 Body 1.26 (1.15;1.38)  4.30E-07 0.29
€g14866069 4 579 BMPR1B 0.67 (0.56;0.79)  2.23E-06 0.85
€g23666362 4 516 MIR1973 TSS1500 0.68 (0.58;0.79)  1.16E-06 0.81
€g12619262 7 6276 CHST12 1.23 (1.13;1.35)  5.93E-06 0.74
€g20045320 11 116 IFITM3 S_Shore 0.86 (0.81;0.91) 2.94E-07 0.54
cg07677157 12 NA? 0.79 (0.72;0.87) 2.57E-06 0.17
cg07839457 16 435 NLRC5 TSS1500 N_Shore 0.87 (0.84;0.92) 1.30E-08 0.45
€g09615688 16 NA? 0.53 (0.4;0.69)  2.57E-06 0.9
€g18424841 20 NA? Island 1.21 (1.13; 1.3) 1.53E-08 0.69

@Nearest gene was far more than 10 Mp.
bEffect estimates represent hazard ratio per 10% increase in DNA methylation.
CHR = chromosome; HR = hazard ratio; 95% Cl = 95% confidence interval; p = p-value; SD = standard deviation.

Supplementary Table 10. Fixed effects meta-analysis results on incident coronary heart disease from the CHARGE
Consortium.
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Supplementary Table 11. Miettinen’s population attributable factor for NAS, WHI-EMPC-EA, and WHI-EMPC-AA as
well as weighted combination (average).

CpG NAS WHI-EMPC-EA  WHI-EMPC-AA Mean SD
cg17086398 6.47 5.55 3.57 5.20 1.21
€g14866069 -17.20 -6.77 -20.09 -14.69 5.72
€g23666362 -15.19 . . -15.19 0.00
€g12619262 7.33 -1.18 4.27 3.48 3.52
€g20045320 -5.34 -0.67 -1.42 -2.48 2.05
cg07677157 -7.29 -9.43 -27.86 -14.86 9.23
cg07839457 -4.08 -3.07 -3.43 -3.53 0.42
€g09615688 . 1.43 . 1.43 0.00
€g18424841 5.97 3.51 4.91 4.80 1.01

Supplementary Table 12. Standardized betas identifying the linear relationship between FDR-significant fully-
adjusted CpGs and conventional risk factors.

Supplementary Table 13. Standardized betas identifying the linear relationship between FDR-significant fully-
adjusted CpGs and epigenetic aging clock in NAS, after adjusting all conventional risk factors.

cg17086398 914866069 923666362 gl12619262 920045320 cg07677157 cg07839457 Q18424841

Epigenetic age
Est (p) Est (p) Est (p) Est (p) Est (p) Est (p) Est (p) Est (p)

Horvath epigenetic aging clock (years) -0.09(0.1)  0.03(0.51)  0.01(0.78) 0.23(0) -0.27(0) -0.13(0.02) -0.19(0) 0.11(0.03)
Hannum epigenetic aging clock (years)  -0.07(0.24) -0.17(0) -0.14(0.01) 0.36(0) -0.08(0.23)  -0.06(0.34) -0.28(0) 0.18(0)

Weidener epigenetic aging clock (years) 0.02(0.69) -0.03(0.39) -0.01(0.72) 0.08(0.1) -0.07(0.11)  -0.04(0.46) -0.04(0.41) 0.06(0.16)
PhenoAge (years) -0.04(05) -0.11(0.01) -0.11(0.02) 0.02(0.76) -0.27 (0) 0(0.93) -0.19 (0) 0.13 (0.01)
Mortality risk score 0.04 (0.44) -0.22 (0) -0.19 (0) 0.34 (0) -0.19 (0) -049(0) -0.03(0.57) -0.07(0.22)

Est = estimate; p = p-value.

Supplementary Table 14. Association with all-cause mortality and DNA methylation levels at FDR-significant CpGs,
adjusting for epigenetic acceleration ages in the Normative Aging Study (NAS).

Association with

mortality

CpG alone

CpG + DNAmMAge acceleration

CpG + PhenoAge acceleration

CpG

DNAmMAge
acceleration

CpG

PhenoAge
acceleration

HR (95% CI)

HR (95% CI)

HR (95% CI)

HR (95% CI)

HR (95% CI)

cg17086398
€g14866069
€g23666362
€g12619262
€g20045320
cg07677157
cg07839457
cg18424841

1.03 (0.83-1.27)
0.44 (0.30-0.70)
0.80 (0.52-1.23)
1.08 (0.88-1.33)
0.94 (0.81-1.09)
0.70 (0.52-0.94)
0.87 (0.78-0.97)
1.09 (0.94-1.26)

1.02 (0.82-1.27)
0.44 (0.30-0.69)
0.80 (0.52-1.23)
1.09 (0.89-1.34)
0.93 (0.81-1.08)
0.70 (0.52-0.94)
0.86 (0.77-0.96)
1.07 (0.92-1.25)

0.99 (0.97-1.03)
0.99 (0.97-1.02)
1.00 (0.97-1.03)
0.99 (0.97-1.02)
0.99 (0.97-1.02)
0.99 (0.97-1.02)
0.99 (0.97-1.02)
1.00 (0.97-1.02)

1.02 (0.82-1.26)
0.44 (0.28-0.70)
0.78 (0.50-1.20)
1.09 (0.88-1.33)
0.94 (0.82-1.09)
0.70 (0.52-0.94)
0.87 (0.78-0.97)
1.09 (0.94-1.26)

1.01 (0.98-1.03)
1.00 (0.98-1.03)
1.01 (0.99-1.03)
1.01 (0.98-1.03)
1.01 (0.98-1.03)
1.00 (0.98-1.03)
1.01 (0.98-1.03)
1.01 (0.98-1.03)
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Supplementary Table 15. Association with all-cause mortality and DNA methylation levels at FDR-significant CpGs
adjusting for mortality risk score in the Normative Aging Study (NAS).

Association with mortality

CpG alone

CpG + mortality risk score

CpG

Mortality risk score

HR (95% ClI)

HR (95% ClI)

HR (95% ClI)

cg17086398 1.03 (0.83-1.27) 1.12 (0.89-1.41) 1.68 (1.15-2.47)
cg14866069 0.44 (0.30-0.70) 0.45 (0.28-0.74) 1.39 (0.95-2.04)
€g23666362 0.80 (0.52-1.23) 0.87 (0.55-1.36) 1.55 (1.06-2.27)
cg12619262 1.08 (0.88-1.33) 1.01 (0.81 — 1.26) 1.60 (1.08-2.35)
£g20045320 0.94 (0.81-1.09) 0.96 (0.82-1.12) 1.57 (1.08-2.28)
cg07677157 0.70 (0.52-0.94) 0.74 (0.55-1.01) 1.46 (1.00-2.14)
cg07839457 0.87 (0.78-0.97) 0.88 (0.79-0.99) 1.51 (1.05-2.18)
cg18424841 1.09 (0.94-1.26) 1.07 (0.92-1.24) 1.59 (1.10-2.30)

Supplementary Table 16. Enrichment analysis for genes identified in GWAS of death-related factors.

Disease Gene Enrichment p-value Enrichment_FDR
Alcohol dependence SERINC2 0.002 0.004
HDL cholesterol NLRC5 0.022 0.022

p = p-value; FDR = false discovery rate.

Supplementary Table 17. KEGG pathways for FDR-significant CpGs in the basic model.

Supplementary Table 18. Pathways analysis with DAVID.

Gene Official gene name Diseases Disease class p

NLRC5 NLR family CARD
domain containing 5

CARDIOVASCULAR, >0.05
HEMATOLOGICAL,
METABOLIC, RENAL

Chronic renal failure, kidney failure, chronic
coronary disease, erythrocyte count, type 2
diabetes

BMPR1B Bone morphogenetic Alcoholism, attention deficit disorder with CARDIOVASCULAR, >0.05
protein receptor type  hyperactivity, bone mineral density, cleft lip, cleft CHEMDEPENDENCY,
1B palate, hypertension, increased ovulation rate, DEVELOPMENTAL,
juvenile polyposis, obesity, premature ovarian METABOLIC,
failure, polycystic ovarian syndrome, primary OTHER, PSYCH,
ovarian insufficiency, puberty (delayed), puberty REPRODUCTION
(precocious), thrombophilia, tobacco use disorder
CHST12 Carbohydrate Malaria, placenta diseases, pregnancy INFECTION >0.05
sulfotransferase 12 complications, parasitic
IFITM3 Interferon induced Ulcerative colitis IMMUNE >0.05
transmembrane
protein 3
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Supplementary Table 19. Association between fully-adjusted FDR-significant CpGs and SNPs (meQTL analysis) in
KORA.

Fully-adjusted FDR-significant CpGs SNP Est. SE o
Name CHR  Position Name CHR Position

cg09615688 16 80982506 rs8052401 16 80983487 -0.005 0.001 3.81E-08
cg18424841 20 61315444 rs2427380 20 61314740 0.020 0.002 2.27E-16
€g18424841 20 61315444 rs2427381 20 61314785 0.014 0.003 2.50E-08
cg18424841 20 61315444 rs118042746 20 61314972 -0.039 0.007 2.47E-09
cg18424841 20 61315444 rs6010861 20 61315002 0.024 0.003 9.67E-17
cg18424841 20 61315444 rs2427382 20 61315199 0.015 0.002 6.91E-10
cg18424841 20 61315444 rs6062825 20 61315436 0.016 0.003 2.37E-06
cg18424841 20 61315444 rs4809278 20 61315545 0.020 0.002 6.81E-16
cg18424841 20 61315444 rs6122386 20 61316386 0.015 0.002 6.20E-10

CHR = chromosome; Est = estimate; SE = standard error; p = p-value.

Supplementary Table 20. Association between fully-adjusted FDR-significant CpGs and gene expression (eQTM
analysis) in KORA.

Distance to Influenced
Probe name CHR nearest gene  Nearest gene Est SE p FDR
(bp) gene name
cg17086398 1 0 SERINC2 MARCKSL1 -0.75 0.20 1.77E-04  5.92E-03
€g20045320 11 116 IFITM3 IFITM3 -3.45 0.43 3.19E-15 7.48E-13
€g20045320 11 116 IFITM3 IRF7 -0.76 0.17 8.78E-06 4.11E-04
cg07839457 16 435 NLRC5 MT2A -1.48 0.24 7.92E-10 9.27E-08
cg07839457 16 435 NLRC5 MT1E -0.66 0.19 5.17E-04 1.34E-02
cg07839457 16 435 NLRC5 MT1A -1.11 0.20 1.98E-08 1.54E-06
cg07839457 16 435 NLRC5 MT1G -0.25 0.07 6.70E-04 1.57E-02
cg07839457 16 435 NLRC5 MT1IP -0.39 0.10 1.64E-04  5.92E-03
cg07839457 16 435 NLRC5 NLRC5 -0.70 0.15 3.67E-06 2.15E-04

CHR = chromosome; Est = estimate; SE = standard error; p = p-value; FDR = false discovery rate.
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Supplementary Table 21. Causal association between coronary heart disease, kidney function (serum creatinine),
and methylation at FDR-significant CpGs in KORA and ARIES.

