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INTRODUCTION 
 
Renal cell carcinoma is common urinary malignancy, 
which accounts for about 3% of all malignant tumors. In 
the urinary system, the incidence rate is second to the 
bladder cancer. According to global cancer statistics 
2018, around 403,262 (2.2%) new cases of kidney 
cancer are diagnosed, and approximately 175,098 
(1.8%) died of the disease [1]. Clear cell renal cell  

 

carcinoma (ccRCC) is the most common subtype of 
renal cell carcinoma. It accounts for approximately 
80%-90% of renal cell carcinoma [2]. 
 
Currently, about 30% of patients are diagnosed with 
disease that is already in the metastatic stage [3]. For 
patients with advanced ccRCC or cancer recurrence, a 
number of molecule-targeted drugs have been used as 
clinical first-line therapy, including sorafenib, sunitinib, 
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ABSTRACT 
 
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor that the underlying molecular mechanisms are 
largely unclear. This study aimed to elucidate the key candidate genes and pathways in ccRCC by integrated 
bioinformatics analysis. 1387 differentially expressed genes were identified based on three expression profile 
datasets, including 673 upregulated genes and 714 downregulated genes. Then we used weighted correlation 
network analysis to identify 6 modules associated with pathological stage and grade, blue module was the most 
relevant module. GO and KEGG pathway analyses showed that genes in blue module were enriched in cell cycle 
and metabolic related pathways. Further, 25 hub genes in blue module were identified as hub genes. Based on 
GEPIA database, 9 genes were associated with progression and prognosis of ccRCC patients, including PTTG1, 
RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20. Then multivariate Cox regression showed that 
the risk score base on 9 key genes signature was a clinically independent prognostic factor for ccRCC patients. 
Moreover, we screened out several new small molecule drugs that have the potential to treat ccRCC. Few of 
them were identified as biomarkers in ccRCC. In conclusion, our research identified 9 potential prognostic genes 
and several candidate small molecule drugs for ccRCC treatment. 
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aldesleukin, axitinib and bevacizumab. Compared with 
chemoradiotherapy, the survival time has been greatly 
improved. However, because of the side effects of 
molecule-targeted drugs and individual differences of 
patient sensitivity to drugs, median disease-free and overall 
survival times of patients remain short [4]. Therefore, it is 
of great significance to further explore more effective 
prognostic biomarkers and therapeutic targets. 
 
With the popularization and gradual development of gene 
chips and high-throughput sequencing, it is possible to 
identify the key genes associated with tumor progression 
and prognosis based on big data integration and 
bioinformatics. Weighted gene co-expression network 
analysis (WGCNA) is a systematic biological method that 
could identify highly synergistically altered gene sets, and 
based on the intrinsic properties of gene sets and 
correlation between gene sets and phenotypes, candidate 
biomarker genes or therapeutic targets can be screened out. 

The aim of this study was to identify and validate key 
genes that were significantly associated with oncogenesis 
and progression in ccRCC tumors by weighted 
correlation network analysis, and further screen 
correlated small molecule target drugs.  
 
RESULTS 
 
Differentially expressed genes (DEGs) screening of 
ccRCC  
 
After data preprocessing and quality assessment, 
expression matrices of three expression profiles were 
obtained, including GSE36895, GSE53757 and 
GSE66272. Using |log2FC| > 1 and FDR < 0.05 as the 
threshold, all the differentially expressed genes were 
screened out in three expression profiles 
(Supplementary Tables 2–4). The DEGs of three 
datasets were shown as volcano plots in Figure 1A–1C.  

 

 
 

Figure 1. Differentially expressed genes and common differentially expressed genes in three datasets. (A–C) The volcano plots 
visualize the differentially expressed genes in GSE36895, GSE53757 and GSE66272, respectively. The red nodes represent upregulated genes. 
The green nodes represent downregulated genes. (D–E) Common differentially expressed genes in three datasets. 
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After being overlapped, the common 1387 genes were 
identified, including 673 upregulated and 714 
downregulated genes (Figure 1D–1E). 
 
