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SUPPLEMENTARY MATERIALS 
 
Supplementary Methods 
  
Image Preprocessing Pipeline 
 
The DMBC-1953 imaging data were minimally 
preprocessed using tools from FSL [1] following 
UKB image preprocessing guidelines. In brief, 
preprocessing of T1w images included: reduction in 
the field-of-view (FoV), brain extraction (using FSL 
tool BET [2]), linear alignment to the MNI standard-
space brain template [3, 4], followed by a nonlinear 
alignment (FNIRT) to the MNI standard space to 
achieve maximum agreement across participants 
irrespective of the large individual differences in 
brain structure [5].The latter non-linear warp is of 
great importance as it is this inverted transformation 
that is applied in multiple subsequent steps of the 
processing pipeline. Preprocessing of T2w-FLAIR 
images follow a similar procedure to T1w images 
but with a few minor differences. Namely, brain 
extraction is not directly applied to the original T2w 
images; instead, T2w images are linearly aligned to 
T1w space using FLIRT, and the subsequent 
transform is then concatenated with the T1w-derived 
transforms generating T2w-FLAIR image versions 
that are in MNI standard space and T1w native 
space. In the final steps, we apply the bias field 
estimated from the T1w pipeline (i.e. derived from 
FAST) to the transformed T2w-FLAR images to 
remove B1 field inhomogeneity’s.  
 
T1w Pipeline 
 
Supplementary Figure 2 provides a visualization of 
the T1w processing pipeline. In brief, the T1w 
pipeline incorporates both artefact removal (i.e. 
removal of non-brain tissue above and below the 
head using FSL tools robust FoV and BET) and 
linear registration (i.e. alignment to the MNI152 
“non-linear 6th generation” standard-space T1 
template). This is followed by a non-linear 
registration to the standard-space MNI152 brain 
mask using FNIRT [5]. Ultimately, for each subject, 
the T1w pipeline generates one standard T1w brain 
mask in native space which is necessary for 
estimating whole brain volumes of major tissue 
types and sub-cortical structures. Specifically, this is 
achieved using the inverse of the nonlinear T1w-to-
MNI alignment warp to transform a standard-space 
brain mask into native T1w space. As T1 structural 
images are used as a reference for all other imaging 
modalities, all estimated transformations are applied 
in a single step as late in the pipeline as possible 

avoiding additional interpolation-related smoothing. 
Additionally, the resulting T1w brain mask from 
phase 4 is used to create a more accurate brain-
extraction, replacing the original brain extraction 
from phase 1. Finally, tissue type segmentation is 
performed using FAST [6], and the resulting data are 
then used to create the T1w-derived IDP summary 
measures. In total, we estimate: total  volume of GM 
(derived from GM partial  volume estimates modelled 
by FAST) within 139 GM ROIs defined by a 
combination of parcellations from the Harvard 
Oxford cortical and subcortical atlases and 
Diedrichsen cerebellar atlas [7, 8], 15 sub-cortical 
structures (shapes and  volumes) modelled by FIRST 
[9], 10 (normalized and unnormalized for head size) 
global brain  volume measures of total WM volume, 
total GM  volume, total brain  volume (GM + WM), 
ventricular (non-peripheral) CSF  volume, and 
peripheral cortical GM  volume modelled by 
SIENAX [10], part of the FSL toolbox [11], Table 6. 
Note, in order to obtain the GM volume of the 139 
ROIs, we inverted the nonlinear registration to 
standard space, and used this to warp a cortical atlas 
of 139 ROIs into native T1 space. Within each ROI 
we then summed the total GM, as estimated via the 
FAST GM partial volume estimates.  
 
