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INTRODUCTION 
 

Macrophages, among other host immune cells, are 

essential in determining immune responses against 

Mycobacterium tuberculosis (MTB) infection and 

tuberculosis (TB) [1], which causes an estimated over 1.5 

million human mortalities each year [2]. After activation, 

macrophages are capable of clearing the intracellular 

MTB burdens [1]. Contrarily, MTB bacteria can survive 

and then spread when the infected macrophages are dead 

[1, 3, 4]. Studies have shown that MTB spread will be 

facilitated with the death of the infected macrophages [1, 

3, 4], caused often by the extracellular growth of released 

MTB or less cleared MTB in dead macrophages [3, 5]. 

Understanding the molecular mechanisms of death of  

 

MTB-infected macrophages is therefore important for 

MTB infection control [6]. 

 

Cell necrosis is traditionally known as a passive cell death 

form. Interestingly, recent literatures have indicated that 

cell necrosis could also be a programmed, mitochondria-

dependent and active cell death [7–10]. This so-called 

“programmed necrosis” can promote cell death by a 

number of different stresses and stimuli, including 

oxidative injury, calcium over-load and several chemo-

agents [7, 8, 11, 12]. In the progression of programmed 

necrosis, p53 translocates to cell mitochondria to form a 

complex with mitochondria permeability transition pore 

(mPTP) components, including cyclophilin-D (CypD) and 

adenine nucleotide translocator type 1 (ANT1) [13, 14]. 
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ABSTRACT 
 

Mycobacterium tuberculosis (MTB) infection induces cytotoxicity to host human macrophages. The underlying 
signaling mechanisms are largely unknown. Here we discovered that MTB infection induced programmed necrosis 
in human macrophages, causing mitochondrial cyclophilin-D (CypD)-p53-adenine nucleotide translocator type 1 
association, mitochondrial depolarization and lactate dehydrogenase medium release. In human macrophages 
MTB infection-induced programmed necrosis and apoptosis were largely attenuated by CypD inhibition (by 
cyclosporin A), silencing and knockout, but intensified with ectopic CypD overexpression. Further studies 
identified microRNA-1281 as a CypD-targeting miRNA. Ectopic overexpression of microRNA-1281 decreased CypD 
3’-untranslated region activity and its expression, protecting human macrophages from MTB-induced 
programmed necrosis and apoptosis. Conversely, microRNA-1281 inhibition in human macrophages, by the anti-
sense sequence, increased CypD expression and potentiated MTB-induced cytotoxicity. Importantly, in CypD-KO 
macrophages miR-1281 overexpression or inhibition was ineffective against MTB infection. Restoring CypD 
expression, by an untranslated region-depleted CypD construct, reversed miR-1281-induced cytoprotection 
against MTB in human macrophages. Collectively, these results show that targeting CypD by miR-1281 protects 
human macrophages from MTB-induced programmed necrosis and apoptosis.  
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This will lead to mitochondrial depolarization, mPTP 

opening and cytochrome C release. It will eventually 

promote cell necrosis [7–9, 11, 12, 15, 16]. Other studies 

proposed that the cascade is also important for initiating 

cell apoptosis, as cytochrome C releases to the cytosol 

[17–19]. The current study tested whether this pathway 

participated in MTB-induced death of human 

macrophages.  

 

MicroRNAs (miRNAs) are a large family of 

endogenous, short (about 22-nt long) and single-strand 

non-coding RNAs (ncRNAs) [20, 21]. By physically 

binding to the 3′-untranslated region (3′-UTR) of the 

targeted mRNA, miRNAs will induce degradation of 

target mRNAs and/or inhibit gene translation [20, 21]. 

Existing literatures have implied that miRNA 

dysregulation in the host cells (including macrophages) 

is extremely important in active and latent TB infection 

[22–25]. Our previous study has shown that microRNA-

579 (miR-579) upregulation mediated MTB-induced 

macrophage cytotoxicity [26]. Whether CypD is a target 

of miRNAs and the molecular regulation of CypD in the 

necrotic machinery of MTB-infected human 

macrophages remain to be elucidated. The results of the 

present study will show that microRNA-1281 (miR-

1281) is a CypD-targeting miRNA, and miR-1281 

protecting human macrophages from MTB-induced 

programmed necrosis and apoptosis by silencing CypD.  