Weighted co-expression network construction and 
key modules identification 
 
The input dataset for WGCNA construction consist  
of the common 1387 genes and 26 ccRCC samples  
with pathological stage and grade in GSE66272 
(Supplementary Figure 2A). “WGCNA” package was 
used in R, after quality assessment for expression matrix 

of GSE66272, power of β = 8 (scale free R2 = 0.9) was 
selected to ensure a scale-free network (Supplementary 
Figure 2B–2E). Then we set MEDissThres as 0.25 to 
merge similar modules, and a total of 7 modules were 
identified (Figure 2A–2B). Blue module contained 247 
genes, brown module contained 234 genes, green module 
contained 177 genes, red module contained 93 genes, 
turquoise module contained 301 genes, yellow module 
contained 187 genes, and 148 genes could not be included 
in any modules were put into the gray module, which was 
reserved for genes identified as not co-expressed. Genes 
in grey module were removed in the subsequent analysis. 

 

 
 

Figure 2. Construction of WGCNA co-expression modules. (A) The cluster dendrogram of module eigengenes. (B) The cluster 
dendrogram of the common differentially expressed genes in GSE66272. Each branch in the figure represents one gene, and every color 
below represents one co-expression module. 
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Interaction relationship of modules and 
identification of key modules 
 
The network heatmap was performed to analyze the 
interaction relationship of 7 modules (Figure 3A). The 
results showed that each module was independent of each 
other, which indicated a high-scale independence degree 
among these modules and distinct independence of genes 
expression in each module. Then we calculated eigengenes 
of all modules and clustered them based on their 

correlation. Module eigengene dendrogram showed that 
the 6 modules were mainly divided into two clusters, and 
eigengene network heatmap demonstrated similar results 
(Figure 3B). Furthermore, the ME of the blue module 
showed the blue module was significantly associated with 
ccRCC tumor stage and grade compared with other 
modules (Figure 3C). Therefore, we selected the blue 
module for subsequent analysis, and identify the relevance 
between blue module and the clinical features with great 
biological significance (Supplementary Table 5). 

 

 
 

Figure 3. Identification of modules associated with the clinical traits. (A) Interaction relationship analysis of co-expression genes. 
Different colors of horizontal axis and vertical axis represent different modules. The brightness of yellow in the middle represents the degree 
of connectivity of different modules. There was no significant difference in interactions among different modules, indicating a high-scale 
independence degree among these modules. (B) Module eigengene dendrogram and eigengene network heatmap summarize the modules 
yielded in the clustering analysis. (C) Heatmap of the correlation between module eigengenes and pathological stage and grade. The blue 
module was significantly correlated with stage and grade. (D) Scatter plot of module eigengenes in blue module. 
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Functional annotation and KEGG pathway 
enrichment of blue modules 
 
Gene ontology analysis and KEGG pathway enrichment 
were performed for the above blue module to explore 
potential biological processes associated with ccRCC. 

Biological process of gene ontology analysis showed 
genes in the blue module were mainly associated with 
cell division, cell proliferation, cell cycle and metabolic 
related pathway (Figure 4A). The result of KEGG 
pathway enrichment was showed in Figure 4B. The most 
significant pathway was cell cycle, the other significant 

 

 
 

Figure 4. Functional enrichment analysis of blue module. (A) GO analysis of all genes in blue module. (B) KEGG pathway analysis of all 
genes in blue module. 
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pathways included glycolysis/gluconeogenesis, fructose 
and mannose metabolism, starch and sucrose 
metabolism, arachidonic acid metabolism, p53 signaling 
pathway, aldosterone-regulated sodium reabsorption, 
carbon metabolism, glutathione metabolism and insulin 
signaling pathway. 
 
Hub genes detection and validation 
 
Based on the criteria that cor.geneModuleMembership > 
0.8 and cor.geneTraitSignificance > 0.2, 25 genes with the 

high connectivity in blue module were screened as hub 
genes (Figure 3D). Then 25 hub genes were validated 
using ccRCC data of GEPIA database. Among them, 
PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, 
UBE2C, FOXM1 and CDC20 were negatively associated 
with the overall survival and disease free survival of 
ccRCC patients (Figures 5, 6). Moreover, based on the 
GEPIA database and Oncomine database, the expression 
levels of these 9 genes were significantly higher in  
ccRCC tumor tissues, compared with paracancerous  
normal tissues (Figure 7 and Supplementary Figure 3).