T2w-FLAIR Pipeline and the Brain Intensity 
Abnormality Classification Algorithm tool 
(BIANCA)   
 
Supplementary Figure 3 provides a visualization of 
the T2w-FLAIR pipeline. As previously mentioned, 
we apply the nonlinear T1w-to-MNI152 warp to 
transform T2w-FLAIR images to MNI152 space. 
This step supports the format of input images required 
for other combined analyses, namely, WMH (or white 
matter lesion) segmentation using the Brain Intensity 
Abnormality Classification Algorithm tool 
(BIANCA) [12]. As shown in Figure 3, a linear 
registration is applied to the original T2w-FLAIR 
image to transform the T2w-FLAIR into T1 space. 
Next, using the previously calculated transformation 
warp from T1 to MNI152, we create an MNI152 
version of T2w-FLAIR images. Finally, we apply the 
estimated bias field previously calculated by FAST in 
the T1w pipeline to correct for residual bias field 
inhomogeneities in the T2w-FLAIR image. 
 
BIANCA is a fully automated, supervised method 
for WMH detection, based on the k-nearest neighbor 
algorithm which estimates the voxel-wise 
probability of WMH prevalence. Specifically, using 
T2w-FLAIR data (in T1w space), unbiased T1w 
data, T2-FLAIR-to-MNI warp and a WM mask that 
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excludes cortical GM, subcortical structures and 
spurious hyperintensities (e.g., derived from CSF 
pulsation artefacts), BIANCA generates one 
estimate of total volume of WMHs from all voxels 
that exceed a threshold of 0.9.  
 
dMRI Preprocessing 
 
Supplementary Figure 4 provides a visualization of 
the dMRI pipeline. In brief, each raw dMRI  volume 
is affine-aligned to the reference (b=0) image to 
correct for head motion and eddy current distortions 
using FSL’s eddy tool [13]. The corrected dMRI 
data are then brain extracted. The resulting data are 
then fed as input to tract-skeleton (TBSS) [14] 
processing to extract estimates of diffusivity 
measures contained within 48 standard-space WM 
tract ROIs [15].  
 
TBSS in more detail: We begin by fitting a single 
diffusion tensor model (ellipsoid) to each voxel in 
the corrected diffusion volumes using dtifit [14], 
part of FSL Diffusion Toolbox [11]. This process 
describes voxel-wise diffusion orientations 
pertaining to the magnitude and directionality of 
water displacement across brain tissue. 
Traditionally, diffusion of water molecules in brain 
tissue is described as isotropic in GM (i.e., the 
magnitude of diffusion is invariant in each direction) 
and more anisotropic (i.e., restricted to the major 
axis) in WM. The barriers of water displacement 
across the brain tissue have been attributed to the 
presence of myelin sheaths, axonal filaments and 
microfilaments [16]. The following sources provide 
detailed discussions regarding the principles and 
biophysics of DTI [17-19]. Specifically, for each 
voxel, the diffusion tensor predicts the pattern of 
diffusion using the axes (eigenvectors) of an 
ellipsoid to provide estimates of the major and two 
further (orthogonal) minor axes. Using the tensor-
model derived eigenvalues 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 (i.e. 
estimates of the rate of diffusion along each 
eigenvector), we calculate the most frequently used 
DTI summary measures, fractional anisotropy (FA) 
[20], mode of anisotropy (MO) [21], and mean 
diffusivity (MD) [20, 22]. Furthermore, to deepen 
our understanding of the biophysical mechanisms of 
water displacement across the brain tissue we also 
include individual eigenvalues, 𝜆𝜆1,𝜆𝜆2,𝜆𝜆3, to 
elucidate the role of axial (𝜆𝜆ax = 𝜆𝜆1) and radial (𝜆𝜆rad 
=mean of 𝜆𝜆2, 𝜆𝜆3) diffusivity changes as potential 
markers of WM integrity in ageing  [23, 24]. 
Specifically, FA is a normalized scaler index, 
ranging for 0 (isotropic) to 1 (anisotropic), that 
reflects the total magnitude of anisotropic 