 

RESULTS 
 

MTB infection induces mPTP opening and 

programmed necrosis in human macrophages 

  

Understanding the underlying mechanisms of MTB-

induced death of macrophages is vital for the control of 

MTB infection [6, 26]. We tested the possible 

involvement of mPTP in the process. The mitochondrial 

immunoprecipitation (Mito-IP) assay results, Figure 1A, 

demonstrated that with MTB infection, p53 

immunoprecipitated with mPTP components CypD  and 

ANT1 [8, 27, 28]. It is known as the initial step for 

mPTP opening and programmed necrosis [11, 13, 14, 

29, 30]. The expression levels of CypD, ANT1 and p53 

were not significantly changed in human macrophages 

(Figure 1A, “Input”). mPTP opening is often followed 

with mitochondrial depolarization [11, 13, 14, 29, 30]. 

JC-1 assay results, Figure 1B, demonstrated that 

mitochondrial depolarization occurred in the MTB-

infected human macrophages, showing JC-1 green 

fluorescence accumulation (Figure 1B). Furthermore, 

the medium LDH contents were significantly increased 

in human macrophages with MTB infection (Figure 

1C), indicating programmed necrosis [11, 13, 14, 29, 

30]. Together, these results suggested that MTB 

infection induced mPTP opening and programmed 

necrosis in human macrophages. 

 
 

Figure 1. MTB infection induces mPTP opening and programmed necrosis in human macrophages. The primary human 
macrophages were infected with Mycobacterium tuberculosis (MTB) for applied time periods, mitochondrial immunoprecipitation (Mito-IP) 
assays were carried out to test CypD-ANT1-p53 association in the mitochondria (A, “Mito-IP”), with expression of these proteins examined by 
Western blotting (A, “Input”); Mitochondrial depolarization was examined by JC-1 dye assay (B); Cell necrosis was tested by medium LDH 
release assays (C). For JC-1 assays, both JC-1 merged images and JC-1 green fluorescence intensity were presented (same for all Figures). 
Expression of listed proteins was quantified, normalized to loading controls (A). “C” stands for uninfected control macrophages (same for all 
Figures). Data were presented as mean ± SD (n=5), and results were normalized to “C”. * P <0.05 vs. “C” macrophages. Experiments in this 
figure were repeated five times with similar results obtained. Bar= 100 μm (B). 
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CypD inhibition attenuates programmed necrosis 

and apoptosis in MTB-infected human macrophages 

 

The pharmacological and genetic strategies were applied 

to interfere CypD in human macrophages. Cyclosporin A 

(CsA), a CypD inhibitor and mPTP blocker [31–33], was 

utilized. Alternatively, the lentiviral shRNA strategy and 

the CRISPR-Cas9 gene-editing method were applied to 

knockdown and knockout (KO) CypD in human 

macrophages respectively (see Methods), resulting in 

depletion of CypD (Figure 2A and 2B). As shown, CsA, 

without changing CypD expression (Figure 2A and 2B), 

potently attenuated MTB-induced mitochondrial 

depolarization (JC-1 green fluorescence accumulation, 

Figure 2C). Consequently, the CypD inhibitor largely 

attenuated MTB-induced viability reduction (Figure 2D) 

and cell necrosis (medium LDH release, Figure 2E). 

Furthermore, in human macrophages with CypD shRNA 

or KO, MTB-induced mitochondrial depolarization 

(Figure 2C), viability reduction (Figure 2D) and cell 

necrosis (Figure 2E) were also largely attenuated. The 

caspase-3 activity and TUNEL staining assay results 

demonstrated that CypD inhibition (by CsA), silencing or 

KO potently alleviated MTB-induced caspase-3 activation 

(Figure 2F) and apoptosis (Figure 2G) in human 

macrophages. Therefore, CypD inhibition or silencing 

potently inhibited MTB-induced programmed necrosis 

and apoptosis in human macrophages. 

