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INTRODUCTION 
 

Sleep is a fundamental conserved physiological process of 

the human body, and the quality and quantity of sleep can 

affect individual health status and quality of life [1]. 

Although people are advised to sleep seven to nine hours 

every day, there is a high prevalence of insufficient sleep 

in modern societies [2]. In particular, sleep disorders are 

common with aging [3]. It has been well documented that 

inadequate sleep is detrimental to human health [4, 5]. 

The traditional way to study sleeplessness and its 

consequences is sleep deprivation through sensory 

stimulation [6].  Sleep deprivation has long been known  

 

 

to impair neurobehavior. This cognitive function 

impairment is related to increased oxidative stress and 

inflammation in the brain. In particular, the hippocampal 

region of the brain appears to be more susceptible to SD 

than other areas. In addition, the median concentrations of 

glutamate (Glu) were higher during SD compared to 

baseline in rats [7]. Glu generates oxidative stress by 

various mechanisms, which leads to increased reactive 

oxygen species (ROS) production. The abnormal 

production of ROS causes oxidation of biological 

macromolecules and the expression of inflammatory 

mediators and genes, ultimately leading to an increase in 

the risk of neurodegenerative diseases. 
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ABSTRACT 
 

Sleep disorder has become a prevalent issue in current society and is connected with the deterioration of 
neurobehaviors such as mood, cognition and memory. Ellagic acid (EA) is a phenolic phytoconstituent 
extracted from grains and fruits that has potent neuroprotective properties. This research aimed to study 
the alleviative effect and mechanism of EA on memory impairment and anxiety caused by sleep deprivation 
(SD). EA ameliorated behavioral abnormalities in SD mice, associated with increased dendritic spine density, 
and reduced shrinkage and loss of hippocampal neurons. EA reduced the inflammatory response and 
oxidative stress injury caused by SD, which may be related to activation of the Nrf2/HO-1 pathway and 
mitigation of the TLR4-induced inflammatory response. In addition, EA significantly reduced the mortality 
and ROS levels in glutamate (Glu)-induced hippocampal neuron injury, and these effects of EA were 
enhanced in TLR4 siRNA-transfected neurons. However, knockdown of Nrf2 dramatically restrained the 
protective impact of EA on Glu-induced toxicity. Taken together, EA alleviated memory impairment and 
anxiety in sleep-deprived mice potentially by inhibiting TLR4 and activating Nrf2. Our findings suggested 
that EA may be a promising nutraceutical ingredient to prevent cognitive impairment and anxiety caused by 
sleep loss. 
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Toll-like receptor (TLR) activation plays an important 

role in regulating the innate immune response against 

exogenous pathogens, endogenous risk factors and 

immune disorders [8]. Twelve members of the TLR 

family have been identified in mammals, of which 

TLR4 is expressed on the cell surface. Nuclear factor 

erythroid 2-related factor 2 (Nrf2) is known as a critical 

regulator of endogenous inducible defense systems in 

the brain to defend against oxidative stress. Under 

normal conditions, Nrf2 localizes to the cytoplasm and 

binds to Kelch-like ECH-associated protein 1 (Keap-1), 

which mediates its proteasomal degradation, whereas 

Nrf2 activation induces its translocation to the nucleus 

to regulate its downstream enzymes, such as heme 

oxygenase 1 (HO-1) [9]. Simultaneously, Nrf2 signaling 

also plays an important role in the modulation of 

inflammatory responses. Numerous studies have 

demonstrated that TLR4-mediated innate immune 

responses and the Nrf2-modulated antioxidant system 

may coordinate in various ways to regulate inflam-

mation [10, 11]. 

 

Polyphenols are products of plant metabolism, and 

reports from epidemiological investigations have 

suggested that ingestion of phenolic foods may reduce 

age-associated neurodegeneration, such as Alzheimer’s 

disease [12, 13]. Ellagic acid (2,3,7,8-tetrahydroxy-

benzopyranol (5,4,3-cde) benzopyran-5,10-dione), a 

natural polyphenolic bioactive and lactone compound, is 

produced in plants, nuts and fruits [14, 15]. Its molecular 

formula is C14H6O8 (Figure 10A) [16]. EA has a variety 

of pharmacological properties including anti-

inflammatory, antioxidant and neuroprotective activities 

[17]. EA is also classified as nutraceutical because of its 

significant health-promoting bioactivities [18]. Several 

studies have shown that EA influences a series of signal 

mechanisms to decrease the development of certain 

neurodegenerative anomalies [19]. Nevertheless, so far, 

the influence of EA on behavioral functions in 

experimental models of SD has not yet been elucidated. 