(directional/restricted) diffusion. In age- or disease-
related neurodegeneration a decline in FA is 
conventionally reported to indicate various 
microstructural processes including demyelination, 
axonal degradation or gliosis [25]. The tensor index, 
MO, provides further details complementary to FA 
that characterizes the type of anisotropic diffusion 
using variations in the shape of the tensor model. 
This value can range from -1 to +1 describing a 
more planar/disc-like shape (i.e., in crossing fibers 
regions where axes one and two are of similar 
densities 𝜆𝜆1~𝜆𝜆2 >  𝜆𝜆3) to one that is more 
linear/cigar-like (i.e., regions where one axis 
predominates 𝜆𝜆1 >  𝜆𝜆2~𝜆𝜆3). An increase in MO 
(i.e., a planar-to-linear transformation), with 
concomitant increases in FA, has been attributed to 
the selective degeneration of secondary WM tracts 
following a primary lesion [26]. Thus, caution must 
be applied when interpreting FA and MO measures 
in brain regions that contain intersecting WM tracts. 
Specifically, it has been demonstrated that selective 
degenerative of WM tracts in crossing fiber regions 
can affect fibers arranged in one direction (e.g. 
cognitive-associated association fibers) but not those 
transverse to it (e.g. motor-related projection fibers) 
[27]. This results in the “spared” fibers of this sub-
region defining the newly acclaimed primary 
eigenvector, and with it creating a misleading 
increase in both FA and MO.  Contrary to anisotropy 
diffusion, MD provides a measure of the average 
rate of diffusion across all three orthogonal 
eigenvectors and generally serves as a sensitive but 
general indicator of neurodegeneration. Specially, an 
increase in MD is commonly associated to decreases 
in membrane density or increases in interstitial or 
extracellular fluid [20, 22]. Lastly, component 
measures 𝜆𝜆ax and 𝜆𝜆rad reflect the mean diffusion 
coefficient of water parallel or perpendicular to the 
primary fiber orientation respectively. To date, 
decreases in 𝜆𝜆ax have been reported to reflect axonal 
damage, while independent increases in 𝜆𝜆rad have 
been implicated in myelin-specific degeneration [24, 
28-30]. However, deviations from this pattern have 
also been observed [25-27, 31] and interpretation of 
raw eigenvalues should be used in collaboration with 
other commonly used DTI metrics.  
 
TBSS permits between-subject comparisons of WM 
pathways by aligning each subject’s FA image to a 
standard target image, thus rendering all FA maps 
into the same 3D coordinate space. This is achieved 
through non-linear alignment of the FA image 
(derived from DTIFIT) onto a standard-space FA 
image using a high dimensional FNIRT-based warp 
[32]. The resulting high-dimensional FNIRT-based 
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warp is also applied to all other DTI-derived output 
maps (i.e. MO, MD, 𝜆𝜆ax, 𝜆𝜆rad). These data are then 
averaged to create a study-specific standard mean 
FA, MO, MD, 𝜆𝜆ax, and 𝜆𝜆rad map which are 
subsequently skeletonized - and for FA and MO 
thresholded at FA > 0.2 to include only highly 

anisotropic anatomy. Lastly, the skeletonized images 
are averaged within a set of 48 standard-space WM 
tract masks defined by the John Hopkins University 
(JHU) dMRI-based WM tractography atlas [33]. In 
total, we estimate n=288 diffusivity measures per 
subject. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Subject selection using an “Extreme Group Design” (EGD). Subjects were recruited based on a 
change score derived using a linear regression analyses of cognitive ability at age ~57, IQ-57 (IST2000-R test), on cognitive ability at 
age ~20, IQ-20 (BP test). The regression model estimates the expected performance at late midlife given each subjects BP score 
using the whole population of n=1985 CAMB participants. IQ-20 explained R2=50.4% of variance in IQ-57, and subjects with the 
highest (±) absolute residual score were selected. For this study, we included group A (positive residuals) and group B (negative 
residuals) subjects. 
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Supplementary Figure 2. Flowchart of T1w processing pipeline. *In order to obtain the GM volume measures of the 139 ROIs, 
we inverted the nonlinear registration to standard space, and used this to warp a cortical atlas of 139 ROIs into native T1 space. Within 
each ROI we then summed the total GM, as estimated via the FAST GM partial volume estimates. The 139 ROIs were defined by a 
combination of parcellations from the following atlases: Harvard Oxford cortical and subcortical atlases, and Diedrichsen cerebellar 
atlas. 
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Supplementary Figure 3. Flowchart of T2w-FLAIR processing pipeline. 
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Supplementary Figure 4. General dMRI processing pipeline. 
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Supplementary Statistical Analysis 
 