 

We further hypothesized that ectopic overexpression of 

CypD should facilitate MTB-induced cytotoxicity of 

human macrophages. The lentiviral CypD expression 

construct was transduced to human macrophages. Via 

selection by puromycin the stable cells were established, 

showing over five-folds CypD mRNA expression (vs. 

vector control cells, Figure 2H). CypD protein levels were 

significantly increased as well (Figure 2I). Importantly, 

ectopic CypD overexpression potentiated MTB-induced 

mitochondrial depolarization (Figure 2J), viability 

reduction (Figure 2K) and medium LDH release (Figure 

2L). TUNEL staining results demonstrated that CypD 

overexpression significantly enhanced MTB-induced 

apoptosis activation (Figure 2M). MTB infection did not 

affect CypD expression in human macrophages (Figure 

2A and 2H). Without MTB infection, CypD inhibition, 

silencing, KO or overexpression did not affect the 

functions of human macrophages (Figure 2C–2G, 2J–

2M). These results show that inhibition of the CypD-

mPTP pathway largely attenuated MTB-induced death of 

human macrophages. 

 

microRNA-1281 is CypD-targeting miRNA in 

human macrophages 

 

miRNAs are a large family of conserved, short single-

stranded non-coding RNAs (ncRNAs), function as the 

negative regulators of the target genes by suppressing 

mRNA translation and/or promoting mRNA 

degradation [34, 35]. We have shown that CypD 

inhibition or silencing protected human macrophages 

from MTB infection. Therefore CypD-targeting 

miRNAs should exert similar functions. The possible 

CypD-targeting miRNAs were searched by consulting 

the microRNA database TargetScan (V7.2) at its 3’-

UTR. The potential CypD-targeting miRNAs were 

further verified by other microRNA databases, 

including miRbase (v21.0), miRDB, miRanda and 

PicTar. These bioinformatics studies discovered that 

microRNA-1281 (miR-1281) putatively targets the 3’-

UTR of CypD (at position 1214-1223, Figure 3A), with 

the miR-1281-CypD binding context score percentage 

of 99% and the context++ score -0.6 (from TargetScan 

V7.2, Figure 3A) [36].  

 

To test whether miR-1281 could target and inhibit 

CypD expression, the lentiviral construct with pre-miR-

1281 (“lv-pre-miR-1281”) was transduced to human 

macrophages. Following selection two stable cell lines, 

“Line1/Line2”, were established, where mature miR-

1281 levels increased over 20 folds (vs. parental control 

macrophages, Figure 3B). Significantly, ectopic miR-

1281 overexpression potently inhibited the 3’-UTR 

activity of CypD (Figure 3C). CypD mRNA levels 

decreased over 80% in lv-pre-miR-1281-expressing 

macrophages (vs. control macrophages, Figure 3D), 

where CypD protein levels were significantly 

downregulated as well (Figure 3E).  

 

To further show that miR-1281 is a CypD-targeting 

miRNA, the primary human macrophages were 

transfected with wild type (“WT-”) or a mutant (“Mut-”) 

miR-1291 mimic. The Mut-miR-1291 mimic does not 

bind to the 3′-UTR of CypD (Figure 3A). Transfection of 

the WT-miR-1291 mimic led to significant reduction of 

CypD 3′-UTR activity (Figure 3F) and CypD 

mRNA/protein expression (Figure 3G and 3H), with the 

Mut-miR-1291 mimic completely ineffective (Figure 3F–

3H). These results suggest that miR-1281 is a CypD-

targeting miRNA in human macrophages.  

 

miR-1281 overexpression inhibits MTB-induced 

programmed necrosis and apoptosis in human 

macrophages 

 