(5]

g Methylation locus OR  95% LCI 95% UCI P methQTL cohort N SNPs MR method

&)
cg09615688 1.508 1.0199 2.2297  0.0395 KORA 1 Wald ratio
€g18424841 1.0058  0.9994 1.0122  0.0743 ARIES 1 Wald ratio
€g18424841 0.8506  0.7292 0.9922  0.0944 KORA 7 MR Egger
€g18424841 1.01 0.9218 1.1068  0.8375 KORA 7 Weighted mode
€g18424841 1.0007  0.9399 1.0656  0.9814 KORA 7 Weighted median
cg09615688 0.8816  0.7449 1.0435  0.1429 KORA 1 Wald ratio
€g18424841 1.0014  0.9989 1.0039  0.2771 ARIES 1 Wald ratio
€g18424841 0.9279  0.8297 1.0377  0.4148 KORA 3 MR Egger
€g18424841 0.9903  0.957 1.0246  0.6305 KORA 3 Weighted mode
€g18424841 0.9939  0.9637 1.025 0.6969 KORA 3 Weighted median

Odds ratio (OR), lower 95% confidence interval (LCl), and upper 95% confidence interval (UCI) given per 10% higher
methylation. Associations for coronary heart disease taken from (PMC4589895) and association for serum creatinine taken
from (PMC4735748). Associations for ARIES methQTLs extracted from MR-base (PMC5976434) using middle age estimates
for methQTLs from ARIES cohort (PMC4818469). MR = mendelian randomization; N SNPs = number of SNPs (instruments)
used for the MR analyses; P = p-value.

Supplementary Table 22. Association of neutrophil-lymphocyte ratio (NLR) with all-cause mortality, with and
without adjustment for cell type proportion in Normative Aging Study.

Without adjusting for cell proportions Adjusting for cell proportions

NLR association with mortality

HR (95% CI) p HR (95% CI) p
without any CpG inclusion 1.08 (1.00 - 1.17) 0.04 1.06 (0.92 - 1.21) 0.43
cg17086398 1.08 (1.00 - 1.17) 0.045 1.06 (0.93-1.21) 0.41
cg14866069 1.13(1.05-1.22) 0.002 1.03(0.90 - 1.18) 0.68
€g23666362 1.10(1.02 - 1.19) 0.017 1.04 (0.90 - 1.20) 0.61
€g12619262 1.08 (1.00 - 1.17) 0.042 1.05(0.92 - 1.21) 0.45
€g20045320 1.08 (1.00 - 1.17) 0.042 1.05(0.92 - 1.20) 0.46
cg07677157 1.09 (1.01 - 1.18) 0.034 1.06 (0.93 - 1.21) 0.39
cg07839457 1.07 (0.99 — 1.15) 0.06 1.00 (0.88 — 1.15) 0.97
€g18424841 1.10(1.02 - 1.19) 0.02 1.06 (0.93-1.21) 0.38
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ABSTRACT

Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what
extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we
conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) —
the Framingham Heart Study, the Jackson Heart Study, the Women’s Health Initiative, the Bogalusa Heart
Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our
stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of
three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-
analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly
associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts.
Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian
rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-
methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly

significant relationships between two hallmarks of aging: telomere biology and epigenetic changes.

INTRODUCTION

Telomeres are the (TTAGGG), repeats located at the ends
of each chromosome. Their broad function is to prevent
genomic instability [1]. Telomeres in adult germ cells [2],
bone marrow [3, 4] and embryonic stem cells [5] are
largely maintained by telomerase. After birth, however,
telomeres in somatic cells gradually shorten because of
the repressed activities of telomerase [3—6]. In cultured
cells, when telomeres become critically short, the cell
reaches replicative senescence [1, 7]. Telomere length
(TL) is reported to be shorter in leukocytes of men than
women, but this sex difference may depend on the
measurement method [8]. In their meta-analysis of data
from 36 cohorts with a total of 36,230 participants,
Gardner and colleagues found longer telomeres in women
only for the terminal restriction fragments (TRF) Southern
blot method [8]. By contrast, no sex effect was detected
for the other TL measurement methods including the
widely used quantitative real-time polymerase chain
reaction (qPCR) protocol originally described by
Cawthon [9]. TL is also shorter in leukocytes of
individuals of European ancestry than individuals of
African ancestry [10, 11]. Further, leukocyte telomere
length (LTL) is associated with the two disease categories
that largely define longevity in contemporary humans—
cancer and cardiovascular disease [12—14].

High heritability estimates for LTL have been reported
irrespective of the methods used for measuring LTL;
reported heritability estimates are between 36% and 82%
based on Southern blot [15-18], and between 51% and
76% based on qPCR [19, 20]. Genome-wide association
studies (GWAS) conducted in large observational cohorts
have identified 11 loci associated with LTL [21-24].
A subset of these loci harbor telomere maintenance

genes. These loci, however, explain only a small
proportion of the genetic variance in LTL. Similarly,
relatively little is known about epigenetic changes and
LTL. Here, we focus on the relationship between LTL
and DNA methylation levels in leukocytes. Epigenome-
wide association studies (EWAS) have emerged as a
powerful tool for evaluating genome-wide changes in
DNAm for a given phenotype of interest [25]. Previous
studies have explored the association between DNAm
and LTL [26-28], but these studies were somewhat
limited due to moderate sample sizes or the focus on
specific regions in the genome. Here, we conduct the
largest EWAS of LTL to date in different groups defined
by sex and ethnicity.

RESULTS

Epigenome-wide association study of leukocyte
telomere length

We considered two sets of adjustments for LTL
confounders: 1) partially adjusted LTL for age, sex, and
ethnicity and 2) fully adjusted LTL for age, sex,
ethnicity, and imputed white blood cell counts (CD4+
naive, CD8+ naive and exhausted cytotoxic T cell). We
conducted a large-scale multi-ancestry EWAS of the
partially and fully adjusted LTL using seven cohorts —
the Framingham Heart Study (FHS, n=874), the Jackson
Heart Study (JHS, n=1,637), the Women’s Health
Initiative (WHI, n=818), the Bogalusa Heart Study
(BHS, n=831), the Lothian Birth Cohorts (LBC1921 and
LBC1936, n=403 and n=906, respectively), and the
Longitudinal Study of Aging Danish Twins (LSADT,
n=244). The analysis flow is depicted in Figure 1. We
note that adjustment in this script indicates a mixture of
data stratification and regression adjustment.
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Overall, 8,716 CpG sites were significantly (P<1E-07)
associated with the partially adjusted LTL in the global
meta-analysis. The top four genes with the largest
number of significant CpGs were VARS (16 CpGs),
PRDM16 (15 CpGs), MAGI2 (14 CpGs) and MSI2 (13
CpGs). In the group-specific meta-analyses, we found
87 significant CpGs in men of European ancestry, 14
significant CpGs in men of African ancestry, 298
significant CpGs in women of European ancestry, and

1. Study data - stratification
By sex, ethnicity and batch.

European male
FHS i

African male
European female JHS

African female

African male *

African female
European male
European female

WHI African female BHS

European female

European male - 1921

LBC European female - 1921 LSADT
European male - 1936
European female - 1936

European male
European female

¢

3. EWAS of the partially/fully adjusted LTL

20 significant CpGs in women of African ancestry
(Supplementary File 1).

We identified 823 significant (P<1E-07) CpG sites
associated with the fully adjusted LTL through the global
meta-analysis. Our statistical significance threshold
(1E-07) corresponds to a 5% family-wise error for 450K
array studies [29]. Table 1 presents the top 30 CpGs
among the 823 significant CpGs and groups them by

2. LTL adjustment in each stratum

Partially adjusted LTL : Residuals from a regression of

LTL & age

Fully adjusted LTL : Residuals from a regression of

LTL < age + CD4+naive + CD8+naive +
Exhausted cytotoxic T cell

Computed the LTL-DNAm correlations (biweight midcorrelation) for 441,870 autosomal CpGs.

4. Meta Analyses
Group specific Meta analyses
European male (n=1,389)

African male (n=697)
European female (n=2,095)

African female (n=1,532)

5. Gene enrichment analysis

Global (n=5,713) { = — "=

Global Meta analysis

The Genomic Regions Enrichment of Annotations Tools (GREAT, v3.0)

Used significant CpG sites with global meta P < 1E-07.

6. Summary-data-based Mendelian randomization

SMR software computed the causal effects of selected CpGs on LTL.

bCpG,LTL - bSNP,LTL/ BSNP,CpG

7. Weighted correlation network analysis
Used 30,000 randomly selected CpG sites.

Identified co-methylated modules and associated them with LTL.

YT T

|
*- T T S

Figure 1. Analysis flow chart.
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Table 1. The top 30 most significant CpG sites associated with the fully adjusted LTL.

Meta-Analysis

Relation to UCSC
CpG Gene Chr UCSC RefGene Global meta European African European African

CpG island group Z (P) male Z (P) male Z (P) female Z female Z (P)