 

 
 

Figure 5. Overall survival analysis of 9 key genes in ccRCC (based on TCGA data in GEPIA). (A–I) Expression levels of PTTG1, RRM2, 
TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20 are significantly related to the overall survival of patients with ccRCC (P < 0.05). 
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In addition, based on individual cancer stage analysis,  
the expression of these 9 genes were significantly 
upregulated in the advanced tumor stages (Supplementary 
Figure 4). The protein expression levels of these 9 genes 
were significantly higher in tumor tissues compared with 
paracancerous normal tissues based on the Human Protein 
Atlas database (Supplementary Figure 5). A ROC curve 
was generated to verify the diagnostic performance of 
these 9 genes based on the TCGA database. The AUC 

showed that PTTG1, RRM2, TOP2A, UHRF1, CEP55, 
BIRC5, UBE2C, FOXM1 and CDC20 indicated excellent 
diagnostic efficiency for tumor and normal tissues (Figure 
8). To further assess whether it can provide the favorable 
prognostic value based on these 9 gene expression levels, 
the multivariate Cox regression analysis was performed. 
The results in Table 1 showed that the risk score base on 
these 9 genes signature was a clinically independent 
prognostic factor for ccRCC patients. 

 

 
 

Figure 6. Disease free survival analysis of 9 key genes in ccRCC (based on TCGA data in GEPIA). (A–I) Expression levels of PTTG1, 
RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20 are significantly related to the disease free survival of patients with ccRCC  
(P < 0.05). 
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Figure 7. Validation of the gene expression levels of PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and CDC20 
between normal kidney and ccRCC tissues in GEPIA database. (A–I) PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1 and 
CDC20 are significantly upregulated in ccRCC compared with normal tissues (P < 0.01). The red * represents P < 0.01. 
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Gene set enrichment analysis (GSEA) 
 
GSEA was performed to explore biological function of 
9 hub genes. We set the cut-off criteria as gene size ≥ 
10, FDR < 0.05, and |enrichment score (ES)| > 0.65, the 
results revealed that high expression samples in all 9 
key genes were enriched in cell cycle pathway 
(Supplementary Figure 6). 

Genetical alteration of hub genes 
 
The alteration statuses of 9 key genes were analyzed 
using TCGA ccRCC patients’ data of cBioPortal 
database. The 9 hub genes altered in 118 (26%) of 446 
ccRCC patients (Figure 9B), and the frequency of 
alteration of each hub gene was shown in Figure 9A. 
PTTG1 and FOXM1 altered most (16% and 8%, 

 

 
 

Figure 8. ROC curve analysis of 9 key genes diagnosis. Receiver operating characteristic (ROC) curves and area under the curve (AUC) 
statistics are used to evaluate the capacity to discriminate ccRCC from normal controls with excellent specificity and sensitivity in TCGA 
dataset. (A) PTTG1, (B) RRM2, (C) TOP2A, (D) UHRF1, (E) CEP55, (F) BIRC5, (G) UBE2C, (H) FOXM1, (I) CDC20. 
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Table 1. Multivariate Cox regression analysis of potential prognostic factors for ccRCC patients. 

Variables 
Overall survival  Disease free survival 

HR 95%CI of HR P HR 95%CI of HR P 
Risk score 1.26 1.10-1.43 0.00054  1.18 1.01-1.39 0.038 
Age 1.50 1.10-2.05 0.01  1.14 0.78-1.66 0.50 
Gender 1.18 0.85-1.63 0.32  0.80 0.54-1.21 0.29 
Grade 1.37 1.08-1.73 0.0094  1.67 1.27-2.20 0.0002 
Stage 1.60 1.37-1.86 1.76e-09  2.29 1.90-2.77 2e-16 

 

respectively), amplification and mRNA upregulation 
were the main type. Figure 9C showed the relationship 
of the 9 genes and the other 50 most frequently altered 
neighbor genes. FOXM1, BIRC5, CDC20 and UBE2C 
were significantly important in the network. 
 