Since miR-1281 targets and downregulates CypD, it 

would then protect human macrophages from MTB-

induced cytotoxicity. The lv-pre-miR-1281-expressing 

human macrophages (see Figure 3) and control 

macrophages with non-sense microRNA (“lv-C”) were 

infected with MTB. As shown, miR-1281 

overexpression potently inhibited MTB-induced 

mitochondrial depolarization, or JC-1 green
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Figure 2. CypD inhibition attenuates programmed necrosis and apoptosis in MTB-infected human macrophages. The parental 
control human macrophages (“Pare”), with or without cyclosporin A (CsA) pretreatment (5 μM, for 1h), as well as the stale macrophages with the 
CypD shRNA (“shCypD”) or the lenti-CRISPR-Cas9 CypD knockout construct (“koCypD”), were infected with Mycobacterium tuberculosis (MTB) for 
applied time periods, CypD mRNA (A) and protein (B) expression was shown; Mitochondrial depolarization, cell viability, cell necrosis and 
apoptosis were tested by JC-1 staining (C), CCK-8 (D), medium LDH release (E), and Caspase-3/TUNEL assays (F and G) assays, respectively. The 
parental control human macrophages (“Pare”) as well as the stable macrophages with the CypD-expression construct (“OE-CypD”) or the empty 
vector (“Vec”) were infected with MTB for applied time periods, CypD mRNA (H) and protein (I) expression was shown; Mitochondrial 
depolarization (J), cell viability (K) and cell necrosis (L) were tested similarly. CypD expression was quantified, normalized to Tubulin (B and I). 
Data were presented as mean ± SD (n=5), and results were normalized to “C”. * P <0.05 vs. “C” treatment in “Pare” macrophages. # P <0.05 vs. 
MTB treatment in “Pare” macrophages. Experiments in this figure were repeated four times with similar results obtained.  
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fluorescence accumulation (Figure 4A). MTB-induced 

viability reduction (Figure 4B) and cell necrosis 

(medium LDH release, Figure 4C) were significantly 

attenuated in lv-pre-miR-1281-expressing macrophages. 

Furthermore, miR-1281 overexpression in human 

macrophages suppressed MTB-induced caspase-3 

activation (Figure 4D) and apoptosis (nuclear TUNEL 

staining, Figure 4E). Thus, miR-1281 overexpression 

alleviated MTB-induced programmed necrosis and 

apoptosis in human macrophages. 

 

miR-1281 inhibition upregulates CypD and 

intensifies MTB-induced cytotoxicity in human 

macrophages 

 

To suppress miR-1281 expression, the lentivirus 

encoding the pre-miR-1281 anti-sense sequence, 

antagomiR-1281, was transduced to the primary human 

macrophages, resulting in over 90% reduction of mature 

miR-1281 expression (Figure 5A). Conversely, CypD 

3′-UTR activity (Figure 5B), CypD mRNA (Figure 5C, 

the left panel) and protein (Figure 5C, the right panel) 

expression were significantly elevated (Figure 5B, 5C). 

Functional studies demonstrated that miR-1281 

inhibition intensified MTB-induced mitochondrial 

depolarization (Figure 5D). As compared to control 

macrophages (with anti-sense control sequence/ 

antagomiR-C), the macrophages with antagomiR-1281 

showed increased viability reduction (Figure 5E), cell 

necrosis (Figure 5F) and apoptosis (Figure 5G and 5H) 

following MTB infection. Therefore, miR-1281 

inhibition upregulated CypD and intensified MTB-

induced cytotoxicity in human macrophages. 

 

miR-1281 is ineffective in CypD-depleted human 

macrophages 

 

If CypD is the target of miR-1281, the latter should be 

ineffective in the CypD-depleted cells. Therefore, to the 

CypD-KO human macrophages (see Figure 2), lv-pre-

miR-1281 or antigomiR-1281 was transduced. As 

shown lv-pre-miR-1281 and antigomiR-1281 failed to 

affect MTB infection-induced viability reduction 

(Figure 6A) and cell necrosis (Figure 6B) in CypD-KO

 

 
 

Figure 3. microRNA-1281 is CypD-targeting miRNA in human macrophages. microRNA-1281 (miR-1281) putatively targets position 
1214-1223 in CypD 3’-UTR (3’-untranslated region) (A). The primary human macrophages were infected with lentivirus encoding pre-miR-
1281 (“lv-pre-miR-1281”), two stable cell lines, “Line1/2”, were established following puromycin selection. Control macrophages were 
infected with non-sense microRNA (“lv-C”) lentivirus; Expression of mature miR-1281 and listed mRNAs was tested by qPCR assays (B and D); 
The relative CypD 3’-UTR activity was tested (C), with CypD protein expression tested by Western blotting (E). The primary human 
macrophages were transfected with 500 nM of control microRNA mimic (“miR-C”), the wild-type (“WT-”) or the mutant (“Mut-”) miR-1281 
mimic (see sequences in A), after 48h CypD 3’-UTR activity (F), CypD mRNA (G) and protein (H) expression were tested. CypD protein 
expression was quantified, normalized to Tubulin (E and H). Data were presented as mean ± SD (n=5), and results were normalized. * P <0.05 
vs. “Pare”/”miR-C” cells. Experiments in this figure were repeated five times with similar results obtained.  
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macrophages. Both altered miR-1281 expression 

(Figure 6C). Western blotting assay results, Figure 6D, 

confirmed that CypD depletion in the CypD-KO human 

macrophages.  