n=5,713 n=1,389 n=697 (P) n=2,095 n=1,532

cg08899667 VARS 6 N_Shelf Body -10.1 (4E-24) -5.2(3E-07)  -6.0 (2E-09) -5.1 (4E-07) -4.2 (3E-05)
¢g02980249 VARS 6 N_Shelf Body -8.7 (2E-18)  -5.8(5E-09)  -4.0 (6E-05) -4.8 (2E-06) -3.4 (7E-04)
¢g02597894 VARS 6 N_Shelf Body -8.1 (4E-16)  -4.8 (2E-06)  -4.2 (3E-05) -5.2(2E-07) -2.7 (6E-03)
cg04368724 VARS 6 N_Shelf Body -8.0 (9E-16)  -3.0 (2E-03)  -5.0 (SE-07) -4.2 (3E-05) -4.0 (8E-05)
cg04018738 VARS 6 N_Shelf Body -8.0 (2E-15)  -3.6 (3E-04)  -4.6 (4E-06) -4.4 (1E-05) -3.5(4E-04)
cg24771152 VARS 6 N_Shelf Body -7.8 (6E-15)  -3.8 (2E-04)  -4.3 (2E-05) -4.0 (6E-05) -3.7 (2E-04)
cg20507228 MAN2A2 15 - Body -9.2 (5E-20)  -5.4 (8E-08)  -5.7(2E-08) -3.6 (3E-04) -3.5(4E-04)
cg08972170 C7orf41 7 - Body -9.0 (2E-19)  -3.7 (2E-04)  -4.9 (8E-07) -4.1 (5E-05) -5.4 (7E-08)
cg27343900* ERGICI 5 - Body -8.8 (1IE-18) -6.1 (8E-10)*  -5.1 (3E-07) -4.2 (2E-05) -2.4 (2E-02)
cgl10549018 TLL2 10 - Body -8.6 (1E-17)  -53 (1E-07)  -3.9 (1E-04) -4.5(8E-06) -4.0 (7E-05)
€g26709300* YPEL3 16 ~ N_Shore 1stExon;Body -8.6 (1E-17)  -3.9 (8E-05) -5.4 (6E-08)* -2.4 (2E-02) -4.8 (1E-06)
cg27106909* YPEL3 16 ~ N_Shore  IstExon;5'UTR;5'UTR  -8.5 (2E-17)  -5.6 (2E-08)*  -5.1 (3E-07) -2.5 (1E-02) -3.4 (6E-04)
cgl12798040* XRCC3 14 - Body -8.5(2E-17)  -5.4 (8E-08)* -5.4 (8E-08)* -4.1 (4E-05) -2.2 (2E-02)
cg02194129 XRCC3 14 - Body -8.3 (1E-16) -4.9 (1E-06) -5.0 (5E-07) -4.3 (2E-05) -2.6 (9E-03)
cgl9841423*  ZGPAT;LIMEI ~ 20 S_Shore Body;TSS1500 -8.4 (3E-17)  -5.0 (6E-07)  -5.5 (SE-08)* -3.7 (2E-04) -2.7 (8E-03)
cg02810967 NCAPG;DCAFI6 4 S_Shore Body;TSS1500 8.3 (9E-17) 4.4 (1E-05) 5.4 (9E-08) 4.1 (4E-05) 2.8 (5E-03)
cg19935065 DNTT 10 - TSS1500 -8.1 (4E-16)  -3.5(4E-04)  -4.9 (1E-06) -5.0(5E-07) -3.2(1E-03)
cgl11093760 CILP 15 - S'UTR;1stExon -8.1 (SE-16)  -5.9 (4E-09)  -4.1 (S5E-05) -3.3 (1E-03) -3.1 (2E-03)
cg19097500 NFIA 1 N_Shore TSS1500 -8.1 (6E-16)  -5.4 (7E-08)  -3.7 (2E-04) -3.7 (2E-04) -3.6 (3E-04)
cg09626867 EXOSC7 3 - Body -8.1 (7E-16)  -5.2(2E-07)  -4.1 BE-05) -4.5(6E-06) -2.8 (5E-03)
cg04509882 EIF4G1 3 - Body;1stExon;5'UTR ~ -8.1 (8E-16)  -5.5 (4E-08)  -4.3 (2E-05) -3.3 (1E-03) -3.1 (2E-03)
cg23661483 ILVBL 19 S_Shelf Body -8.0 (9E-16)  -3.7 (2E-04)  -4.3 (2E-05) -5.4 (7E-08) -3.3 (1E-03)
cg01012082 NCOA2 8 - 3'UTR -8.0 (1E-15)  -4.7 (3E-06)  -4.0 (7E-05) -4.4 (1E-05) -3.4 (8E-04)
cg21461082 PRMT?2 21 Island Body 8.0 (2E-15) 2.9 (4E-03) 4.4 (9E-06) 4.5 (6E-06) 4.4 (1E-05)
€g25921609 MYHI0 17 N_Shore Body -7.9 3E-15)  -52 (3E-07)  -3.6 (3E-04) -4.5(6E-06) -3.1 (2E-03)
cg24420089* PTDSS2 11 N_Shore Body -7.8 (8E-15)  -3.4(7E-04) -5.8 (7E-09)* -2.3 (2E-02) -3.5 (5E-04)
cg07414525 CHLI 3 - Body -7.8 (9E-15)  -3.5(4E-04)  -3.0(3E-03) -3.5(5E-04) -5.8 (6E-09)
cgl14817906 CNNM4 2 - Body -7.7(1E-14)  -4.4 (1E-05)  -4.1 (4E-05) -3.9 (8E-05) -3.2(1E-03)
cg04860432* PTGER?2 14 S_Shore Body -7.7 (2E-14)  -5.8 (7E-09)*  -4.3 (1E-05) -2.3 (2E-02) -2.7 (7E-03)
cg23570810 IFITM1 11 N_Shore Body 7.7 (2E-14) 4.2 (3E-05) 4.2 (2E-05) 4.2 (2E-05) 3.0 (2E-03)

* The CpGs were more strongly associated with LTL in one or two sex and ethnicity specific groups than in the rest of the

groups.

their annotated gene names. Among the top 30 CpGs, six
were in VARS, two were in YPEL2 and two were in
XRCC3. The CpGs highlighted by an asterisk in Table 1
were more strongly associated with LTL in one or two
sex and ethnicity-specific groups than in the rest of the
groups. Specifically, the LTL-DNAm correlations at
¢g27343900 (in ERGICI) and cgl2798040 (in XRCC3)
were stronger in men of European ancestry than in
women of African ancestry. The LTL-DNAm correlation

at cg27106909 near YPEL3 was stronger in men of
European ancestry than in women of European ancestry.

Figure 2 displays regional test statistics of LTL-associated
CpGs on top of the local DNAm correlation structure for
the top four genes listed in Table 1. VARS showed a
cluster of CpGs above and right below the threshold of
significance, while MAN2A42, C7orf41 (current name,
MTURN) and ERGICI had one or two significant CpGs.
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The clusters detected in VARS might be because of the
high probe density on the array and the strong inter-CpG
correlations.

The group-specific meta-analyses also detected several
significant (P<1E-07) CpGs associated with the fully
adjusted LTL. Figure 3 shows that 25 CpGs were
significant in men of European ancestry, three CpGs in
men of African ancestry, 19 CpGs in women of European
ancestry, and four CpGs in women of African ancestry.
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Figure 4 displays scatter plots across the four group-
specific meta-analyses. The correlation coefficient of
each scatter plot was lowest between African American
females and European males (r=-0.02) and highest
between European females and European males (r=0.40).
Population and sample size differences between strata
may influence the correlations. The black dots in the
panels refer to the top 30 CpG sites detected through the
global meta-analysis. Across the 30 CpGs, we did
observe high correlations (1=0.92).
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Figure 2. Regional Manhattan plots and inter-CpG correlations for the top four genes identified in the global meta-analysis.

(A) VARS; (B) MAN2AZ2; (C) C7orf41 (MTURN); (D) ERGICI.
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Functional enrichment analysis of LTL-associated
CpG sites

To infer the biological meaning underlying LTL-
associated CpG sites, the Genomic Regions Enrichment
of Annotations Tool (GREAT) was used to associate
differentially methylated probes (DMPs) with nearby
genes of known pathway annotations. We performed
both a gene-based and a region-based enrichment
analysis for (1) all DMPs (n=850), (2) hypermethylated
probes (n=95), and (3) hypomethylated probes (n=755).

Analyzing all DMPs, we found 11 biological
annotations to be significantly enriched with both the
gene-based as well as the region-based test
(Supplementary File 2, Figure S1, Table S1). Of these,
five annotations showed a region-fold enrichment > 1.5;
the circadian clock (3.9x), blood coagulation (1.9x),
hemostasis (1.9x), wound healing (1.8x), and response
to wounding (1.7x). Other annotations also related to
circadian rhythm, blood coagulation and wound healing,

VARS
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further  strengthening the main  observations

(Supplementary File 2, Tables S1, S2).

Next, analyzing hypomethylated probes only, we found
that CpGs negatively correlated with LTL mainly explain
the above-mentioned functional enrichment. In contrast,
hypermethylated probes led to less significant enrichment
p values, a finding likely due to the lower number of CpGs
(Supplementary File 3). We observed an enrichment of
genes involved in mitogen-activated protein kinase
phosphatase  activity and  immune  regulation
(Supplementary File 2, Figure S1). As part of a
robustness/sensitivity analysis, we repeated the enrichment
study after excluding CpGs with single-nucleotide
polymorphisms (SNPs) in the extension base (global minor
allele frequency > 1%) or probes prone to mapping to
multiple regions in the genome. Across overlapping
annotations (n=1,590), we found high concordance with
our initial findings (r=0.97, P<2.2E-16), indicating that our
results are highly robust against potentially faulty probes.
Details can be found in Supplementary File 3.
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DNA methylation in subtelomeric regions

We observed a higher proportion of the positive LTL-
DNAm correlations in subtelomeric regions than in non-
subtelomeric regions when we focused on the 823
significant CpGs that were associated with the fully
adjusted LTL. The proportion of the positive LTL-
DNAm correlations was 17.1% in the subtelomeric
regions and 9.9% in the non-subtelomeric bodies (Chi-
squared test, P=0.01; Supplementary File 2, Table S3).
The subtelomeric regions were defined as each
chromosome’s head and tail, each of which was 5% of
each chromosome’s length. However, this approach may
not be optimal for the following reasons: 1) the inter-
CpG correlations may differ between the non-
subtelomeric and subtelomeric regions; 2) one cannot
clearly dichotomize genomic loci into non-subtelomeric
and subtelomeric regions; and 3) the LTL measurements
were not chromosome-specific but averaged across all
chromosomes.
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Summary-data-based Mendelian randomization

We calculated the causal effects of the 823 CpGs
(significantly associated with the fully adjusted
LTL) on LTL using summary-data-based Mendelian
randomization (SMR) [30] and found that 16 CpGs
had a significant (P<0.05) causal effect on LTL
(Supplementary File 2, Table S5). The causal effect of
cg00622799 near RTELI led to the lowest p-value (P=
6E-4) among the 823 CpGs when SNP 1s909334 was
used as an instrumental variable. A non-significant p-
value (P=0.21) for the test for heterogeneity in
independence instruments (HEIDI) is desirable because it
indicates that rs909334 (instrumental variable) is the only
SNP that influences LTL through the DNAm level at
¢g00622799. A GWAS of LTL [21] and cis methylation
quantitative trait locus (cis-mQTL, a reduced GWAS of
DNAm) [31] were used to obtain the SMR causal effects
(betas), p-values and HEIDI p-values. The SMR p-value
identifies possible methylation sites via which genetic
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Figure 4. Scatter plots between the group-specific meta-Z scores. (A) European male vs African male; (B) European male vs European
female; (C) European male vs African female; (D) African male vs European female; (E) African male vs African female; (F) African female vs
European female; The black dots in the panels refer to the top 30 CpG sites detected by the global meta-analysis, whereas the grey dots
indicate the remaining CpG sites. Pearson correlation coefficients (red font) reveal strong agreement (r=0.4) between males and females of

European ancestry.
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variants (SNPs) might be influencing LTL. The HEIDI p-
value then indicates the evidence that there is (1) a single
causal SNP whose effect on LTL is mediated through the
methylation CpG site (HEIDI P>0.05) or (2) different
SNPs linked to the methylation level and LTL (HEIDI
P<0.05).

