expressed ATM and γH2AX were not apoptotic (12.1±5.9%) suggesting that ATM-mediated repair process was still ongoing and probably preventing cell death (Figure 5, I). In majority however, apoptosis coincided with the co-expression of ATM and γH2AX (Figure 5, J), indicating that the DNA repair response was not sufficient to rescue granulosa cells from chemotherapy-induced death.

DISCUSSION

Doxorubicin is a key chemotherapeutic agent used in the treatment of numerous malignancies such as breast, ovarian, and endometrial cancers as well as lymphomas, acute leukemias, and many others which are commonly encountered during the premenopausal ages [16,17,18,19]. In the present study we investigated the mechanism of chemotherapy-induced ovarian aging induced by this drug in vitro and in vivo on human and mice ovaries.

We found that doxorubicin, in a dose-dependent fashion, caused massive induction of γH2AX, likely reporting formation of DSBs in human and mouse oocytes, as confirmed by the presence of multinucleation (Fig. 5 A&B) and comet assay (Supplementary figure 1). The induction of DSBs was associated with apoptotic death of primordial follicles upon exposure to doxorubicin. Doxorubicin activated ATM-mediated DSB repair pathways, which involved H2AX phosphorylation and most likely activation of other signaling pathways associated with DNA damage response [4]. It seems that following DNA damage not only expression of activated ATM was increased but there was a significant translocation from the cytoplasm to the nucleus. Although ATM was originally thought to be a nuclear protein in proliferating cells, in oocytes it is predominantly cytoplasmic [20]. To our knowledge, this is the first observation of activated ATM behavior in oocytes. Further laboratory research will be needed to determine the function of cytoplasmic ATM and the significance of the translocation process to ATM function in response to genotoxic stress.

It is clear that the extent of doxorubicin-induced DNA damage is sufficient to induce apoptotic death of the majority of human and mouse primordial follicles. Apparently the repair mechanisms were inadequate to