Related small molecule drugs screening 
 
To identify candidate small molecule of ccRCC, CMap 
database was performed to screen out small molecule 
drugs. According to analyze consistent differently 
expressed probesets between ccRCC samples and 
adjacent normal samples, the related small molecule 
drugs with highly significant correlations were 
identified. 10 small molecule drugs were filter by the 
number of instances (n > 10) and P value (< 0.05). They 
were listed in Table 2. Among these small molecule 
drugs, trichostatin A (TSA), trifluoperazine, genistein 
and prochlorperazine showed higher negative 
correlation and the potential to treat ccRCC. 
 
DISCUSSION 
 
ccRCC is a heterogeneous tumor. The occurrence and 
progression of ccRCC are the comprehensive results 
activation of various oncogenes and inactivation of 
various tumor suppressor genes. In the present study, we 
used comprehensive bioinformatics analysis to identify 9 
key genes associated with progression and prognosis of 
ccRCC patients, and select several new small molecule 
drugs that have the potential to treat ccRCC. 
 
The 9 key genes consist of BIRC5, CDC20, CEP55, 
FOXM1, PTTG1, RRM2, TOP2A, UBE2C and UHRF1. 
They were all oncogenes, and associated with progression 
and prognosis of ccRCC patients. Few of them were 
identified as biomarkers in clear cell renal cell carcinoma. 
BIRC5 (survivin) is a member of the IAPs family. It can 
suppress apoptosis and regulate cell proliferation. BIRC5 
overexpression has been reported in various malignancies, 
and it was a prognostic marker in renal cell carcinoma  
[5–7]. Two meta-analysis suggested that high survivin 
expression was associated with poor prognosis and more 
advanced pathological stage, and it could be used as a 

biomarker for disease management [8, 9]. CDC20 is one 
of the cell cycle related proteins. It was high expressed in 
most malignant tumor tissues and played an oncogenic 
role in tumorigenesis and tumor progression. Wu et al. 
reported that CDC20 expression was an independent 
prognostic factor in colorectal cancer and can serve as a 
potential prognostic biomarker [10]. Gao et al. also found 
that the growth and invasion of osteosarcoma cells was 
restrained by inhibiting CDC20 expression [11]. CEP55 is 
a member of the coiled-coil protein family, its main 
function is to anchor microtubule-associated proteins, 
participate in spindle formation, and regulate cell 
proliferation [12]. CEP55 is expressed in normal tissues 
and tumor cells, and is coupled with centrosomes and 
intermediates in the cell cycle, and plays a role in 
regulating cell cycle after phosphorylation. It has been 
found that CEP55 overexpression is significantly 
associated with tumor stage, invasiveness, and tumor 
metastasis of many malignant tumors [13–15]. FOXM1 is 
a transcription factor. It plays an important role in the 
regulation of multiple biological processes, including cell 
proliferation, cell cycle progression, cell differentiation, 
DNA damage Repair, tissue homeostasis, angiogenesis 
and apoptosis. Some research results indicated that 
FOXM1 plays a major role in tumorigenesis, Tan et al. 
found that FOXM1 was a specific marker in triple‑
negative breast cancer [16]. Breyer et al. identified that 
FOXM1 expression was associated with advanced clinical 
and pathological feature in bladder cancer [17]. PTTG1 is 
an oncogene which is closely associated to cell 
proliferation, differentiation and various signal 
transduction pathways. PTTG1 can directly induce 
carcinogenesis by cell transformation, activating proto-
oncogenes and growth factors [18]. RRM2 is a key 
enzyme in DNA synthesis and repair pathways, and high 
expression of RRM2 is relative to tumor angiogenesis, 
invasion and metastasis [19, 20]. Previous literature 
reported that RRM2 promoted tumorigenesis and 
progression of pancreatic cancer, lung cancer, gastric 
cancer, ovarian cancer, bladder cancer and other tumors 
[21–24], TOP2A gene encoded a DNA topoisomerase, 
it is an ATP-dependent synthetase and hydrolase that 
plays a key role in cells and plays an important role  
in many cellular biological processes, such



www.aging-us.com 6039 AGING 

 
 

Figure 9. Genetic alterations associated with 9 key genes. (A) A visual summary of Genetic alterations (data from ccRCC in TCGA, 
provisional) shows the genetic alteration of 9 key genes which were altered in 118 (26%) of 446 ccRCC patients. (B) The total alteration 
frequency of 9 key genes is illustrated. (C) The network contains 59 nodes, including 9 key genes and the 50 most frequently altered neighbor 
genes. Relationship of 9 key genes is also illustrated. 
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Table 2. Results of CMap analysis. 