Additionally, we examined whether the 823 CpGs
overlapped significantly with 54,942 known cis-
methylation QTLs. Strikingly, a highly significant
number of CpGs (188 CpGs out of 823 CpGs) were
known cis-mQTLs (hypergeometric test P= 1.02E-16).
To carry out this overlap analysis, we retrieved 188 SNPs
each of which corresponded to the 188 CpGs from the
cissmQTL summary statistics. Next, we looked up each
of the 188 SNPs in the most recent GWAS catalogue
database (v1.02, https://www.ebi.ac.uk/gwas/docs/file-
downloads). 22 SNPs were associated with complex
traits (Supplementary File 2, Table S6). Among these 22
SNPs, 152540949 in CEP68 was associated with atrial
fibrillation, and rs17708984 in TPM4 (GWAS P=6E-16)
was associated with platelet count (Supplementary File 2,
Table S6). Platelet count is related to blood coagulation
and wound healing, which were identified through the
functional gene enrichment analysis of the LTL-
associated CpGs described above.

Weighted correlation network analysis (WGCNA)

Weighted correlation network analysis (WGCNA)
identified four important co-methylated modules (labeled
black, red, ivory and yellow in Figure 5) using FHS, JHS
and WHI (n=3,329). Hypermethylation in the black
module was associated with increased age, shortened
LTL, decreased CD8+ naive T cell counts, and
increased exhausted cytotoxic T cell counts, whereas
hypermethylation in the red module showed opposite
correlations. Elevated methylation levels in the yellow
module were correlated with longer LTL and higher
CD8+ naive T cell counts. The ivory module had a
pattern similar to the one in the black module. None of
the modules revealed any strong correlation with the fully
adjusted LTL, which is not surprising as this measure of
LTL is adjusted for age and white blood cell type
composition. The relationships between co-methylated
module representatives and traits of interest (LTL, the
partially adjusted LTL, fully adjusted LTL, age, and
white blood cell counts) are displayed in Figure 6.

DISCUSSION

This multi-ethnic EWAS of LTL is the largest to date
and revealed strong associations between LTL and
DNAm levels in all groups defined by sex and
ancestry. Our stratified analysis showed that the
EWAS findings for women of African ancestry are

distinct from those of three other groups: males of
African ancestry, males and females of European
ancestry. A detailed analysis reveals that this
difference does not reflect differences in sample size,
age distribution, or LTL. We analyzed 1,532 blood
samples from women of African ancestry, 697 from
men of African ancestry, 1,389 from men of European
ancestry, and 2,095 from women of European
ancestry. Although men of African ancestry had the
smallest sample size, their EWAS results were
consistent with those from the two European groups.

Our unadjusted meta-analysis across the groups revealed
profound relationships between TL and global DNA
methylation levels, which largely reflect confounding by
blood cell composition. However, one can observe
genome-wide  significant  relationships  between
methylation levels and LTL even after adjusting for
differences in blood cell composition. In particular, we
report 823 CpGs (close to or within 557 genes) that are
significantly correlated with the fully adjusted LTL.
More than 88 percent (730 CpGs) of these 823 significant
CpG sites exhibit a negative correlation with LTL,
meaning that higher methylation levels are associated
with shorter LTL at these CpG sites.

Among the 823 CpGs, the top 10 CpGs were linked to
seven genes/loci (VARS, MAN2A2, C7orf4l, ERGICI,
TLL2, YPEL3 and XRCC3). VARS encodes the
enzyme Valyl-tRNA synthetase that is critical in
eukaryotic translation [32]. Mutations in VARS cause
neurodevelopmental disorders, such as microcephaly,
cortical dysgenesis, seizures, and progressive cerebral
atrophy [32, 33]. MAN2A2 encodes alpha-mannosidase 2x
that is active in N-glycan biosynthesis [34]. MAN2A42 null
males were largely infertile in mouse studies [35]. C7orf41
(current official name, MTURN), encodes Maturin, a
protein that controls neurogenesis in the early nervous
systems [36]. ERGICI encodes a cycling membrane
protein that contributes to membrane trafficking
and selective cargo transport between intermediate
compartments [37, 38]. TLL2 encodes Tolloid-like protein
2 [39] and is associated with attention-deficit/hyperactivity
disorder [40]. YPEL3 codes for Yippee-like 3, a protein
that suppresses tumor growth, proliferation and metastasis
in several types of cancer [41, 42]. XRCC3 encodes a
RecA/Rad51-related protein that maintains chromosome
stability and repairs DNA damage [43, 44].

Functional enrichment studies demonstrate that the
significant CpG sites were located near genes that play
a role in circadian clock, blood coagulation, and wound
healing, respectively. A rich literature links TL to
circadian rhythm. For example, cellular senescence
impairs circadian rhythmicity both in vitro and in vivo
[45]. Sleep disorders and shorter sleep duration are
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associated with shorter telomeres [46, 47]. Telomerase
and TERT mRNA expression are furthermore under
the control of CLOCK-BMALI1 regulation (a core
component of the circadian clock) and exhibit
endogenous circadian rhythms [48]. CLOCK-deficient
mice display shortened TL and abnormal oscillations of
telomerase activity [48]. Our results are in line with
these findings and support a relationship between LTL
and circadian rhythm.

TL has also been associated with wound healing and
blood coagulation. For example, mice with longer
telomeres show higher wound healing rates of the skin
[49]. Furthermore, exogenous delivery of the human
TERT gene significantly improved wound healing in an
aged rabbit model [50]. In humans, poor wound healing
has been reported in individuals with dyskeratosis
congenita, a rare congenital disorder caused by a defect
in telomere maintenance [51]. While assigning causality
remains a challenge, our findings do provide evidence
that telomere functioning is associated with the circadian
clock, wound healing and blood coagulation through the
DNA methylome in a population-based sample. Future
work is needed to further understand the mechanisms by
which this is regulated and how it impacts human health
and diseases.

Our findings were based on a considerably larger sample
size (n=5,713) than previous studies. Buxton et al. (2014)
used 24 blood and 36 Epstein-Barr virus cell-line samples
of 44 to 45 years old males and identified 65 and 36 TL-
associated gene promoters, respectively [27]. Gadalla et
al. (2012) was based on a sample of 40 cases with
dyskeratosis congenita and 51 controls [28], and the
authors reported a positive correlation between LTL and
methylation at LINE-1 and subtelomeric sites only
among the cases. Bell and colleagues performed an
EWAS of age, TL and other age-related phenotypes
using 172 samples of female twins [26]. Due to the small
sample size, the authors could not find genome-wide
significant associations between DNAm levels and TL.

We adjusted LTL for imputed blood cell composition in
addition to age, sex, and ethnicity, because blood cell
composition confounds the relationship between DNAm
[52, 53] and LTL [54]. Consistent with previous findings,
our WGCNA analyses in Figure 5 also showed that the
black, red, and yellow modules were highly related to
both blood cell counts and LTL. One concern was that
blood cell counts might be causally influenced by DNAm
and LTL (i.e., blood cell counts might be a collider
between DNAm and LTL), which may introduce bias in
LTL-DNAm correlations. Thus, we ran another EWAS
without considering blood cell counts and compared LTL-
DNAm correlations before and after adjustment for blood
cell counts (Supplementary File 1). The correlations listed

in Table 1 became slightly weaker after adjustment for
blood cell counts but remained significant nonetheless.
However, the number of associated CpG sites was greatly
reduced after adjustment for blood cell counts. Cell type
heterogeneity is thus an important variable to consider in
studies of telomere length. Future work should be
extended to cell type-specific analysis as well as to tissues
beyond whole blood.

We did not adjust LTL for cigarette smoking in our main
analyses because smoking had a non-significant effect on
LTL (FHS: P=0.83 for never vs former smoker and
P=0.76 for never vs current smoker; WHI: P=0.20 for
never vs former smoker and P=0.24 for never vs current
smoker), though suggestive associations could be found
in JHS (P=0.08 for never vs former smoker and P=0.02
for never vs current smoker). These results pointing to a
very weak effect of smoking are consistent with those
from Astuti and colleagues [55] who reported that 50 of
84 studies found no association between smoking and
TL, although their meta-analysis concluded that smokers
may have shorter TL. Our sensitivity analyses also
revealed that all the 823 CpGs remained significant
regardless of smoking variables. Our EWAS summary
statistics includes this sensitivity analysis with additional
adjustment for smoking (see the names of columns
starting with “aaa” in Supplementary File 1).

One limitation of our study is that it does not elucidate
the biological pathways or mechanisms linking DNAm
and LTL. In other words, our findings do not explain
whether DNAm shortens or lengthens LTL, or whether
LTL regulates DNAm. Second, we did not include
genotypic information in our analyses. Other studies have
suggested that genomic variants might regulate DNAm
[31] and LTL [21-24, 56]. Third, LTL measurement is
sensitive to the methods used for DNA extraction and
LTL estimation [57]. Fourth, we only used EWAS and
WGCNA to analyze the data. A supervised machine-
learning approach for predicting TL based on DNAm
levels will be described in a separate article [58].

This study represents the largest EWAS analysis of DNA
methylation and LTL to date. We identified over 800
genome-wide significant CpG sites that are located in or
near genes with links to circadian rhythm, blood
coagulation and wound healing. These findings link two
hallmarks of aging: epigenetic changes and telomere
biology.

MATERIALS AND METHODS
Study population

The FHS Offspring Cohort started in 1971 to inaugurate
epidemiological studies of young adults in Framingham,

WWww.aging-us.com 5885

AGING



Massachusetts, USA. The FHS recruited 5,124
individuals and invited them to examinations at the FHS
facilities [59]. The JHS recruited 5,306 African
Americans from 2000 to 2004 in the Jackson metropolitan
area, Mississippi, USA, to investigate risk factors for
cardiovascular disease [60]. Participants provided medical
history, social records and whole-blood samples. The
WHI started in 1992 and enrolled 64,500 postmenopausal
women aged between 50 and 79 years into either clinical
trials or observational studies [61]. Among many sub-
studies, WHI “Broad Agency Award 23” has provided
both blood-based LTL and DNAm array data. The BHS
started in 1972 and has recruited multiple waves of
participants from childhood, adolescence and adulthood
in Louisiana, USA [62]. The LBC1921 and LBC1936 are
longitudinal studies of 550 individuals born in Scotland in
1921 and of 1091 individuals born in Scotland in 1936.
The studies were set up in 1999 and 2004, respectively,
with the aim of studying cognitive aging [63, 64]. The
LSADT was initiated in 1995 and is a cohort-sequential
study of Danish twins aged 70 years or more [65, 66].
Surviving twins were surveyed every second year until
2005. In 1997, whole blood samples were collected from
689 same-sex twins and the present study included all
twin pairs who participated in the 1997 wave and for
whom LTL measurements were available.

The sample size of each cohort used in this study as
follows: FHS (n=874), JHS (n=1,637), WHI (n=818),
BHS (n=831), LBC1921 (n=403), LBC1936 (n=906),
and LSADT (n=244).

Measurement of LTL

LTL was measured by either of two methods: Southern
blot [67] or gPCR [9]. All cohorts used Southern blot,
except for LBC1921 and LBC1936 that used qPCR. LTL
measurement by Southern blot provides the mean of
TRFs, whereas qPCR provides the ratio of telomeric
template to glyceraldehyde 3-phosphate dehydrogenase.
The average inter-assay coefficients of variation were
2.4% in FHS, 2.0% in JHS, 2.0% in WHI, 1.4% in BHS,
5.1% in LBC (LBC1921 and LBC1936 combined), and
2.5% in LSADT. Further details on the measurement of
LTL in each cohort are provided in Supplementary File 2.