Moreover, there is no report on the effects of EA on 

memory deficits and anxiety caused by SD. 

 

Considering all of the abovementioned points, this study 

was designed to examine the preventive effects of EA 

on memory deficits and anxiety induced by SD and to 

determine whether these neuroprotective effects were 

modulated by the Nrf2 and TLR4 pathways in the brain.  

 

RESULTS 
 

EA improved learning and memory in SD mice 

 

Mice were deprived of sleep for 72 hours and subjected 

to behavioral testing 24 hours later (Figure 1A). SD 

mice showed disinterest in exploring the novel object. 

Compared to control group mice, SD mice were also 

observed to devote less time to exploration overall, and 

the number of times they explored new objects was 

significantly reduced (P < 0.01), indicating that SD 

impaired the recognition memory of mice. However, the 

EA group mice devoted even more time to exploration 

of the object, and the frequency of exploring the new 

object was considerably higher than that in the SD 

group mice (P < 0.05, P < 0.01, Figure 1B). Similarly, 

SD mice showed impairments in the novel location test, 

which was utilized to determine the capacity of the mice 

to remember the locations of objects. In addition, the 

EA groups took more opportunities to acquire the 

object, with more episodes of exploring new objects 

compared to the SD group (P < 0.05, P < 0.01, Figure 

1D). To exclude the interference of locomotor activity, 

the total distance traveled was analyzed. No significant 

difference in the total distance was found between the 

control and SD groups or between the SD and EA 

groups (P > 0.05, Figure 1C, 1E). 

 

In the MWM test (Figure 2A), the escape latency to the 

platform and total swimming distance were noticeably 

decreased in all groups except for the SD group from 

the second day of the training phase (Figure 2B, 2C). 

Moreover, the swimming velocity of the mice was 

similar among groups, indicating the intact locomotor 

activity of mice (P > 0.05, Figure 2D). The above 

results indicated that the sleep-deprived mice could not 

remember the location of the target platform. 

Subsequent comparison showed significant differences 

in the time in the target quadrant and the frequency of 

crossing the platform between groups during the probe 

trials (P < 0.05, Figure 2E, 2F). The shorter time in the 

target quadrant in the SD group was obviously reversed 

by EA, and the platform crossing times were also 

increased with EA (P < 0.05, P < 0.01, Figure 2E, 2F). 

These results indicated that EA could alleviate SD-

induced learning and memory deficits. 

 

EA alleviated anxiety-like behaviors in SD mice 

 

Open field and EPM tests were utilized to check 

anxiety-like behaviors. Both the distance traveled and 

the time spent in the center location were reduced in 

sleep-deprived mice in the open field test (P < 0.01, 

Figure 3A). Nevertheless, the shorter time in the central 

region in the SD group was obviously reversed by EA, 

and the total distance traveled was also increased with 

EA (P < 0.05, P < 0.01, Figure 3B, 3C). No difference 

in total distance traveled was found between the SD and 

EA groups (P > 0.05, Figure 3D). Similarly, no 

difference in overall entrance to the open and closed 

arms was found among all groups in the EPM test (P > 

0.05, Figure 3E, 3F). Moreover, the number of 

entrances into the open arms and the time spent in the
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Figure 1. The novel object recognition (NOR) and object location test (OL) test performances were shown in A–C. (A) Schematic of the 
NOR and OL tests. (B) Discrimination index toward a novel object and (C) total distance travelled (during 10 min test) were summarized. (D) 
The discrimination index toward a novel location and (E) total distance traveled (during the 10-minute test) were summarized. Data values 
were expressed as the mean ± SEM (n=12), ##P < 0.01 vs. control group; *P < 0.05 and **P < 0.01 vs. SD group. 
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 open arms were significantly decreased in the SD mice 

(P < 0.01). However, these results were improved 

significantly when SD mice were given EA (P < 0.05, P 

< 0.01, Figure 3G, 3H), which indicated that EA could 

alleviate SD-induced anxiety-like behaviors. 

