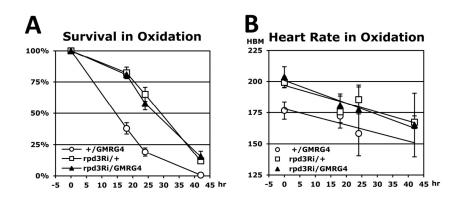
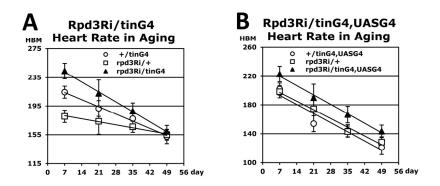

SUPPLEMENTARY FIGURES


SFigure 1. Lifespan extension of Rpd3 downregulation. (A) The aging test comparing wild-type and *rpd3* heterozygote mutant (*rpd3*-/+), using adult male flies. (B) The increased percentage of the *rpd3* mutant's mean lifespan is indicated as mean ± SEM normalized with respect to wild-type (39.7 days). This percentage was calculated from the lifespan curves (A) of two independent experiments. (C) The aging test between two single transgene controls (+/armG4, rpd3Ri/+) and the double transgene experimental (rpd3Ri/armG4) male flies. The p-values (log-rank test) of the two lifespan curves (A and C) indicate that lifespan increases with a decrease in *rpd3* expression. (D) Increased percentage of the mean lifespan of rpd3Ri/armG4 is indicated as mean ± SEM normalized by the +/armG4, which was calculated from the lifespan curves (C) of four independent experiments.

SFigure 2. Heart-specific Gal4 expression (tinG4). (A) Left: Heart-specific (tinman) GFP expression (UAS-GFP/tin-Gal4), illuminating the long heart tube from the posterior abdomen. Right: Eye-specific GFP expression (UAS-GFP/GMR-Gal4), used as a control. (B) Heart-specific expression levels of Gal4 and the target GFP genes from the whole body's total RNA between UAS-GFP/+ and UAS-GFP/tin-Gal4 using RT-PCR.


SFigure 3. Stress resistance induced by heart-specific Rpd3 downregulation in female flies. (A and C) The response to oxidation (A) and starvation (C) stressors using 5-day-old female flies. The flies with heart-specific rpd3 downregulation (rpd3Ri/tinG4) were compared to the single transgene controls (+/tinG4 and rpd3Ri/+). The survival curves show that the p-values for both stressors (A and C) were statistically significant (P < 0.0001), indicating that resistances to both stressors are enhanced also in females with heart-specific rpd3 downregulation. (B and D) The percent change in the median survival time of flies for the stresses is indicated as mean \pm SEM, which was calculated from the stress response curves of 5 - 7 independent experiments. Parenthesis: percent change in heart specific Rpd3 downregulation as compared to the +/tinG4 single transgene control.

SFigure 4. Oxidative stress resistance and heart function unaffected by eye-specific Rpd3 downregulation. (A) The survival curve for oxidative stress between 2-day-old male flies of single transgene controls and eye-specific Rpd3 downregulation (rpd3Ri/GMRG4), which was made with the mean ± SEM over four independent assays. (B) The concurrent heart rate during the oxidative stress above (A). The heart rate of +/GMRG4 at 42 hours could not be measured due to no survivorship in (A). The resultant change in heart rate between the rpd3Ri/+ and rpd3Ri/GMRG4 revealed that the heart rate is not changed by reduced *rpd3* expression in the eye throughout the oxidative stress.

GFP imaging tinG4,UASG4 tinG4 GMRG4 Eye Heart

SFigure 5. GFP imaging with heart-specific Gal4 expression (tinG4 and tinG4, UASG4).

SFigure 6. Heart rates of flies with heart-specific Rpd3 downregulation. (A-B) Heart rates of rpd3Ri/tinG4 (A) and rpd3Ri/tinG4,UASG4 (B) were measured at the 1, 3, 5 and 7-week time points during the aging experiments in Fig. 7E. The 30 - 100 of heart rates were counted at each age and averaged for mean ± SEM over 3 - 9 independent assays.