Measurement of DNA methylation

DNAm data were generated on either of two different
Illumina array platforms: the Illumina Infinium
HumanMehtylation450 Bead-Chip (Illumina, San Diego,
CA, USA) or the Illumina Infinitum MethylationEPIC
Bead-Chip (Illumina, San Diego, CA, USA). Beta values
were computed, which quantify methylation levels
between 0 and 1, with 0 being unmethylated and 1 being
fully methylated. Further details on normalization and

quality control of the data can be found in Supplementary
File 2.

Statistical analysis

We stratified the seven cohorts (FHS, JHS, WHI, BHS,
LBC1921, LBC1936 and LSADT) by sex, ethnicity and
batch, which resulted in 16 strata (Table 2).

In each of the 16 strata, we applied two sets of
adjustments on LTL using a regression: 1) partially
adjusted for age alone, and 2) fully adjusted for age and
DNAm-based estimated cell type proportions (CD4+
naive, CD8+ naive T cell and exhausted cytotoxic T cell).
In FHS and LSADT, we used a linear mixed model to
regress LTL on the adjusting variable(s) (fixed effect)
and family structure (random effect). In JHS, WHI, BHS,
LBC1921 and LBC1936, an ordinary linear regression
was used. The blood cell type proportions were
estimated using Horvath’s DNAm age calculator
(https://dnamage.genetics.ucla.edu/home),  with  the
exception of LSADT where the blood cell counts were
estimated using Houseman et al. (2012)’s method [68].

The R package for weighted gene co-expression network
analysis (WGCNA; [69]) was used to compute
epigenome-wide biweight midcorrelations between
DNAm levels and adjusted LTL in each of the 16 strata.
The biweight midcorrelation is an attractive method for
computing correlation coefficients because 1) it is more
robust than Pearson correlation and 2) unlike the
Spearman correlation, it preserves the biological signal as
shown in large empirical studies [70]. We focused on
441,870 autosomal probes that were shared between the
450K and the EPIC array. We combined the 16 sets of
EWAS summary statistics into four group-specific or one
global meta summary statistics as described in Figure 1.
Meta Z values and the corresponding p-values were

computed as X Zw/yXw’ and 2(1-®(Z,, ),

where w; is the square root of the sample size in the ith
stratum, respectively.

Genomic Regions Enrichment of Annotations Tools
(GREAT, v3.0) was used to predict the biological
function of DMPs by associating both proximal and distal
genomic CpG sites with their putative target genes [71].
GREAT implements both a gene-based test and a region-
based test using the hypergeometric and binomial test,
respectively, to assess enrichment of genomic regions in
biological annotations. DMPs were uploaded to the
GREAT web portal (http://great.stanford.edu/public/html/)
and analyses were run using the hg19 reference annotation
and the whole genome as background. Genomic regions
were assigned to genes if they are between 5 Kb upstream
and 1 Kb downstream of the TSS, plus up to 1 Mb distal.
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Table 2. Sample size of the 16 strata used in the meta-analyses.

Cohort Stratum Sample size  Mean age (range) Mean LTL? (range) cﬁ‘%‘iiig(f;13
FHS European female 442 57 (33-81) 7.07 (5.51-8.7) -0.29
European male 432 58 (36-82) 6.92 (5.59-8.52) -0.34
JHS African female 1034 56 (23-92) 7.22 (4.93-10.03) -0.39
African male 603 55(22-93) 7.06 (5.12-9.24) -0.45
WHI African female 342 63 (50-80) 7.12 (5.57-9.06) -0.24
European female 476 68 (51-80) 6.77 (5.24-8.49) -0.27
BHS African female 156 44 (30-54) 7.34 (5.35-9.22) -0.08
African male 94 44 (33-49) 7.21 (5.60-9.47) -0.17
European female 315 43 (29-55) 6.82 (5.02-9.17) -0.08
European male 266 43 (28-52) 6.75 (5.27-8.54) -0.18
LBC1921! European female 242 79 (78-80) 3.99 (3.00-4.72) -0.29
European male 161 79 (78-81) 4.26 (3.46-5.31) -0.29
LBC1936! European female 448 70 (68-71) 4.05 (2.69-6.00) 0.01
European male 458 70 (68-71) 4.33 (2.99-7.12) 0.17
LSADT European female 172 79 (73-90) 5.79 (3.94-7.38) -0.25
European male 72 79 (74-87) 5.60 (4.53-6.78) -0.17

L LBC recruited adults living in and around Edinburgh and who were born in 1921 and 1936.
2 In kilobases; LTL measurement in TRF (Southern blot): FHS, JHS, WHI, BHS and LSADT; LTL measurement in T/S (qPCR):

LBC1921 and LBC1936.
3 Pearson correlation coefficients.

Pathway annotations from GO Biological Processes, GO
Cellular Component, GO Molecular Function, MSigDB,
and PANTHER were used to infer the biological
meanings behind the DMPs that were associated with
LTL. GREAT outputs statistics of the gene-based and
region-based tests, which were subsequently adjusted for
multiple testing using the Bonferroni correction.

The SMR executable software (https://cnsgenomics.com/
software/smr/#Download) was used to calculate the
causal effects of the selected CpGs on LTL [30]. The

SMR obtains a causal effect estimate (écpc,m =

l;SN,,’ L //A?SNP’CPG) by dividing the effect of a SNP on LTL

(ZSSNFYLTL) by the effect of a SNP on CpG (/;’SNRCPG).

GWAS of LTL summary data by Codd and colleagues
[21] was downloaded from the European Network for
Genetic and Genomic Epidemiology consortium
(https://downloads.Icbru.le.ac.uk/engage). The mQTL
data by McRae and colleagues [31] were downloaded
from the SMR website (http:/cnsgenomics.com/data/
SMR/LBC BSGS meta.tar.gz).

WGCNA performed a consensus network analysis using
FHS, JHS and WHI. 30,000 randomly selected CpG sites

were used to improve readability (resulting in a single
cluster tree) and offset computational limitations.
WGCNA hierarchically clustered the 30,000 CpGs based
on their similarities. The merging threshold of clusters
(modules) was 0.15. All the statistical analyses were
performed using R version 3.5.1.
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SUPPLEMENTARY MATERIALS

Please browse Full Text version to see the data of
Supplementary Files 1, 2, 3.

Supplementary File 1. Part of summary statistics of
EWAS of adjusted LTL (global meta P<1E-05 with full
adjustment). Each row corresponds to a single CpG site.
The annotations are based on the Human genome 19 (NCBI
37). The remaining columns indicate the biweight
midcorrelations and their corresponding Z-scores, p-values
and sample size. The suffix “a_"” means that LTL was adjusted
for age, sex and ethnicity. The suffix “aa_” means that LTL
was adjusted for age, sex, ethnicity and blood cell counts.

I

The suffix “aaa_” means that LTL was adjusted for age, sex,
ethnicity, blood cell counts and smoking.

Supplementary File 2.Additional analyses for 1)
functional enrichment analysis, 2) the LTL-DNAm
correlation in subtelomeric regions, 3) summary-data-
based Mendelian randomization, 4) sensitivity
analyses, and 5) detailed descriptions of each study
cohort.

Supplementary File 3. GREAT gene enrichment
analyses.
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ABSTRACT

Telomere length (TL) is associated with several aging-related diseases. Here, we present a DNA methylation
estimator of TL (DNAmMTL) based on 140 CpGs. Leukocyte DNAMTL is applicable across the entire age spectrum
and is more strongly associated with age than measured leukocyte TL (LTL) (r ~-0.75 for DNAmMTL versus r ~ -
0.35 for LTL). Leukocyte DNAMTL outperforms LTL in predicting: i) time-to-death (p=2.5E-20), ii) time-to-
coronary heart disease (p=6.6E-5), iii) time-to-congestive heart failure (p=3.5E-6), and iv) association with
smoking history (p=1.21E-17). These associations are further validated in large scale methylation data (n=10k
samples) from the Framingham Heart Study, Women's Health Initiative, Jackson Heart Study, InChianti, Lothian
Birth Cohorts, Twins UK, and Bogalusa Heart Study. Leukocyte DNAMTL is also associated with measures of
physical fitness/functioning (p=0.029), age-at-menopause (p=0.039), dietary variables (omega 3, fish, vegetable
intake), educational attainment (p=3.3E-8) and income (p=3.1E-5). Experiments in cultured somatic cells
show that DNAMTL dynamics reflect in part cell replication rather than TL per se. DNAMTL is not only an
epigenetic biomarker of replicative history of cells, but a useful marker of age-related pathologies that are

associated with it.

INTRODUCTION

Telomeres are repetitive nucleotide sequences at the end
of chromosomes that shorten with replication of somatic
cells. Since the number of cell replication in vivo
increases with age, telomere length (TL) is negatively
correlated with age of proliferating somatic cells. Meta-
analysis of 124 cross-sectional studies and 5 longi-
tudinal studies showed that the correlation between
leukocyte telomere length (LTL) and age ranges
between r=-0.295 and r=-0.338 across adults [1].

TL variation within somatic tissues of the individual is
much smaller than that between individuals. Within the
individual, TL variation across somatic tissues such as
blood, skin, muscle and fat largely reflects their
replicative history prior to adulthood, given that the
rates of TL shortening in these tissues are similar during
adulthood [2]. Shorter LTL is associated with cardio-
vascular disease, psychological stress, and lifespan [3-
10].

Another DNA-based biomarker that changes with age is
methylation of cytosine residues of cytosine-phosphate-
guanine dinucleotides (CpGs). Machine learning-based
analyses of these changes generated algorithms, known
as epigenetic clocks that use specific CpG methylation
levels to estimate age (i.e., DNAm age) [11-14] and/or
physiological age [15-17]. Although both DNAm age

and LTL are associated with chronological age, they
exhibit only weak correlations with each other after
adjusting for age [18-20], suggesting the distinct nature
of their underlying mechanisms.

DNA methylation assays are already highly robust and
ready for biomarker development [21]. By contrast,
despite two decades of population-based telomere
research, the measurement of TL remains challenging
and can be subject to technical confounding factors
including but not limited to different methods of DNA
extraction [22-24]. Furthermore, the terminal restriction
fragments (TRFs), measured by Southern blotting, the
accepted ‘gold standard’ of TL measurements, include
not only the canonical region of telomeres but also the
potentially variable sub-telomeric region [22, 25]. It
would be ideal if the robustness inherent in DNA
methylation analyses can be extended to TL
measurement. Although there are reports of TL-related
DNA methylation changes [26], it was unknown
whether these reflect actual TL or associated biological
features, including health outcomes.

We present here a novel DNAm TL estimator
(DNAmMTL) based on methylation profiles of 140 CpGs.
This epigenetic biomarker was developed by regressing
measured LTL on blood methylation data from n=2,256
individuals (training set). We show that DNAmTL
correlates negatively with age in different tissues and
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cell types and outperforms TRF-based LTL in
predicting mortality and time-to-heart disease, as well
as being associated with smoking history and other age-
related conditions.