 

EA improved neuron survival in sleep-deprived mice 
 

Neurons of a certain number and normal function are 

important for animals. The normal neurons in the 

hippocampus from the control group were packed 

tightly and orderly with clear nuclei. In contrast, the SD 

group exhibited obvious pathological abnormalities 

with loosely arranged neurons, pyknotic nuclei and loss, 

or dark color staining in the hippocampus, suggesting 

that the neurons began to degenerate. However, these 

histopathological alterations were dramatically 

attenuated after EA administration (Figure 4A). The 

numbers of normal neurons were significantly 

decreased to 41.6 ± 3.88% compared with 95.79 ± 

3.53% in the control group (p < 0.01). Normal cells 

were significantly increased to 69.85 ± 2.98% and 81.36 

± 3.92% in the two EA-treated group, respectively (P < 

0.05, P < 0.01, Figure 4B). 

 

EA restored dendritic spine density in the 

hippocampus 
 

Dendritic spines are the basic structural units that 

underlie the learning and memory formation. Given the 

role of EA in histological changes and behaviors, we 

predicted that EA would affect spine density (Figure 

5A). Consistent with this hypothesis, SD significantly 

decreased spine density in the CA1 area (P < 0.01), and

 

 
 

Figure 2. Effect of CL on spatial reference memory in the MWM test in mice. (A) Representative swimming tracks in the MWM 
during the probe trial. (B) Mean daily escape latencies (time from the start to the hidden platform). (C) Distance travelled during the learning 
phase of the water maze task. (D) The swimming velocity of the mice. (E) The percentage of time spent in the target quadrant during the 
probe trial. (F) Frequency of crossing the target quadrant during the probe trials. All values were expressed as the mean ± SEM (n=12), #P < 
0.05 and ##P < 0.01 vs. Control group; *P < 0.05 and **P < 0.01 vs. SD group. 
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administration of EA significantly increased spine 

density in SD mice (P < 0.05, P < 0.01, Figure 5B, 5C). 

 

Effects of EA on proinflammatory cytokine levels 

and oxidative stress parameters  

 

To investigate the effects of EA on oxidative stress and 

the inflammatory response caused by SD, we tested the 

expression of related oxidative stress parameters and 

inflammatory factors. As shown in Table 1, the 

activities of GPx and SOD were markedly decreased in 

the hippocampus of the SD group compared to those in 

the hippocampus of the control group (P < 0.01). The 

administration of EA resulted in a significant increase in 

SOD and GPx activities (P < 0.05, P < 0.01). The MDA 

content was significantly increased in the SD group 

compared to that in the control group (P < 0.01), while 

EA caused a significant reduction in the MDA content 

(p < 0.05). The levels of 3 proinflammatory cytokines 

released were significantly increased in the 
 

 
 

Figure 3. Effect of CL on sleep deprivation induced anxiety-like behaviors. (A) Sample traces of locomotor activity in the open field 
test. (B) The total distance traveled and (C) time spent in the center area. (D) The total distance traveled (during the 15-minute test) was 
summarized. (E) Sample traces of locomotor activity in the elevated plus maze test. (F) The total arm entrances. (G) The entrance into the 
open arms and (H) time spent in the open arms. Data values were expressed as the mean ± SEM (n=12), ##P < 0.01 vs. control group; *P < 0.05 
and **P < 0.01 vs. SD group. 
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Figure 4. EA improved neuronal survival after SD. (A) The hippocampus was stained by hematoxylin and eosin. (B) The percentage of 
intact neurons relative to the total neurons for each group (six different fields were counted per slice). Scale bar=40 μm. Data values were 
expressed as the mean ± SEM (n=3), #P < 0.05 and ##P < 0.01 vs. control group; *P < 0.05 and **P < 0.01 vs. SD group. 

 

 

 
 

Figure 5. EA treatment reversed the spine density in the hippocampus area. (A) Golgi-Cox staining of CA1 pyramidal neurons for 
spine counting. (B) Representative images of basilar dendrites and (C) summary of spine counts from basilar dendrites. Data values were 
expressed as the mean ± SEM (n=3), ##P < 0.01 vs. control group; *P < 0.05 and **P < 0.01 vs. SD group. 
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Table 1. Levels of SOD, GPx and MDA in the hippocampus after SD in each group.  