 

Next, the 3′-UTR-depleted CypD construct was 

transfected to human macrophages, completely restored 

CypD mRNA and protein expression in macrophages 

with lv-pre-miR-1281 (Figure 6E). As shown lv-pre-

miR-128-induced macrophage protection against MTB 

was completely reversed with re-expression of the 3′-

UTR-depleted CypD (Figure 6F and 6G). Thus, with 

CypD re-expression MTB-induced viability reduction 

(Figure 6F) and cell death (Figure 6G) were restored  

even with miR-1281 overexpression. The qPCR assay 

results, Figure 6H, demonstrated that 3′-UTR-depleted 

CypD did not alter miR-1281 expression. These results 

together indicate that CypD should be the important 

target of miR-1281 in human macrophages.  

 

DISCUSSION 
 

Necrosis is a common form of cell death characterized 

by cell swelling, plasma membrane fracture and lysis of 

the intracellular components and cellular organelles. 

The traditional concept is that necrosis is a form of 

accidental, unregulated and passive cell death, while 

apoptosis is the sole form of “programmed cell death” 

 

 
 

Figure 4. miR-1281 overexpression inhibits MTB-induced programmed necrosis and apoptosis in human macrophages. The 
primary human macrophages were infected with lentivirus encoding pre-miR-1281 (“lv-pre-miR-1281”), two stable cell lines, “Line1/2”, were 
established following puromycin selection. Control macrophages were infected with non-sense microRNA (“lv-C”); The macrophages were 
infected with Mycobacterium tuberculosis (MTB) for applied time periods, mitochondrial depolarization, cell viability, cell necrosis and 
apoptosis were tested by JC-1 staining (A), CCK-8 (B), medium LDH release (C), and caspase-3 activity (D)/TUNEL staining (E) assays, 
respectively. Data were presented as mean ± SD (n=5). * P <0.05 vs. “C” treatment in “lv-C” macrophages. # P <0.05 vs. MTB treatment in “lv-
C” macrophages. Experiments in this figure were repeated five times with similar results obtained. Bar= 100 μm (A and E). 
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Figure 5. miR-1281 inhibition upregulates CypD and intensifies MTB-induced cytotoxicity in human macrophages. The primary 

human macrophages were transduced with the lentiviral pre-miR-1281 anti-sense (“antagomiR-1281”) or the non-sense control miR anti-
sense (“antagomiR-C”), with stable cells selected by puromycin. Macrophages were then infected with Mycobacterium tuberculosis (MTB) 
for applied time periods, expression of mature miR-1281 and listed genes was shown (A and C); The relative CypD 3’-UTR activity was tested 
(B); Mitochondrial depolarization, cell viability, cell necrosis and apoptosis were tested by JC-1 staining (D), CCK-8 (E), medium LDH release 
(F), and caspase-3 activity (G)/TUNEL staining (H) assays, respectively. CypD expression was quantified, normalized to Tubulin (C). Data were 
presented as mean ± SD (n=5). * P <0.05 vs. “C” treatment in “antagomiR-C” macrophages. # P <0.05 vs. MTB treatment in “antagomiR-C” 
macrophages. Experiments in this figure were repeated five times with similar results obtained.  

 

 
 

Figure 6. miR-1281 is ineffective in CypD-depleted human macrophages. The stale human macrophages with the lenti-CRISPR-

Cas9 CypD knockout construct (“koCypD”) were infected with the lentivirus encoding pre-miR-1281 (“lv-pre-miR-1281”) or antigomiR-1281, 
with puromycin selection stable cells were established. The macrophages were then treated with Mycobacterium tuberculosis (MTB) 
infection for applied time periods, cell viability (CCK-8 assay, A), cell necrosis (medium LDH release assay, B), miR-1281 levels (C) and CypD 
protein expression (D) were tested. The stale macrophages with lv-pre-miR-1281 were further transfected with the construct encoding the 
3’UTR-depleted CypD (“no UTR”), after 48h CypD mRNA and protein expression was tested (E); The macrophages were further infected with 
MTB for applied time periods, cell viability (F), cell necrosis (G) and miR-1281 expression (H) were examined. CypD expression was quantified, 
normalized to Tubulin (D and E). Data were presented as mean ± SD (n=5). * P <0.05 vs. “C” treatment. # P <0.05 (E and G). Experiments in 
this figure were repeated five times with similar results obtained. 
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[10, 37, 38]. Yet recent studies have shown that certain 