We also validated the applicability of DNAmMTL on a
large-scale data set (N=9,345) and uncovered asso-
ciations between age-adjusted DNAmMTL with diet and
clinical biomarkers.

Monitoring cultured cells with or without telomerase
revealed that DNAmTL records cell replication
independently of telomere attrition.

RESULTS

Training and validation data from 3 cohorts

In stage 1 of our project, we evaluated data from
n=3,334 individuals for whom both LTL and Illumina
methylation array data were available. These were from
three different studies: Framingham Heart Study
offspring cohort (FHS, N=878), Women’s Health
Initiative (WHI, N=818) and Jackson Heart Study
cohort (JHS, N=1638, Table 1 and Supplementary Note
1). The same laboratory measured LTL by Southern
blotting of the terminal restriction fragments [25]. DNA
methylation levels were measured in different labs
using the Illumina Infinium methylation array
platform.

An overview of the data sets is found in Table 1. These
US cohorts were comprised of two ethnic groups: 41%
of European ancestry and 59% of African Ancestry. The
age of the individuals ranged from 22 to 93 years. The
training set used for constructing DNAmMTL was
comprised of N=2,256 individuals from the WHI and
JHS cohorts for whom LTL and DNAm data were
assessed from the same blood sample (collected at the
same time). Although fewer than 20% of individuals in
the training set were of European ancestry, our test data
demonstrated that the resulting DNAmMTL estimator
applied equally well to individuals of European
ancestry. We used two test data sets. The first test data
set involved N=1,078 individuals comprised of N=100
from the WHI, N=100 from JHS, and N=878 from the
FHS cohorts. The second test data set was collected in
stage 2 of our analysis: it involved N=9,815 DNA
methylation samples from additional cohorts
(Bogalusa, Twins UK, Lothian Birth cohorts,
InCHIANTI) to evaluate correlations between LTL
and numerous age-related conditions and lifestyle
factors. We also evaluated DNAmTL in publicly-
available data from adipose tissue (N=648 from the
Twins UK study [27, 28]), liver (N=85) [28, 29], and

monocytes (n=1264 from the Multi-Ethnic Study of
Atherosclerosis) [30]. Finally, we tested DNAmMTL in
in vitro studies to ascertain its applicability to cultured
cells and to probe the nature of DNAmMTL’s association
with TL. Additional details of these studies can be
found in Supplementary Notes 1 and 2.

DNAmMTL versus measured TL in blood and adipose
tissue

We restricted the analysis to CpGs that are present on
both the Illumina Infinium 450K array and the
[llumina EPIC methylation array (Methods). Using the
training data (n=2,256), we regressed measured LTL
(mean TRFs) on blood CpG methylations using an
elastic net regression model [31]. This resulted in the
automatic selection of 140 CpGs whose methylation
levels best-predicted LTL (Supplementary Data 1).
The linear regression model allows a direct prediction
of TL based on DNA methylation levels. The predicted
TL value, also referred to as DNAmMTL, possesses the
same units (kilobase) as that of mean TRF. The
correlation coefficient between DNAmMTL and LTL in
the training data was r=0.63, which was overly
optimistic, as subsequent independent validation with
test data sets produced lower correlations of r>0.40
(Figure 1). Further, using 12 large validation data sets,
we found that the correlation between DNAmMTL and
LTL ranged from r=0.38 to r=0.5 (last column of
Table 1) with the exception of the Lothian Birth
cohorts (where it was close to zero). The correlations
between DNAmMTL and LTL were not confounded by
age, as was evident from the high correlations between
age-adjusted DNAmMTL and age-adjusted LTL (e.g.
r=0.34 in FHS and r=0.43 in Bogalusa Herat Study,
Supplementary Figures 1A and 2A). A stratified
analysis showed that the correlation between
DNAmTL and LTL were neither confounded by sex
(Supplementary Figures 1-2B and C) nor ethnicity
(Supplementary Figure 2D and E). The DNAmTL
biomarker was robust against potential effects of pre-
processing steps in the DNAm data analysis as can be
seen from the diverse normalization methods used by
the different cohorts (Table 1). The DNAmTL
measurement was also robust across time as can be
seen with the FHS cohort where the blood samples for
the LTL measurement (FHS exam 6) were collected
9.3 years earlier than those used for the DNAm
measurement (FHS exam 8). This time lag biased the
correlation toward the null hypothesis, i.e. generated a
correlation (r=0.44, Figure 1B) that was overly
conservative. A separate analysis of non-blood tissue
revealed a higher correlation of r=0.65 between
DNAmMTL and TRF-based in adipose tissue samples
from the Twins UK study (Supplementary Figure 3B).
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Table 1. Overview of training and test data.

Telomere length statistics

Array
Data N Female Race Age Normalization LTL DNAmTL Corr
Train
WHI EUR (59%) 66.5 6.9 6.9
BA23 718 100% AFR (41%) (50.2,80.2) GenomeStudio (5.2,9.1) (6.0,7.8) 0.62
56.6 7.1 7.2
JHS 1538 64% AFR (22.2,93.1) Noob [68] (4.9,10) (5.9,8.1) 0.62
Test
57.0 7 6.8
FHS 878 51% EUR (33.0,82.0) Noob [68] (5.5,8.7) (54,8.1) 0.44
WHI EUR (49%) 65.3 6.9 6.9
BA23 100 100% AFR (51%) (51.9,79.8) GenomeStudio (5.6,9) (6.2,7.5) 0.41
53.5 7.2 7.1
JHS 100 55% AFR (22.9,80) Noob [68] (5.6,9) (6.6,7.8) 0.50
Validation analysis
66.4 7.0 6.8
FHS»" 2356 54% EUR (40, 92) (5.5,8.7) (54,8.1) 0.44
EUR (41%) 6.9
WHI? AFR (28%) 65.4 6.9 (6.2,7.5)
BA23 1389 100% HISP (31%) (50.1, 80.2) Noob [68] (5.6,9) 0.41
EUR (56%)
WHI AFR (28%) 62.9 - -- -
EMPC 1972 100% HISP(16%) (49.5, 82.0) BMIQ [57]
59.8 7.2 7.1
JHS? 209 56% AFR (22.9, 84.6) Noob [68] (5.6,9) (6.6,7.8) 0.50
924 72
InChianti® (484) 54% EUR (21, 100) Noob [68] B B B
57.2 3.5 7.0
Twins UK¢ 794 100% EUR (24.0,81.1) BMIQ [57] (1.7, 6.4) (5.6,7.9) 0.38
79.1 4.1 6.6
LBC 1921¢ 436 60% EUR (77.7, 80.6) Noob [68] (1.9,5.3) (5.7,7.4) -0.01
69.6 4.1 6.7
LBC 1936° 906 50% EUR (67.6,71.3) Noob [68] 2.7,7.1) (6.1,7.5) 0.08
EUR (70%) 43.8 6.9 7.0
BHS 831 57% AFR (30%) (28.4, 54.6) watermelon [69] (5.2,9.5) (6.4,7.6) 0.43

AfricanA=African American; EUR=European; HISP=Hispanics; LTL=leukocyte telomere length.

The distributions of Age, LTL, and DNAmMTL are presented in median (range) format.
aThe validation set consists of two groups of individuals: (1) those individuals with TL measures that were included in test process, (2)

those individuals without TL measures.

bThe age distribution was based on exam 8.
‘The statistics are based on the number of 924 observations across 484 individuals.
40f the 794 individuals, 779 were available with LTL measures.
eAll subjects of the Lothian Birth Cohorts were born at roughly the same time (within 1.9 to 3.7 years).

We display characteristics of (1) 3334 study participants in the training and test data sets that were used to develop and validate
DNAMTL, and (2) 9345 participants (9875 blood samples) from 9 cohorts across 7 studies. The participated studies include
Framingham Heart Study (FHS) offspring cohort, Women's Health Initiative (WHI), Jackson Heart Study (JHS), InChianti, Twins UK,
Lothian Birth Cohorts (LBC), and Bogalusa Heart Study (BHS). Leukocyte TL measures were based on terminal restriction fraction
measurement by Southern blotting Southern blotting in FHS, WHI, JHS, and BHS and were based on quantitative real-time polymerase
chain reaction (gPCR) in Twins UK and LBC. The column "Array Normalization" refers to different methods of pre-processing DNA
methylation array data.
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Figure 1. Measured LTL versus DNAMTL in training and test datasets. Scatter plots of DNA methylation-based telomere length
(DNAmMTL, x-axis) versus observed LTL measured by terminal restriction fragmentation (y-axis). DNAmMTL and LTL are in units of kilobase
(kb). (A) Training data. (B) Test data from the Framingham Heart Study. (C) Test data from the Women's Health Initiative (BA23 sub-
study). (D) Test data from the Jackson Heart Study. Each panel reports a Pearson correlation coefficient and correlation test p-value.
Table 1 reports analogous results for additional cohorts (Bogalusa, Twins UK, etc).

DNAmMTL across different blood cell types

To test whether DNAmMTL differs across blood types, we
used sorted blood cells and peripheral blood mononuclear
cells (PBMCs) from 6 men (aged between 27 and 32
years old, Methods). We observed a statistically
significant difference in median DNAmMTL values
(p=0.0033, Supplementary Figure 4) even though they
were roughly comparable: CD8+ T cells (median=8.25),
CD4+ T cells (median=7.64), B cells (median
DNAmTL=7.43), PBMCs (median DNAmTL=7.55).

DNAmMTL versus qPCR TL in the Twins UK study

We obtained leukocyte DNAm data from 792
participants (all women) from the Twins UK study
whose LTL was measured by Southern blotting
(N=346) and/or quantitative polymerase chain reaction
(qPCR, N=779) (Supplementary Note 1). The
correlation between DNAmMTL and qPCR- based LTL
(r=0.39, Supplementary Figure 5A) was similar to that

of LTL measured by Southern blotting (1=0.40,
Supplementary Figure 5B).

DNAmMTL correlates more strongly with age than
TL

Although DNAmMTL was developed based on LTL, it
displayed substantially stronger negative correlations
with age at the time of blood draw (» ~ -0.80 to -0.62)
than did measured LTL, based on our test datasets (» ~ -
0.40 to -0.30, Figure 2). Multivariate regression models
in the test data show that LTL shortened by 0.022
kilobases per year (p=2.3E-27) after adjusting for sex,
race/ethnicity and other confounders (Table 2).
Analogous multivariate regression models showed that
DNAmMTL reduced by 0.018 kilobases per year, but this
was associated with a far more significant p value
(p=6.0E-125) than that of measured LTL (p=2.3E-27).
Although the DNAm-based biomarkers were derived
from profiles of adults (22-93 years old), the resulting
DNAmTL algorithm was equally applicable to profiles
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correlations with age were also seen with DNAmMTL in
adipose tissue (r=-0.41. Supplementary Figure 3A),
liver (r=-0.71, Supplementary Figure 7A), and in

from children; even to those who were younger than 13
years of age, where a strong negative correlation of r=-
0.81 was observed between DNAmMTL of blood and age

(Supplementary Figure 6A). Such expected negative

(sorted) monocytes (r=-0.60, Supplementary Figure 8A).
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Figure 2. Chronological age versus measured LTL and DNAMTL. Chronological age versus measured LTL (panels A, C, E, in
units of kilobase [kb]) and DNAmMTL (panels B, D, F, in units of kb). (A, B) Test data from the FHS. (C, D) Test data from the WHI
(N=100), (E, F) Test data from the JHS (N=100). Each panel reports a Pearson correlation coefficient and correlation test p-value.
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Table 2. Multivariate regression analysis of leukocyte telomere length.