Multivariate Associations 
 
We used CCA, a multivariate technique, to seek 
patterns of covariation between two sets of measures 
i.e. IDPs and non-IDPs, Figure 5. In essence, we are 
estimating a “population continuum” of covariation 
across subjects that jointly characterizes brain 
imaging and other (non-imaging) data through a 
single axis. This information is subsequently used to 

describe each subject’s relation to this axis through 
the value and polarity assigned to their CCA-derived 
subject weight. That is, each CCA-derived subject 
weight corresponds to a specific position on the 
population continuum, and our aim is to characterize 
the attributes associated with each position.  

 
 
 

 

Supplementary Figure 5. Relating brain to behavior using CCA. (A) We used CCA to relate sets of brain-imaging 
phenotypes, X1…Xp, (i.e., IDPs) to sets of non-brain imaging phenotypes, Y1…Yq, (i.e., non-IDPs). (B) Each CCA-mode 
identified represents a linear combination of IDPs, ‘U’, that are maximally correlated to the non-IDPs, ‘V’. The strength 
of this relationship is formally quantified by the canonical correlation coefficient value (i.e., Rc). 
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Post-hoc Correlations 
 
Supplementary Figure. 6 is a visualization of post-
hoc correlations used to relate each original 
(observed) IDP or non-IDP back to the significant 
CCA-mode of population covariation. Here we can 

identify the relative significance of each observed 
non-IDP or IDP variable in deriving the identified 
CCA-mode.  

 

 
 
 
 
Supplementary Figure 6. Visualization of post-hoc correlation analysis. (A) To relate the estimated CCA-mode, i.e. 
the UV pair, back to the observed (normalized and deconfounded) variables (B) we use post-hoc correlations, rA,B. The 
correlations computed are interpreted like factor loadings, and simply reflect the amount of variance each observed 
variable shares with its corresponding canonical variate pair. 
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Supplementary Results 
 
Study Sample Characteristics of Imaging-Derived Phenotypes by Group  
 
 
Image-derived Phenotype (IDPs) GROUP A GROUP B 

 M  M 
 

Total brain volume (mm3) 1483455 1463752 
Grey matter volume (mm3) 756575 747633 

White matter volume (mm3) 726880 716119 
Peripheral grey matter (mm3) 582846 572995 

CSF (mm3) 43769 50203 
Thalamus (mm3) 1105168 1089935 
Caudate (mm3) 1294311 1276844 
Putamen (mm3) 1199740 1183390 
Pallidum (mm3) 1247025 1230117 