necrosis is also programmed and actively regulated  

[7, 10, 37–39]. In the present study we show that MTB 

infection led to programmed necrosis in human 

macrophages, causing CypD-p53-ANT1 mitochondrial 

association, mitochondrial depolarization and LDH 

release (to the medium). Importantly programmed 

necrosis, together with apoptosis, could be vital for 

MTB infection-induced cytotoxicity in the human 

macrophages.  

 

CypD is the prolyl isomerase and the key component 

forming mPTP, along with ANT1 and the voltage-

dependent anion channel (VDAC) [13, 14, 29]. Studies 

have shown that CypD lies in the center to mediate the 

pore opening. CypD inhibition or depletion will result 

in inhibition on mPTP formation and opening [13, 14, 

29]. Since mPTP opening is vital for programmed 

necrosis, CypD is essential in regulating necrotic cell 

death pathway [13, 14, 29]. In the present study we 

show that CypD is vital for MTB-induced cytotoxicity 

to human macrophages. MTB infection-induced 

programmed necrosis and apoptosis were largely 

attenuated with CypD inhibition (by CsA), silencing (by 

shRNA) and KO (using CRISPR/Cas9 method), but 

intensified with ectopic overexpression of CypD. 

Therefore, targeting CypD-mPTP pathway could be a 

novel strategy to protect human macrophages from 

MTB infection-induced cytotoxicity.  

 

One strategy to inhibit CypD-mPTP pathway is to 

express CypD-targeting miRNAs. Wang et al., have 

shown that microRNA-30b (miR-30b) targeting CypD 

protected hearts from ischemia/reperfusion injury and 

necrotic cell death [40]. miR-7 also targets VDAC1 to 

shut down the function of mPTP pore [41]. The results 

of this study show that miR-1281 is an anti-CypD 

miRNA. Ectopic overexpression of miR-1281, by lv-

pre-miR-1281, significantly decreased CypD 3′-UTR 

activity and downregulated CypD mRNA/protein 

expression in human macrophages. Conversely, miR-

1281 inhibition, by antagomiR-1281, led to increased 

CypD 3′-UTR activity and expression. The mutant miR-

1281, with the mutation at the CypD 3′-UTR binding 

site, failed to alter CypD 3′-UTR activity and 

expression. These results clearly show that miR-1281 

targets CypD in human macrophages.  

 

Our results imply that miR-1281 inhibited MTB-

induced cytotoxicity to the human macrophages. First, 

lv-pre-miR-1281 largely attenuated programmed 

necrosis and apoptosis in MTB-infected macrophages. 

Conversely, miR-1281 inhibition, by antagomiR-1281, 

protected human macrophages from MTB-induced 

cytotoxicity. These results imply that miR-1281 offers 

cytoprotection against MTB infection in human 

macrophages. Further analyses show that CypD is the 

primary target gene of miR-1281 in MTB-infected 

macrophages. Neither miR-1281 overexpression nor 

miR-1281 inhibition was able to change MTB-induced 

cytotoxicity in CypD-KO macrophages. Importantly, 

restoring CypD expression, by the UTR-depleted CypD 

construct, reversed miR-1281-induced macrophage 

protection against MTB infection.  

 

Collectively, these results show that targeting CypD by 

miR-1281 protects human macrophages from MTB-

induced programmed necrosis and apoptosis. 

 

MATERIALS AND METHODS 
 

Chemicals and reagents 

 

 Puromycin, cyclosporin A (CsA), terminal 

deoxynucleotidyl transferase (TdT)-mediated Dutp 

nick-end labeling (TUNEL), DAPI and JC-1 dyes were 

obtained from Sigma-Aldrich (St. Louis, MO). The 

antibodies were from Cell Signaling Tech (Danvers, 

MA). From Invitrogen-Thermo Fisher (Shanghai, 

China) the cell culture reagents, the Trizol reagents and 

other RNA assay reagents, as well as the cell 

transfection reagents were obtained. All the sequences, 

viral constructs and gene products were provided and 

verified by Shanghai Genechem Co. (Shanghai, China) 

or otherwise mentioned.  