Rank cmap name mean n enrichment P specificity percent non-null 
1 trichostatin A -0.375 182 -0.227 0 0.7525 75 
2 trifluoperazine -0.466 16 -0.46 0.00128 0.1635 75 
3 genistein 0.332 17 0.436 0.00208 0.0523 64 
4 prochlorperazine -0.492 16 -0.44 0.00243 0.0849 87 
5 tanespimycin -0.291 62 -0.222 0.00385 0.5714 59 
6 vorinostat -0.497 12 -0.462 0.00692 0.4602 91 
7 chlorpromazine -0.397 19 -0.369 0.00774 0.0321 73 
8 alpha-estradiol -0.483 16 -0.385 0.01219 0.224 87 
9 LY-294002 -0.292 61 -0.201 0.01252 0.638 68 
10 clozapine 0.086 17 0.322 0.04636 0.1156 52 

 

as DNA replication, chromatin condensation, 
chromosome segregation, and chromosome structure 
retention. Studies have found that high expression of 
TOP2A promoted the progression of breast cancer [25, 
26]. UBE2C is also known as UbcH10, which is a 
member of the ubiquitin-coupled enzyme E2 family. It 
has been reported that the expression level of UBE2C is 
positively correlated with tumor grade and poor 
prognosis in the adrenal cancer, breast cancer, colon 
cancer, lung cancer and ovarian cancer [27–31]. UHRF1 
is a newly discovered oncogene which related to cell 
growth. As a an important epigenetic regulator, it plays 
an important role in the maintenance of DNA 
methylation, and participates in important biological 
processes such as cell proliferation, cell cycle regulation, 
apoptosis and radiosensitivity, regulating cell cycle G1-S 
phase and G2-M phase transition, thereby promoting 
tumor progression [32]. 
 
The multivariate Cox regression results showed that 
these 9 key genes selected in our study may also 
represent candidate biomarkers for predicting prognosis 
of ccRCC patients. To further explore potential 
mechanism of 9 hub genes, we performed GSEA 
analysis of all 9 hub genes. The results revealed that all 
hub genes were significantly enriched in terms of cell 
cycle pathway. Several researchers had reported that 
Cell cycle disorder is the most important mechanism of 
tumors. In the regulation of the cell cycle, abnormalities 
of various molecules may cause tumorigenesis and 
progression. Thus, we might suppose that 9 hub genes 
played key role in the tumorigenesis and progression of 
ccRCC probably by regulating cell cycle pathway, which 
contributed to the poor prognosis of ccRCC. 
 
In addition, we used CMap database to identify several 
small molecule drugs with potential therapeutic efficacy 
against ccRCC. Some of them in our results have been 
proven to have anti-cancer effects, such as TSA and 
trifluoperazine. TSA is a histone deacetylase (HDAC) 

inhibitor, which shows a potential therapeutic effect in 
various types of cancer cells, when combined with 
radiotherapy or chemotherapy. Trifluoperazine is a 
typical antipsychotic, but recently some researchers 
found that trifluoperazine could inhibit the proliferation 
of multiple cancer cells, such as glioblastoma, 
Hepatocellular Carcinoma and lung cancer [33–35]. 
Thus, we might consider that these identified molecule 
drugs could have potential to treat ccRCC. So our 
research may provide some potential biomarkers or 
molecular targets for ccRCC. 
 
However, this study has some limitations. Firstly, this is 
a retrospective study, all the data of this study were 
obtained from publicly available database. a multicenter 
and prospective study is needed to evaluate the possible 
applications of molecular signatures to predict survival. 
Secondly, further studies including in vivo and in vitro 
experiments are needed to elucidate molecular 
mechanisms of key genes for clinical applications. 
 
In conclusion, using weighted gene co-expression 
analysis, our study identified 9 key genes associated 
with progression and prognosis, which can provide the 
favorable prognostic value based on these 9 gene 
expression levels, and several candidate small molecule 
drugs that had the potential to treat ccRCC tumors in 
ccRCC tumors, which provide direction for ccRCC 
tumors targeted therapy. 
 