Hippocampus (mm3) 1223383 1206753 
Amygdala (mm3) 1235204 1218435 

Accumbens (mm3) 1229293 1212594 
Brain stem + 4th ventricle (mm3) 18887 18197 

FLAIR (mm3) 370 377 
FA 0.60445 0.60406 
MD 0.00076 0.00077 
MO 0.61150 0.61271 

L1-L3 0.00076 0.00077 
 

 
Supplementary Table 1. List and study sample characteristics of image-derived phenotypes (IDP) described by group 
membership. Total brain volume, volume of individual brain tissues, CSF, volume of subcortical brain structures, and diffusion 
indices at age ~57 years. Diffusion tensor indices (FA, MD, MO, L1, L2, and L3) are based on eigenvalues (𝜆𝜆1,𝜆𝜆2, 𝜆𝜆3), which are used 
to infer on the integrity of white matter microstructure. (Abbreviations: M = mean, WMH = white matter hyperintensity, FA = 
fractional anisotropy, MD = mean diffusivity, MO = mode tensor, L1-L3 = eigenvalues). 
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 Whole-Group Univariate Associations Adjusted for Cognitive Change (C∆) 
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Supplementary Figure 7. The significance of associations between pairwise associations adjusted for cognitive 
change. Manhattan plots 7A and 7B show all results for 453 IDPs against each of the 70 non-IDPs (31,710 values) adjusted for 
common confounders (age, motion, head size) and cognitive change variable C∆2 Figure. 7A (IQ-63-IQ-57), or C∆3 Figure. 7B (IQ-20-
IQ-11). Significance is plotted as -log 10 p-values, arranged by non-IDPs on the x-axis, multiple testing threshold across all pairwise 
associations is marked with a black horizontal line (FWE = 5.80 x 10-5). IDPs are distinguished by plotting color to reflect the MRI 
modality and image processing tool used to estimate each measure. This created five IDP subdomains: T1w-SIENA (yellow), T1w 
subcortical structures-FIRST (green), T1w GM ROIs-FAST (red), T2w-FLAIR-BIANCA (pink), and dMRI-TBSS (blue). Manhattan plot 7C 
shows all results for 31 cognitive measures against each of the (other) 39 non-IDPs (1209 values) adjusted for common confounders 
(age, motion, head size) and cognitive change variable C∆3 (IQ-20-IQ-11). Multiple testing thresholds across all pairwise 
associations are marked with a horizontal line, FWE (4.38 x 10-4) top line and FDR bottom line (3.82 x 10-3). All other non-IDPs are 
defined by plotting color (demographic = yellow, health = red, lifestyle = yellow).  (Abbreviations: IDP = image-derived phenotypes, 
non-IDP = non-image-derived phenotypes, IQ-11, IQ-20, IQ-57, IQ-63  = general intelligence scores at ages ~11, ~20, ~57, and ~63; 
MOT = motor task; ME = mean error; ML = mean latency; PAL = paired associates learning; TE adjusted = total errors adjusted; TT 
Adjusted = total trials adjusted; PRM = pattern recognition memory; SD = standard deviation; CL = correct latency; RTI = reaction 
time task; MT = movement time; RT = reaction time; RVP = rapid visual processing task; MLB1-4 = mean latency block 1 to 4; SOC = 
Stockings of Cambridge; Mean Initial TT 5 Moves = mean initial total time 5 moves task; Mean Subse TT 5 Moves = mean 
subsequent thinking time 5 moves task; SRM = spatial recognition memory; TM = trail making task; SEP = social economic position; 
MDI = Major Depression Inventory; CBF = cerebral blood flow; PSQI = Pittsburgh Sleep Quality Index).  

 
Post-Hoc Correlations 
 
Supplementary Figure 8 is a visualization of post-hoc 
correlations relating each original (observed) non-
IDP with the significant CCA-mode of population 
covariation. In brief, for each non-IDP (x-axis), the 
significance of the correlation with the CCA-mode is 
displayed on the y-axis (r) with each correlation (i.e., 
individual bar) further accompanied by its 
corresponding explained variance (r2). As previously 
described, all 70 non-IDPs are grouped into four 
subdomains; cognition, demographic, health and 

lifestyle. Furthermore, for ease of interpretation, we 
invert the signs of all non-IDP measures where lower 
outcome values are indicative of a positive quality or 
indicator. Thus, when interpreting post-hoc 
correlations between each non-IDP and the CCA-
mode, all positive correlations describe positive 
contributions to the CCA-mode (e.g., higher 
cognitive ability, better health status and lifestyle 
choices), whilst all negative correlations portray 
unfavorable contributions to the CCA-mode.  
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Supplementary Figure 8. A visualization of post-hoc correlation analyses correlating each observed non-IDP to the CCA-mode of 
population covariation. Correlation values (r) are displayed on the y-axis, and each association is further accompanied by its corresponding 
percentage variance explained (r2). This approach illustrates highly influential univariate associations between non-IDPs (x-axis) and the 
CCA-mode, and thus highlights individual top contributing non-imaging measures of the CCA-mode (i.e., the predictive pattern of measures 
contributing to the CCA estimations). 