 

Primary human macrophages.  

 

As described early [26], from the peripheral blood 

mononuclear cells (PBMCs) of a written-informed 

consent donor the primary human macrophages were 

differentiated [42] and cultured under the described 

protocol [42]. The primary macrophages were always 

utilized at passage 3–10. The protocols of the present 

study were approved by the Ethics Committee of Tongji 

University School of Medicine.  

 

MTB infection 

 

As described early [26], at 2×105 cells per well the 

primary human macrophages were cultured into six-

well plates and then infected with MTB (multiplicity of 

infection/MOI 10). After 4h the infected macrophages 

were washed and returned back to the fresh medium. 

 

Mitochondrial Immunoprecipitation (Mito-IP) 

 

As described previously [18], human macrophages with 

MTB infection were harvested and homogenized by the 

lysis buffer provided by Dr. Wang at Soochow 

University [18]. After centrifugation, the supernatants 

were collected and suspended. The pellets were then
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Table 1. Primers utilized in this study. 

Gene name Forward primer Reverse primer 

miR-1281 TCGCCTCCTCCTCTCC GAACATGTCTGCGTATCTC 

ANT-1 GCTGCCTACTTCGGAGTCTATG TGCGACTGCCGTCACACTCTG 

CypD CGACTTCACCAACCACAATGGC GGTGTTAGGACCAGCATTAGCC 

re-suspended in the above buffer plus NP-40, forming 

the mitochondria fraction lysates. The quantified 

mitochondrial lysates (500 μg per sample) were pre-

cleared and incubated with anti-CypD antibody [28, 

43], with the mitochondrial CypD-p53-ANT1 complex 

captured by the protein IgG-Sepharose beads (Sigma), 

and tested by Western blotting. 

 

Quantitative real-time PCR (qPCR) 

 

Total cellular RNA was extracted by the Trizol reagents 

from MTB-infected macrophages, with the RNA 

concentrations determined using the NanoDrop system. 

From each treatment 100 ng total RNA was utilized for 

the reverse transcription using the described protocol 

[26]. The detailed procedures for qPCR were described 

previously [26], with the melt curve analyses 

performed. Quantification of targeted genes was 

through the 2−ΔΔCt method, using GAPDH as the 

internal control. miR-1281 expression was normalized 

to U6. From Shanghai Genechem the primers for U6 

and GAPDH were obtained, with other primers for miR-

1281, CypD and ANT1 listed in Table 1. 

 

Western blotting 

 

The detailed procedures for the Western blotting assay 

were reported early [26]. In brief, with the applied 

treatments, 30 μg total lysates (of each lane) were 

separated by sodium dodecyl sulfate-polyacrylamide 

gels, thereby transferred to the polyvinylidene 

difluoride (PVDF) blots (Merck-Millipore). After 

blocking the blots were incubated with the primary 

and secondary antibodies, and detected using the 

enhanced chemiluminescence (ECL) kit (Pierce, 

Rockford, IL).  

 

Cell viability 

 

Macrophages were plated at 3×103 cells per well onto the 

96-well tissue-culture plates. Following the indicated 

treatments the Cell Counting Kit-8 (CCK-8, Dojindo 

Laboratories, Kumamoto, Japan) reagent (10 μL in each 

well) was added. After 2h, the CCK-8 absorbance at 

450 nm was tested through a spectrophotometer (Thermo 

Fisher Scientific, Vantaa, Finland). 

Cell necrosis 

 

Cell necrosis was tested through assaying the medium 

lactate dehydrogenase (LDH) contents by a two-step 

easy enzymatic reaction LDH kit (Takara, Tokyo, 

Japan). Medium LDH contents were always normalized 

to total LDH levels.  

 

TUNEL staining 

 

Following MTB infection, the human macrophages 

were co-stained with TUNEL and DAPI dyes (Sigma). 

The apoptotic nuclei percentage (TUNEL/DAPI×100%) 

was calculated, from at least 500 cells of five random 

views (1: 100 magnification). 

 

Caspase-3 activity 

 

The caspase-3 activity was examined by the commercial 

kit (Promega, Shanghai, China). After treatment, 20 μg 

of cytosol extracts (per treatment) was added to the 

caspase assay buffer (Beyotime, Wuxi, China). The 

release of 7-amido-4-(trifluoromethyl) coumarin (AFC) 

was quantified via the Fluoroskan system (Thermo-

Labsystems, Helsinki, Finland) at the test-wavelength of 

535 nm.  

