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SUPPLEMENTARY MATERIALS 

MATERIALS AND METHODS 
 

Construction of the SMLN 
 

Drugs and affected lncRNAs were obtained from the 

LNCmap. The LNCmap extracted drug-affected 

lncRNA expression profiles by reannotating the 

microarray data from the CMap database. According to 

the pipeline of ncFANs [1], the LNCmap developed a 

similar computational method to reannotate lncRNAs 

from expression microarray of coding genes. LNCmap 

reannotated 5916 microarray profiles, with 674 

instances from the Human Genome U133 Set (HG-

U133A) platform and 5242 instances from the 

GeneChip HT Human Genome U133 Array Plate Set 

(HT_HG-U133A) platform. We then used the R 

package affy to compute expression values for all 

lncRNA expression profiles and obtained log2-fold 

change values to identify differentially expressed 

lncRNAs (DEL). The DELs were merged if the 

corresponding experiments belonged to the same drug. 

After the above steps, we obtained 4770 small 

molecule-lncRNA relationships, including 1005 small 

molecules and 173 lncRNAs, and constructed a bipartite 

small-molecule lncRNA network (SMLN). 

 

Generating the LLN 
 

We generated the LLN in which lncRNAs represented 

nodes and two lncRNAs were connected if they shared 

significant numbers of small molecules. Because of the 

marked differences between the number of lncRNAs 

(173) and small molecules (1005), lncRNAs were 

connected to each other closely. To improve the 

specificity and identify the more significant lncRNA 

pairs, we adopted a hypergeometric test to generate the 

LLN. 
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Here, we collected m total small molecules in the 

SMLN, for each two lncRNAs i and j, t was the number 

of small molecules affected by lncRNA i, and n was the 

number of small molecules affected by lncRNA j, of 

which r was overlapped small molecules of the two 

small-molecule sets. After calculating the P-value, we 

adopted the FDR-corrected q-values to reduce the false 

positive discovery rate. Significant lncRNA pairs 

(P<0.01, q-values<0.01) were obtained to construct the 

LLN. 

 

Datasets of pharmacological properties 
 

Indications 

We collected the drug-indication associations from the 

study of Yildirim et al [2]. We also downloaded the 

drug-indication associations from Therapeutic Target 

Database (TTD) [3], then integrated the two datasets 

manually. 

 

Drug targets 

 

We downloaded the drug-target associations from the 

DrugBank database [4], which is a unique bioinformatics 

and cheminformatics resource that combines detailed drug 

data with comprehensive drug target information. We 

obtained 399 small molecules in our SMLN. 

 

Side effects 

 

We downloaded the drug side effect dataset from a 

public computer-readable resource, SIDER, which is a 

freely available database that contains information on 

marketed medicines and their recorded adverse drug 

reactions [5]. We collected 997 drugs corresponding to 

4492 side effects, including 303 small molecules in the 

SMLN. 

 

Drug chemical similarity 

 

We downloaded the SMILES files of small molecules in 

the SSN from the DrugBank database and Kyoto 

Encyclopedia of Genes and Genomes (KEGG, 

http://www.kegg.jp/kegg/drug/). We computed the TC 

scores of drug pairs using the Chemical Development 

Kit with default parameters [6]. 

 

Pathway enrichment 

 

Pathway enrichment analysis was implemented based 

on co-expressed protein-coding genes of lncRNAs by 

using SubpathwayMiner tools [7]. We calculated the 

Pearson correlation coefficient (PCC) between all 

reannotated lncRNA expression files and mRNA 

expression profiles of CMap. Using the setting 

|PCC|>0.5 and p < 0.01, we obtained the correlating 

mRNAs for pathway enrichment. The pathway 

enrichment was implemented by SubpathwayMiner 

with default parameters. 

 

Tissue-specificity 

 

We used the GSE1133 dataset and the ArrayExpress 

database (ERP000546) to study the tissue-specificity of 
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drug-affected lncRNAs. We firstly re-annotated the 

microarray dataset of GSE1133 and obtained 176 

lncRNAs across 79 healthy tissues; then, we calculated 

tissue specificity scores for lncRNAs and identified 

tissue-specific lncRNAs (score >0.8) for each tissue [8]. 

According to the ATC classification of tissues and 

drugs, tissue-specific lncRNAs and drug-affected 

lncRNAs were allocated to the ATC classification 

separately, and we calculated the Jaccard coefficient 

between the tissue ATC classification and drug ATC 

classification to measure the similarity between 

lncRNAs related to different classifications of tissue 

and drug. We used the ArrayExpress database 

(ERP000546) to calculate the Jaccard coefficients of 

lncRNAs between 13 drug classes and 16 tissues by 

processing the RNA-seq data of 16 normal human 

individual tissues. 

 

The basic properties of the SMLN 

 

The degree of small-molecule nodes spanned a wide 

range from 1 to 87. The highest degree node was 

trichostatin A (TSA), an organic compound that serves 

as an antifungal antibiotic and selectively inhibits class I 

and II mammalian histone deacetylases (HDACs) [9]. 

TSA can broadly alter gene expression by interfering 

with the removal of acetyl groups from histones [10, 

11]. It is also a member of a larger class of histone 

deacetylase inhibitors that have a broad spectrum of 

epigenetic activities [10, 11]. The second highest degree 

small molecule node (degree=46) was emetine, an anti-

malaria drug that was recently found to have broad 

anticancer activity in many types of malignancies 

including breast, colon, prostate, skin, and lymphoid 

tumors by inhibiting NF-κB signaling or regulating the 

RNA splicing of members of the Bcl-2 family [12, 13]. 

Although there are no specific reports about emetine 

and lncRNAs, it was linked to many lncRNAs, partly 

because of its broad anticancer effects. Interestingly, we 

found that other highly-connected nodes, namely 

anisomycin and idoxuridine (degree: 39 and 38, 

respectively) could inhibit protein/DNA synthesis. 

Anisomycin is a potent apoptosis inducer that functions 

by activating JNK/SAPK and inhibiting protein/DNA 

synthesis during translation [14, 15]. Idoxuridine, which 

is used as an antiviral agent, is an analog of 

deoxyuridine, an inhibitor of viral DNA synthesis [16]. 

The high connectivity may have been due to their 

activity related to apoptosis and the inhibition of 

protein/DNA synthesis. 

 

Similar to the small molecule nodes, the lncRNA nodes 

also displayed evident differences in connection (range, 

1–366). The lncRNA node with the highest degree was 

RP11-1148L6.5.1. There are no functional studies about 

this lncRNA. To date, few lncRNAs have been 

functionally annotated. Of seven lncRNAs with a 

degree >100, only DLEU2 (Deleted in Lymphocytic 

lEUkemia 2) is well studied. It encodes a pair of critical 

pro-apoptotic microRNAs, miR-15a/16-1, which are 

critical for the increased survival exhibited by chronic 

lymphocytic leukemia cells [17]. Chen et Al. indicated 

that the HDAC inhibitor TSA, the most-connected small 

molecule in the SMLN, could upregulate the expression 

of miR-15a/16-1, residing in the host tumor suppressor 

DLEU2 gene [18]. Furthermore, in our SMLN, TSA 

could also upregulate DLEU2 (log2 fold change = 1.4), 

suggesting that our SMLN could identify a promising 

cancer therapy via targeting lncRNAs [17].  
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