 



 13 

 

 

Supplementary Figure 9.  Scatter plot of all subject’s relationship with the CCA-mode. Group membership indicated by 
plotting symbol (A=improvers; B=decliners) i.e., individual subject scores in the IDP canonical variate pair (V) vs individual subject 
scores in the non-IDP canonical variate (U), with one point per subject. 
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Supplementary Figure 10.  Subgroup CCA analysis and post-hoc correlations. Visualization of average subdomain 
contributions (y-axis = correlation) to the identified CCA-mode computed separately for subgroup A (blue line) and subgroup B 
(green line) subjects. Results from whole-group analysis is shown in orange for comparison.  (Abbreviations: GM = grey matter, 
WMH = white matter hyperintensity load, FA = fractional anisotropy, MD = mean diffusivity, MO = mode tensor, L1 = 1st eigenvalue, 
L2 = 2nd eigenvalue, and L3 = 3rd eigenvalue).  
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Group Top contributing non-IDPs r Top contributing IDPs r  

Group A ("improvers") IQ-57 0.38 MD in splenium of corpus callosum -0.51 
  IQ-20 0.37 L1 in corona radiata (L; R; A; P; S) -0.49 
  MOT (ME) 0.35 MD in corona radiata (L; P) -0.49 

  RTI: 5-choice MT 0.33  ume of GM in precuneous cortex (P) 0.45 
  Paternal SEP 0.30 L2 in splenium of corpus callosum -0.43 
  Trail Making B 0.30 L2 in medial lemniscus (L) -0.43 
  SOC: mean initial TT 5-moves 0.26 Total GM + WM volume (unnorm) 0.42 
  History of familial dementia 0.26  ume of thalamus (R) 0.40 
  IQ-11 0.24 Total peripheral GM (unnorm) 0.39 
  IQ-63 0.23 GM volume frontal pole (L) 0.30 
  Offspring -0.21 MD longitudinal fasciculus (R; S) -0.31 
 Education attainment 0.20 GM volume Hippocampus (L) 0.29 
Group B ("decliners") Paternal SEP 0.46 FA tapetum (L) -0.40 

  Birth weight 0.42 GM volume supracalcarine cortex (R) 0.39 
  Birth length 0.37 FA tapetum (R) -0.39 
  SOC: mean initial TT 5-moves 0.34 MD body of corpus callosum -0.39 

  Familial history of dementia 0.29 GM volume parietal operculum cortex (R)  0.39 

  IQ-63 0.28 L1 superior longitudinal fasciculus (R; L)  -0.38 

  Trail Making B 0.26 GM volume temporal-occipital gyrus (R) 0.36 

  CBF 0.26 MD superior longitudinal fasciculus (R; L)  -0.33 

  Trail Making A 0.25 L1 fornix cres+stria termalis (L)  -0.31 

  IQ-20 0.25 GM volume in temporal Pole (R;L) 0.30 
  IQ-57 0.24 L1 corona radiata (R; S)  -0.26 
  IQ-11 0.24 FA limb of internal capsule (R; P) -0.26 

  RTI: 5-choice MT 0.24 GM volume parahippocampal Gyrus (L; AD) 0.23 

  15-Word Pairs: Retention 0.22 Total brain GM + WM volume (unnorm) 0.20 
  Familial history of Depression 0.20  ume of thalamus (R) 0.22 

  
Familial history of myocardial 
infarct 0.20  ume of hippocampus (R) 0.22 

     
 

Supplementary Table 2.  List of top contributing variables pertaining to subgroup CCA analyses. (Abbreviations: MOT (ME) = 
Motor Task (mean error), RTI: 5-choice MT = Reaction Time: 5-choice movement time, SOC: mean initial TT 5-moves = Stockings of 
Cambridge mean initial thinking time 5-moves), MD = mean diffusivity, L1 = 1st eigenvalue, L2 = 2nd eigenvalue, GM = grey matter, WM = 
white matter, L = left, R = right, A = anterior, P = posterior, S = superior, AD = anterior division, unnorm = unnormalised). 
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