Variable Coefficient (SE) t-statistic P
Outcome: actual LTL (mean TRF)

Intercept 8.43 (0.201) 41.88 2.43E-227
Age -0.022 (0.002) -11.14 2.33E-27
Female 0.132 (0.036) 3.71 2.15E-4
Race: European 0.029 (0.112) 0.26 7.97E-1
smoke: Former 0.132 (0.063) 2.11 3.50E-2
smoke: Never 0.113 (0.062) 1.82 6.95E-2
BMI -0.007 (0.003) -2.15 3.16E-2
JHS 0.005 (0.126) 0.04 9.66E-1
WHI BA23 -0.093 (0.084) -1.10 2.73E-1
Outcome: DNAmTL

Intercept 8.046 (0.069) 116.16 <1.0E-300
Age -0.018 (0.001) -27.32 5.97E-125
Female 0.099 (0.012) 8.14 1.14E-15
Race: European -0.136 (0.039) -3.52 4.57E-4
smoke: Former 0.08 (0.022) 3.72 2.09E-4
smoke: Never 0.096 (0.021) 4.51 7.11E-6
BMI -0.002 (0.001) -2.19 2.91E-2
JHS 0.069 (0.044) 1.59 1.11E-1
WHI BA23 0.049 (0.029) 1.69 9.15E-2

BMI=body mass index; SE=standard error.

In the upper panel, we present results from a multivariate linear regression model analysis of actual LTL
(mean TRF, dependent variable) on different covariates (rows) in the test data set (comprised of 1078
individuals). The model was regressed on age, sex, race/ethnicity, smoking status, and study cohort.
Race/ethnicity is a dichotomized variable (European versus African Ancestry). Smoking status is a three-
category variable: never, former and current smokers (as a reference). Study cohort is a trivariate variable

(FHS, WHI BA23 and JHS cohort).

Effect of sex and ethnicity

Because age would confound any potential relationship
between DNAmMTL and age-related traits such as health,
it would be useful to derive an age-adjusted estimate of
DNAMTL (referred to as DNAmTLadjAge). We
therefore regressed DNAmMTL on age and the resulting
raw residual was defined as DNAmTLadjAge. A
negative value of DNAmTLadjAge would indicate
DNAmMTL that is shorter than expected based on age,
while a positive value would indicate the opposite. We
noted that DNAmTLadjAge is heritable (heritability

h?=0.46, p=4.5E-11) according to a pedigree-based
polygenic model analysis in the FHS cohort (N>2000,
Methods).

Women tend to exhibit longer LTL than men of the
same age [32]. Similarly, our multivariate regression
models revealed that age-adjusted LTL and age-
adjusted DNAmMTL were indeed longer in females than
in males. The p-values for age-adjusted LTL measured
in this study (p=2.15E-4, N=1078) and that of a
previous study [32] (p=5E-3, N ~ 730) were far less
significant than those for age-adjusted DNAmTL
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(p=1.14E-15, Table 2). Roughly, women showed longer
telomere length than men by 0.1 kilobase, given by
DNAm or TRF measures (Table 2). We also found
longer age-adjusted DNAmMTL in female compared to
male liver samples (P=0.017, Supplementary Figure
7C). With regards to ethnicity, age-adjusted DNAmMTL
of PBMCs (Table 2) and monocytes (Supplementary
Figure 8B) revealed that US population of African
ancestry have a longer LTL than those of European
ancestry, consistent with previous observations made
with TRF-based measured TL. Once again, the
association of age-adjusted DNAmMTL (p=1.6E-33, N ~
1200) with ethnicity was stronger than those seen with
age-adjusted LTL measured by TRF (p=1E-4) or
quantitative polymerase chain reaction (p=1E-3, N ~
2450) [33]. Overall, these results demonstrate that
DNAmMTL exhibits substantially more significant
associations with age, sex and ethnicity than measured
LTL.

DNAmTL is often superior to measured LTL in
predicting mortality and health outcomes

Next, we compared the performance  of
DNAmTLadjAge with age-adjusted LTL in predicting
time-to-death or time-to-heart disease in the training
and test datasets (N=3,334) for which both measures
were available (Figure 3). We found that longer
DNAmTLadjAge was significantly associated with a
lower hazard ratio (HR) for time-to-death, all-cause
mortality (HR=0.31 and P=6.7E-9), time-to-coronary
heart disease (CHD, HR=0.55and, p=9.5E-3), and time-
to-congestive heart failure (CHF, HR=0.32and, p=9.7E-
4, Figure 3). In women, later age at menopause was
associated with significantly higher values of
DNAmTLadjAge (p=0.025). Furthermore, physical
activity was also positively associated  with
DNAmTLadjAge (p=0.013).

By comparison, the results from age-adjusted LTLs
(LTLadjAge) were far less significant in predicting
lifespan (HR=0.81 and p=4.7E-3 compared to HR=0.31
and p=6.7E-9 for DNAmMTL, Figure 3A, B) and were
not significantly associated with time-to-CHD, time-to-
CHF, age at menopause and physical activity (p>0.3,
Figure 3).

We want to emphasize that our comparison between
DNAmTLadjAge and LTLadjAge involved the same set
of individuals for whom both measures were available,
i.e. each association test used the same sample size and
distribution in age, sex, and ethnicity. These results
show that DNAmTLadjAge outperforms LTLadjAge
when it comes to predicting important health-related
conditions. However, our comparative analysis was
subject to a limitation: the measures of LTLadjAge and

DNAmTLadjAge in the FHS cohort corresponded to
two different blood samples collected at different time
points. We addressed this limitation in two ways. First,
we repeated the analysis by omitting the FHS data. In
the resulting test data (n=100 samples from the WHI
and n=100 samples from the JHS), DNAmTLadjAge
continued to outperform LTLadjAge (Supplementary
Table 1). Second, we compared DNAmTLadjAge with
LTL in a host of additional cohorts (Bogalusa Heart
Study, Twins UK, Lothian Birth Cohorts) as detailed
below.

Evaluating DNAmTL in large scale validation data

In the second phase of validation, we sought to test
these associations with even larger, independent data
sets. In total, we analyzed N=9,875 Illumina
methylation arrays from blood samples of N=9,345
individuals from 9 cohorts across 7 studies: FHS, WHI
BA23, WHI EMPC, JHS, InChianti, Lothian Birth
Cohorts of 1921 and 1936 (LBC), UK Twins, and
Bogalusa Heart Study (BHS, Table 1, Methods, and
Supplementary Note 1). Of the samples, 4,039
individuals were available with measured LTL
measurements based on Southern blot or quantitative
polymerase chain reaction (qPCR). The data set was
comprised of three different ethnic groups: European
(77%), African (15%), and Hispanic (8%) ancestries.
All but one cohort (BHS) were available for mortality
analysis (N=9,044 methylation arrays on 8,514
individuals) with sufficient follow-up period. The mean
chronological age at the time of the blood draw was
65.6 years and the mean follow-up time (for all-cause
mortality) was 11.8 years (Supplementary Table 2).
Once again, DNAmMTL was negatively correlated with
chronological age in all cohorts with sufficient variation
in chronological age (—0.83 <r < —0.42), in which
we excluded the Lothian Birth Cohort studies
comprising individuals with similar ages
(Supplementary Figure 9).

Further analyses of these data confirmed that higher
values of DNAmTLadjAge were indeed associated with
longer lifespan (Figure 4). Each kilobase increase of
DNAmTLadjAge was associated with a hazard ratio of
0.37 for mortality (p=2.5E-20, Figure 4A), similar to
what we observed in the training and test dataset
(HR=0.31, Figure 3A). Higher values of
DNAmTLadjAge were also associated with longer
time-to-CHD (HR=0.51 and p=6.6E-5) and longer time-
to-CHF (HR=0.27 and p=3.6E-6, Figure 4 D and G),
mirroring yet again the results obtained from the
training and test data sets.

Two types of multivariate Cox regression models de-
monstrated that these associations remained significant
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Figure 3. Comparing measured LTL with DNAmMTL with respect to age-related conditions. Meta-analysis forest plots for
relating age-related conditions (rows) to age-adjusted LTL (left panels) and age-adjusted DNAMTL (right panels). Panels in the first row (A,
B) presents meta-analysis forest plots for Cox regression models of time-to-death. Meta-analysis of Cox regression models for (C, D) time-
to-coronary heart disease (CHD) and (E, F) time-to-congestive heart failure (CHF). Rows in the forest plot correspond to training and test
datasets (used for developing DNAmMTL) stratified by race/ethnicity Each row presents the summary statistic at a (stratified) study dataset
and reports sample size (N), number of events, P value, hazard ratio and a 95% confidence interval resulting from a Cox regression model.
(G, H) Meta-analysis for the association with age at menopause. (I, J) Meta-analysis for the association with self-reported physical activity
status (yes/no). (G-J) Each row (study data set) presents the summary statistic, P value, beta coefficient and a 95% confidence interval
resulting from a linear (mixed) regression model. In general, an insignificant Cochran Q test p-value (denoted by Het. P) is desirable
because it suggests that results do not differ significantly across the strata. However, an insignificant Q test p-value could also reflect lack
of statistical power.
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even after adjusting for (1) blood cell counts (Figure 4
B, E, H), and (2) classical risk factors (Figure 4 C, F, I)
including body mass index, educational level, alcohol
intake, smoking pack-years, prior history of diabetes,
prior history of cancer, and hypertension status.

We went further and evaluated DNAmTLadjAge in
different strata including age (younger/older than 65
years), prevalent clinical conditions at baseline and
found that DNAmTLadjAge remained a significant
predictor of time-to-death in each of these strata
(Supplementary Table 3), e.g. HR=0.26 for individuals
aged < 65 years and HR=0.41 for older individuals aged

years. DNAmTLadjAge also remained a significant
predictor of time-to-CHF in most strata (Supplementary
Table 4) and of time-to-CHD in specific strata such
older age, normal BMI, or higher education attainment
(Supplementary Table 5).