Groups SOD U/mg GPx U/mg MDA μmol/mg 

Control 116.7 ± 11.7 91.4 ± 6.1 1.2 ± 0.2 

SD 58.5 ± 4.9## 36.8 ± 4.2## 2.8 ± 0.4## 

EA (50 mg/kg) 84.8 ± 6.4* 62.2 ± 5.8* 2.0 ± 0.2 

EA (100 mg/kg) 106.9 ± 9.8** 81.4 ± 9.4** 1.8 ± 0.1* 

Data values were expressed as the mean ± SEM (n=3), ##P < 0.01 vs. control group;  
*P < 0.05 and **P < 0.01 vs. SD group. 

 

Table 2. Levels of IL-1β, IL-6 and TNF-α in the hippocampus after SD in each group. 

Groups IL-1β pg/mg IL-6 pg/mg TNF-α pg/mg 

Control 26.7 ± 1.2 59.2 ± 3.3 28.8 ± 2.2 

SD 49.4 ± 2.8# 99.7 ± 8.2## 56.5 ± 3.1## 

EA (50 mg/kg) 35.3 ± 2.0* 76.7 ± 5.6* 42.2± 1.7* 

EA (100 mg/kg) 33.9 ± 0.9* 63.1 ± 3.2** 32.5 ± 1.1** 

Data values were expressed as the mean ± SEM (n=3), #p < 0.05 and ##P < 0.01 vs. control  
group; *P < 0.05 and **P < 0.01 vs. SD group. 

 

hippocampus of the SD group (P < 0.05, P < 0.01), 

while administration of EA significantly decreased pro-

inflammatory cytokine levels (P < 0.05, P < 0.01, Table 

2). These results indicated that EA have effectively 

controls proinflammatory cytokine levels and anti-

oxidant enzyme activities caused by SD in the 

hippocampus. Furthermore, the high-dose EA had 

stronger activities than the low-dose EA. 

 

EA modulated the Nrf2/HO-1 and TLR4-induced 

inflammatory responses 
 

Nrf2-ARE is an endogenous inducible defense system 

that defends against oxidative stress, and TLR-induced 

signaling pathways are the main pathway leading to 

inflammatory responses in the brain. Thus, we 

investigated the expression of Nrf2, HO-1, TLR4, 

MyD88, p-IκBα and NF-κB p65 in different groups 

using western blotting (Figure 6A, 6C). SD mice 

showed a significant enhancement in Nrf2 and HO-1 

immunoactivity (P < 0.01) and an increase in the 

expression of TLR4, MyD88, p-IκBα and NF-κB p65 

compared to the control group (P < 0.01). However, EA 

effectively activated the Nrf2/HO-1 pathway and 

downregulated the TLR4-induced inflammatory 

response (P < 0.05, P < 0.01, Figure 6B, 6D). 

 

Protective effects of EA on glutamate-induced 

toxicity 
 

Primary hippocampal neuronal cells were transfected 

with Nrf2 or TLR4 siRNA to further verify the 

protective effect of EA and the involvement of the Nrf2 

and TLR4 signaling pathways in Glu-induced toxicity. 

As shown in Figure 7A, the results showed that 

treatment with Glu led to obvious expression of Nrf2 

and TLR4 in hippocampal neuronal cells, while the 

expression levels of Nrf2 and TLR4 significantly 

decreased in the siRNA treatment group (P < 0.01), 

indicating successful transfection. Glu significantly 

increased ROS production and the rate of neuronal 

apoptosis (P < 0.01), and this effect was partially 

enhanced by Nrf2 knockout and suppressed by TLR4 

knockout (P < 0.05, Figure 7B–7E). Moreover, EA 

significantly reduced neuronal mortality and ROS levels 

(P < 0.01), and these effects of EA were enhanced in 

TLR4 siRNA-transfected neurons (P < 0.01, Figure 7C, 

7E). However, knockdown of Nrf2 dramatically 

restrained the protective impact of EA on Glu-induced 

toxicity, as illustrated by the absence of recovery of 

ROS and cell viability in the siRNA-treated Glu group 

(P < 0.01, P < 0.05, Figure 7B, 7D).  
 