MATERIALS AND METHODS 
 
Gene expression profiles data 
 
Three gene expression profiles of mRNA and related 
clinical data of ccRCC were downloaded from Gene 
Expression Omnibus (GEO) database (http://www.ncbi. 
nlm.nih.gov/geo/) (Supplementary Table 1). GSE36895 
includes 29 ccRCC tissues and 23 normal tissues, 
GSE53757 includes 72 ccRCC tissues and 72 normal 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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tissues, and GSE66272 includes 26 ccRCC tissues and 26 
adjacent normal tissues. Three gene expression profiles 
were used to screen differentially expressed genes. 
GSE66272 was performed to construct weighted gene co-
expression networks analysis for this study. Gene 
sequencing data and corresponding clinical information 
of ccRCC were obtained from The Cancer Genome Atlas 
(TCGA) data portal (https://portal.gdc.cancer.gov/), 
which were used for validation of hub genes. A flowchart 
of this study was showed in Supplementary Figure 1. 
 
Data preprocessing and differentially expressed 
genes (DEGs) screening 
 
For the microarray analyses, RMA method was used for 
background correction of raw gene expression matrixes, 
then log2 transformation of expression matrixes. the 
“affy” R package was utilized for quantile normalization, 
median polish algorithm summarization [36]. Then all 
gene probes were mapped into gene symbols by the 
affymetrix annotation files. The “limma” (linear models 
for microarray data) R package was performed for DEGs 
identifying between ccRCC samples and normal kidney 
samples. Cut-off criteria for screening DEGs were false 
discovery rate (FDR) < 0.05 and |log2fold change| ≥ 1. 
For TCGA ccRCC data, the gene expression data were 
based on the RNA-sequencing technology of 
IlluminaHiseq. The read counts were used to represent 
the genes expression level. Data processing was 
performed as we described before [37] 
 
Weighted co-expression network analysis  
 
Weighted gene co-expression network were constructed 
by “WGCNA” R package, as previously described [38, 
39]. First, sample clustering of common DEGs was 
performed to check if they were good genes and good 
samples. Second, a soft threshold power β was selected in 
accordance with standard scale-free networks. Third, we 
calculated the adjacencies between all filtered genes by 
the power adjacent function to Pearson correlation matrix 
to transform data into a topological overlap matrix 
(TOM), and the corresponding dissimilarity (1-TOM) 
was calculated. Then, According to the TOM-based 
dissimilarity measurement, average linkage hierarchical 
clustering was conducted with a minimum size of 50 for 
the genes dendrogram. To further analyze the module, the 
dissimilarity of module eigengenes was calculated. 
Highly similar modules were identified by clustering and 
then merged together with a height cut-off of 0.25. 
 
Identification of clinically significant modules and 
functional annotation  
 
The module eigengene (ME) was defined as the first 
principal component of a given module. It could be 

regarded as a representative of the gene expression 
profiles from a module, the ME can summarize the gene 
expression profiles, the correlation between ME and 
clinically significant trait was calculated to identify the 
relevant module. Gene significance (GS) was defined as 
the log10 transformation of the P value (GS = lgP) in 
the linear regression between gene expression and 
pathological progression, and module significance (MS) 
represented the average GS for all the genes in a 
module. In general, the module with the absolute MS 
ranked first among all the selected modules was 
considered as the one related with clinical trait. In order 
to explore the potential mechanism of how module 
genes impact correlative clinical feature, we uploaded 
all genes in blue module into Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) 
(http://david.abcc.ncifcrf.gov/) online tool [3]. GO 
functional enrichment analysis and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
were performed. P value < 0.05 was set as the cutoff 
criteria. 
 