Our analyses revealed that higher DNAmTLadjAge
values were associated with measures of physical
fitness/functioning (P=7.6E-3), and disecase-free status
(p=0.019), while prior history of cancer was associated
with  lower DNAmTLadjAge values (p=0.053,
Supplementary Figure 10). Interestingly, we also found
a nominally significant association (p=0.026) between
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Figure 4. Meta-analysis forest plots for predicting time-to-death due to all-cause mortality and time-to-cardiovascular
disease in independent validation data. Meta-analysis forest plot for combining Cox regression hazard ratios for time-to-death,
time-to-coronary heart disease (CHD), and time-to-congestive heart failure (CHF), based on age-adjusted DNAMTL (DNAmTLadjAge). The
sample sizes for the analysis were up to 9,044 methylation arrays (8,541 individuals) across 8 cohorts. Left panels, middle panels, and
right panels report meta-analysis results for (1) simple Cox regression models, (2) multivariate Cox models adjusted for blood cell counts,
and (3) multivariate Cox model adjusted for traditional risk factors, respectively. Each row reports the hazard ratio associated with
DNAmTLadjAge. (1) The simple Cox models (left panels) were adjusted for chronological age, sex and adjusted for intra-pedigree
correlation and batch effects as needed. (2) The models in the middle panels involved additional covariates: imputed blood cell counts
based on DNA methylation data. (3) The models in the right panels different from those of (1) by additional demographic characteristics,
psychosocial behavior, and clinical covariates (Methods). Each panel reports a meta-analysis forest plot for combining hazard ratios
associated with time to event. Each row presents the summary statistic at a (stratified) study dataset and reports sample size (N), number
of events, hazard ratio and a 95% confidence interval resulting from a Cox regression model. In general, an insignificant Cochran Q test p-

value (denoted by Het. P) is desirable.
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age-at-menopause and DNAmTLadjAge. We found that Life-style factors and clinical biomarkers
one year later age-at-menopause was associated 0.001

kilobase longer LTL (Supplementary Figure 10A). Our To assess the effect of life-style factors and diet on
cross-sectional analyses, however, do not allow DNAmTLadjAge in blood, we meta-analyzed large data
determination of cause-and-effect relationships, but we sets from the FHS and WHI cohort (N up to 6,977,
note that age-at-menopause is also associated with Methods) including their associations with clinical
epigenetic aging [34]. measurements. Age-adjusted DNAmMTL was positively
Meta FHS WHI LBC 1921 LBC 1936
N
Variable data N Bicor P Bicor P Bicor P z P Z P
log2(Total energy) 2 3555 — 2.6E-01 - —  0.00 9.56-01 = = 2.3 2.0E-02
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log2(1+Red meat) 3 5678 - 126-01 001 7.7E01 -0.03 6.8E-02 = - 13 1.9c-01
log2(1+Poultry) 3 5687 ~ 3.4E-01 -0.02 4.4E-01 -0.02 3.5E-01 == = 0.5 6.3£-01
w  log2(1+Fish) 3 5662 ~ 18602 001 7.76-01  0.05 4.7E-03 . — 0.6 5.5E-01
.g log2(1+Dairy) 3 5656 - 7.1E-03  0.06 43E03 0.01 5.0E-01 of 0 13 2.1E-01
log2(1+Whole grains) 2 4952 - 29E-01 002 47601  0.01 4.5E-01 . = = il
log2(1+Nuts) 2 3509 - 1.3E-01 — —~ 003 1.0E-01 — = 0.1 9.1E-01
log2(Fruits) 3 5649 -JBHES8 o002 28801 0.078 = 2 2.8 6.0E-03
log2(Vegetables) 3 5655 ~ 12E-03 003 1.4E-01 0.3 9.76-02 - = 3.3 1.0E-03
log2(Carotene) 1 766 -- 4.5E-03 - -- -- -- -- - 2.8 5.0E-03
log(OMEGA3) 1 2151  0.06 4.0E03 0.06 4.0E-03 = e . = e 5
log(VitaminE) 2 2908 ~ 39601  -0.02 4.4E-01 - = - = 3.0 3.0E-03
» Retinol 2 2798 4.6E-01 = —  -0.02 4.2E-01 > —~  -0.1 9.3E-01
_§ Mean carotenoids 1 2019 0.10_ - - 0.10“ - - -- -
L Lycopene 1 2020 004 9.5E-02 - ~ 004 95E-02 - — - =
£ log2(alpha-Carotene) 1 2020 - - 0.08| 3.9E-04 - - - -
g log2(beta-Carotene) 1 2019 -- -- 0.07 9.5E-04 -- -- -- --
log2(Lutein+Zeaxanthin) 1 2020 0.06 3.5E-03 -- -- 0.06 3.5E-03 -- -- -- --
8 log2(beta-Cryptoxanthin) 1 2020  0.1003:8E06) = ~  0.10/318E06 = = - —
-g log2(alpha-Tocopherol) 1 2020 0.05 3.2E-02 -- -- 0.05 3.2E-02 -- - -- --
log2(gamma-Tocopherol) 1 2020 -0.06 1.1E-02 -- -- -0.06 1.1E-02 -- -- -- --
ALC 2 1282 — 8.0E-02 = = 2 = 0.8 4.0E-01]  -2.6 8.0E-03
log2(C-reactive protein) 3 5279 -JABEGS  -0.11J8HEG7 -0.06 4.4£-03 - ~ 17 9.9E02
log2(Insulin) 1 3175  -0.06, 3.5E-04 . —  -0.06| 3.5E-04 - = - .
 l0g2(Glucose) 2 5613 0.04 73802 -0.01 5.3E-01 » — - —
£ log2(Triglyceride) 3 6437 -0.06/ 5.3E-03  -0.04 2.4E-02 = —~  -09 3.86-01
g Total cholesterol 4 6938 004 34602 000 7.8e-01]4006BE05 1.0 3.06-01
@ LDL cholesterol 1| 3215 - -- 0.00 8.6E-01 -- - -- -
3 HDL cholesterol 3 6436 0.03 2.0-01  0.06 1.6E-03 = ~  -1.0 3.0801
®  log2(Creatinine) 4 5654 - 97E-01  0.02 24E-01 -0.03 2.1E-01  -1.0 3.4E-01 0.7 4.7€-01
= log2(Urine Creatinine) 1| 2319 -0.03 1.6E-01 -0.03 1.6E-01 -- -- -- -- -- -
Systolic blood pressure 4 6977 ~ 85E-01 -0.02 4.6E-01  0.00 8.6E-01 30 3.0E-03 -1.1 2.8E-01
Diastolic blood pressure 4 6977 - 3.7E-02  0.06 49E03  0.01 4.2E-01 2.5 13802  -2.0 4.3E-02
log2(Waist / hip ratio) 2 5466 - 24E-03 -0.04 33802 -0.04 3.0E-02 = = = =
BMI 4 6942 — 36E03 -0.03 1.6E01 -0.03 1.0E01  -11 27601  -1.9 5.2E-02
o Education 4 6624 - 0.04 5.1E-02  0.08 1.0 3.0E-01 3.1 2.0E-03
} Income 1 3186 0.07 = = 0.07 — = = -
o log2(1+Exercise) 1 3061  0.04 2.4E-02 - —~ 0.4 2.4E-02 - -
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Figure 5. Cross sectional associations between age-adjusted DNAMTL versus lifestyle/dietary variables. Association analysis
between age-adjusted DNAMTL (DNAmTLadjAge) and 43 variables including 15 self-reported diet, 9 dietary biomarkers, 14 variables related
to metabolic traits and central adiposity, and 5 life style factors, based on the meta-analysis across the FHS WHI, LBC 1921 and LBC 1936
cohort. Robust correlation coefficients (biweight midcorrelation ) analysis were performed on the FHS and WHI cohort while generalized
linear regression analysis adjusted for sex was performed on the LBC 1921 and 1936 cohort, respectively. For each variable, we display
number of datasets, number of total subjects, the robust correlation results from the meta-analysis, FHS, and the WHI cohort and the Z
statistics for the LBC respectively. The meta-analysis was based on Stouffer’s method for the majority of the variables or fixed effect models.
The 2-color scale (blue to red) color-codes bicor correlation coefficients in the range [-1, 1] or Z statistics. The green color scale (light to dark)
applied to unadjusted P values. Cell entry "--" denotes not available. The correlation analysis results stratified by sex using the FHS cohort are
listed in Supplementary Figure 11 and stratified by ethnic group using the WHI cohort are listed in Supplementary Figure 12, respectively.
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correlated with plasma-based estimates of mean
carotenoid levels (robust correlation r=0.10, unadjusted
p=1.5E-5), beta-Cryptoxanthin (r=0.10 and p=3.8E-6)
and high-density lipoprotein (HDL, r=0.04 and p=1.3E-
3) (Figure 5, Supplementary Figures 11 and 12). The
positive correlation between DNAmTLadjAge and self-
reported measures of carotene intake (p=4.0E-3, N=766
from the Lothian Birth Cohort from the year 1936) was
consistent with these findings. Positive associations
with DNAmTLadjAge were also observed for self-
reported measures of fruit (p=3.1E-5), vegetable
(p=1.2E-3), dairy (p=7.1E-3), fish (P=0.018), and
carbohydrate consumption (p=0.02). Positive correla-
tions were also evident between DNAmTLadjAge and
socio-economic factors such as level of educational
attainment (p=3.3E-8) and income (p=3.1E-5). These
associations held for each sex separately in the FHS
cohort (Supplementary Figure 11).

There were also features that correlated negatively with
DNAmTL. Smoking was strongly associated with lower
DNAmMTL values in leukocytes (p=2.3E-16) and in
adipose tissue (P=0.036, Supplementary Figure 3D). C-
reactive protein (p=4.3E-9), triglyceride levels (p=3.2E-
4) and insulin levels (p=3.5E-4) were negatively cor-

related with DNAmTLadjAge in both FHS and WHI
cohorts. There were also negative correlations of
DNAmTLadjAge (in leukocytes) with waist-to-hip ratio
(p=2.4E-3), body-mass index (BMI, p=3.6E-3) and
physical exercise (p=0.02).

We caution the reader that our p-values are not adjusted
for multiple comparisons.

DNAmMTL of leukocytes exhibits stronger association
with smoking than does measured LTL

Next, we used 4,039 subjects from our seven validation
cohorts to interrogate the impact of smoking on
telomere shortening in leukocytes (Methods). A detailed
smoking history (smoking pack-years) was known for
roughly half of these individuals (N=2216). The
smoking variable was based on pack-years when
available otherwise based on never versus ever
smoking. We adjusted the smoking variable for
potential confounders (age, sex and ethnicity) of the
relationship with LTL. Our large-scale meta-analysis
showed that DNAmMTL greatly outperformed measured
LTL (Stouffer’s meta p=1.2E-17 versus meta p=0.029)
with regards to association with smoking (Table 3).

Table 3. Smoking impacting on DNA methylation-based telomere length.

DNAmTL LTL

Cohort N Variable T P T P

FHS! 878 Pack years -2.08 3.81E-2 0.54 0.59
WHI BA23! 97 Pack years 0.45 6.53E-1 1.30 0.2
JHS! 100 Smoker -3.00 3.38E-3 -1.87 6.40E-2
LBC 19212 404 Pack years -3.53 4.59E-4 -0.92 0.36
LBC 19362 796 Pack years -3.55 4.04E-4