 

JC-1 assay  

 

As described previously [26], the human macrophages 

with the indicated treatment were stained with JC-1  

(5 μg/mL, for 10-15 min) and washed. JC-1 green 

fluorescence, indicating mitochondrial depolarization, 

was tested at 550 nm using the RF-5301 PC 

fluorescence spectrofluorometer (Shimadzu, Tokyo, 

Japan). Furthermore, the representative JC-1 

fluorescence images were taken, merging the green 

fluorescence image (at 550 nm) and the corresponding 

red fluorescence image (at 650 nm).  

 

miR-1281 overexpression and inhibition 

 

The protocols were described previously [26]. In brief, 

the pre-miR-1281 sequence and the pre-miR-1281 anti-

sense sequence were synthesized, sequence-verified 

(both from Shanghai Genechem) and individually 
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ligated into the GV248 lentiviral construct [26]. The 

construct was transfected to HEK-293T cells together 

with the lentivirus package plasmids (Shanghai 

Genechem) [44]. After 48h, the pre-miR-1281-

expressing lentivirus (“lv-pri-miR-1281”) or pre-miR-

1281 anti-sense lentivirus (“antagomiR-1281”) were 

obtained, enriched (MOI at 20), filtered and added to 

human macrophages, cultured in polybrene-containing 

complete medium and selected by puromycin to achieve 

stable cells, with miR-1281 levels tested by qPCR.  

 

CypD 3′-UTR luciferase activity assay 

 

The CypD 3′-UTR reporter plasmid (pMIR-REPORT 

plasmid, containing the miR-1281-binding sites, at 

position 1214-1223, generated by Shanghai Genechem) 

was transfected to human macrophages using the 

Lipofectamine 2000 (Invitrogen Thermo-Fisher, Shanghai, 

China) protocol. The transfected macrophages were then 

subjected to the applied genetic treatments, with the 3'-

UTR luciferase activity tested by the Promega kit [45]. 

 

CypD short hairpin RNA (shRNA) 

 

The CypD shRNA (with the target sequence, CCCG 

TCCTCTTCCTCCTCCTCCG) lentiviral particles and 

the control shRNA lentiviral particles were provided by 

Dr. Xu [46]. Human macrophages were plated onto six-

well plates (in polybrene-containing complete medium), 

transduced with the applied shRNA lentivirus particles. 

After 48h, puromycin was added to select stable cells 

(for 10–12 days), with CypD silencing verified by 

qPCR and Western blotting assays. 

 

CypD knockout (KO) 

 

The small guide RNA (sgRNA) against human CypD 

(target DNA sequence, GGCGACTTCACCAACCA 

CAA) was selected from Dr. Zhang’s laboratory 

(http://crispr.mit.edu/), and inserted into the 

lentiCRISPR-green fluorescent protein (GFP) plasmid 

(from Dr. Zhao at Shanghai Jiao Tong University) with 

the puromycin selection gene. The construct was 

transfected to the human macrophages by 

Lipofectamine 2000, with macrophages subjected to 

FACS-mediated GFP sorting and selected by puromycin 

(3.0 μg/mL) to achieved stable cells. CypD KO was 

verified by qPCR and Western blotting assays. Control 

cells were transfected with the empty vector.  

 

Ectopic CypD over-expression 

 

The CypD expression (with no 3′-UTR region) pSuper-

puro-Flag vector, provided by Dr. Xu [46], was 

transfected to human macrophages by the 

Lipofectamine 2000 protocol (Invitrogen, Suzhou, 

China). The macrophages were then selected by 

puromycin for 10 days to achieve stable cells, with 

CypD overexpression confirmed by qPCR and Western 

blotting assays. 

 

Statistical analyses 

 

Data in the present study were shown as mean ± standard 

deviation (SD). Statistical analyses were carried out by the 

SPSS 20.0 software (SPSS Co., Chicago, CA), using one-

way analysis of variance of post hoc Bonferroni test as 

comparisons of multiple groups. The Student T Test was 

utilized for comparison between two groups. Statistically 

differences were assigned to P < 0.05. 
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