Hub genes detection and validation  
 
The genes with the maximum intramodular connectivity 
were defined as hub genes. Firstly, the most significant 
module was identified. Then, hub genes were screened 
according to the criteria that cor.geneModuleMembership 
> 0.8 and cor.geneTraitSignificance > 0.2. Further, the 
differential expression of hub genes in ccRCC was 
validated using Gene Expression Profiling Interactive 
Analysis (GEPIA) database, Oncomine and Human 
Protein Atlas database. ROC curve was performed to 
verify the diagnostic performance of hub genes. Kaplan-
Meier survival curve of overall survival and disease free 
survival was used to analyze survival differences. In 
addition, the selected 9 hub genes were put in a 
multivariate Cox regression analysis. Risk score of 9 hub 
genes was developed based on the mRNA expression 
level weighted by the estimated regression coefficient in 
the multivariate Cox regression analysis. The risk score 
for each patient was calculated as follows, risk score

1
( *Expr )

n

i i
i

coef
=

= ∑ , where Expri  was the expression of 

the genes in the signature for patient i, coef i is the Cox 
coefficient of the genes i. 
 
Genetical alteration of hub genes 
 
The cBioPortal for Cancer Genomics (http://www.cbio 
portal.org/) is a large-scale cancer genomics database 
[40]. It provides an open platform to explore, visualize 
and analyze multi-dimensional cancer genomic data. 
Researchers can interactively explore the genetic changes 
of different samples, genes, and paths. This site also 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.cbioportal.org/
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provides gene level graphical summaries from multi-
platform, web visualization analysis and survival 
analysis. We used cBioPortal to explore genetic 
alterations connected with the 9 hub genes and their 
correlation with other famous genes. 
 
Gene set enrichment analysis (GSEA)  
 
GSEA (http://software.broadinstitute.org/gsea/index.jsp) 
was used to explore biological function of 9 hub genes 
[41]. Annotated gene sets c2.cp.kegg. v5.2.symbols.gmt 
was chosen as the reference gene sets. Gene size ≥ 10, 
FDR < 0.05, and |enrichment score (ES)| > 0.65 were 
set as the cut-off criteria. 
 
Identification of candidate small molecules 
 
Connectivity map (CMap) is a gene expression profiles 
database. It is constructed by team led by Todd Golub 
and Eric Lander [42]. Firstly, small molecule drugs 
were utilized to process human cells. Then, differential 
expressed genes after treatment were used to establish a 
database, which interrelated small molecule drugs, gene 
expression and disease. It could help researchers to 
quickly identify molecule drugs with high correlation 
with diseases, the chemical structure of molecule drugs 
and the possible mechanism of molecule drugs. 
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SUPPLEMENTARY MATERIALS 
 
 
 
 

 
 

Supplementary Figure 1. Flow chart of data preparation, processing, analysis and validation in this study. 
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Supplementary Figure 2. Clustering dendrogram of ccRCC tumor samples and the clinical traits, and determination of soft-
thresholding power. (A) The clustering was based on the common differentially expressed genes in ccRCC. The red color represented stage 
and grade. The color intensity was proportional to higher pathological stage and grade. (B) Analysis of the scale-free fit index for various soft-
thresholding powers (β). (C) Analysis of the mean connectivity for various soft-thresholding powers. (D) Histogram of connectivity distribution 
when β = 8. (E) Checking the scale free topology when β = 8. 
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Supplementary Figure 3. Gene expression level of 9 key genes (based on Oncomine database). 
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Supplementary Figure 4. Validation of the correlation between 9 key genes expression levels and the pathologic stages of 
ccRCC (based on ccRCC data in GEPIA database). (A) PTTG1, (B) RRM2, (C) TOP2A, (D) UHRF1, (E) CEP55, (F) BIRC5, (G) UBE2C, (H) 
FOXM1 and (I) CDC20. 
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Supplementary Figure 5. Immunohistochemistry of the 9 key genes based on the Human Protein Atlas. (A) PTTG1, (B) RRM2, (C) 
TOP2A, (D) UHRF1, (E) CEP55, (F) BIRC5, (G) UBE2C, (H) FOXM1, (I) CDC20. 
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Supplementary Figure 6. Gene set enrichment analysis (GSEA). Only listed the common functional gene sets enriched in 
ccTCC with 9 key genes highly expressed. 
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Supplementary Table 1. The detailed information of the expression profile datasets. 

Dataset Array types Experiment type 

GSE36895 [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array Expression profiling by array 

GSE53757 HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array Expression profiling by array 

GSE66272 HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array Expression profiling by array 

The Cancer Genome Atlas (TCGA) Illumina HiSeq platform RNA-sequencing profiling 
 

Please browse Full Text version to see the data of Supplementary Tables 2 - 5. 
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