DISCUSSION 
 

A previous report showed that the neuroprotective 

effects of EA has improved cognitive behavior in rats 

with traumatic brain injury [20]. However, whether EA 

can ameliorate cognitive impairment and emotional 

disorders has not been clearly demonstrated. The 

present research supported our hypothesis that EA 

treatment ameliorates behavioral abnormalities induced 

by SD. We also found that the potential molecular 

mechanism for the effects of EA versus SD was related 

to the modulation of TLR4 and Nrf2. Furthermore, EA 

treatment reversed the dendritic spine loss caused by 

sleep deprivation. Consistent with the behavioral data in 

our study and others, EA had a normalizing effect on 
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the levels of proinflammatory cytokines and oxidative 

stress parameters in the hippocampus of SD mice. Thus, 

this study suggests that EA may be a prospective 

candidate for the prevention of SD-induced behavioral 

abnormalities. 

 

Sleep is a restorative process that facilitates learning 

and memory consolidation [21]. SD is understood to 

impair both emotional and contextual memories by 

modifying the neuronal network at physiological, 

molecular, and synaptic levels [22]. In our present 

study, EA significantly improved spatial memory 

impairment in mice after 72 hours of sleep deprivation. 

Furthermore, EA obviously reduced the shrinkage and 

loss of hippocampal neurons in SD mice. The dendritic 

spine density was dramatically increased after EA 

administration. We found that the reduction in the 

inflammatory response and oxidative stress injury may 

be related to EA's protection of mice from memory 

impairment and anxiety caused by SD. However, how 

EA modulates the inflammatory response and oxidative 

stress remains unknown. 

 

EA has long been reported to have a strong neuro-

protective effect [23], but no studies have yet reported 

its effects on the memory impairment and anxiety 

induced by SD via the Nrf2 and TLR4 pathways. Nrf2 

regulates the antioxidant system and can be activated in 

response to oxidative stress. Our laboratory has 

previously demonstrated that dietary EA can act as an 

antioxidant via Nrf2 activation [24]. Nrf2 over-

expression shows neuroprotective effects [25]. ROS 

overproduction is recognized as having the ability to 

activate Nrf2 by degrading its associated protein, 

Keap1. Then, Nrf2 migrates to the nucleus and 

promotes the expression of proteins such as HO-1 [26]. 

TLR signaling can be affected by the cellular redox 

state, and Nrf2 plays a crucial function in ROS-

mediated TLR4 activation and in regulating TLR4-

driven inflammatory reactions [27]. Furthermore, both 

 

 

 

Figure 6. EA modulated the Nrf2 and TLR4 signaling pathways. (A) and (C) The levels of Nrf2, HO-1, TLR4, MyD88, p-IκBα and NF-κB 
p65 in the hippocampus were detected by Western blot. (B) and (D) Band intensities were quantified as percentages of values from the 
control group. Data values were expressed as the mean ± SEM (n=3), #P < 0.05 and ##P < 0.01 vs. control group; *P < 0.05 and **P < 0.01 vs. SD 
group. 
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TLR and Nrf2 signaling are triggered during 

inflammation, and TLRs trigger Nrf2 signaling in 

reaction to inflammation [28]. A recent study showed 

that EA protects rats against mitochondrial dysfunction 

by upregulating Nrf2/HO-1 and inhibiting the NF-κB 

signaling pathways [29]. Therefore, we evaluated the 

expression levels of Nrf2 and TLR4 and their associated 

proteins in order to elucidate the mechanism behind 

 

 

 

Figure 7. The protective effects of EA on glutamate-induced toxicity in neuronal cells. (A) The expression levels of Nrf2 and TLR4 
significantly decreased in the siRNA treatment group. (B) and (C) Effect of EA on ROS levels in Nrf2 or TLR4 siRNA-transfected and Glu-treated 
neuronal cells. (D) and (E) Effect of EA on cell viability in Nrf2 or TLR4 siRNA-transfected and Glu-treated neuronal cells. Data values were 
expressed as the mean ± SEM (n=3), ##P < 0.01 vs. control group; *P < 0.05 and **P < 0.01 vs. Glu group; &P < 0.05 and &&P < 0.01 vs. EA-
treated Glu group. 
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EA’s protective capability against SD-induced 

oxidative stress injury and inflammation. EA 

effectively activated the Nrf2/HO-1 pathway and 

mitigated the TLR4-induced inflammatory response in 

our study.  

 

Based on the similar studies using a model of Glu-

induced injury of hippocampal neurons [30], we further 

investigated whether EA plays a protective role in Glu-

induced hippocampal neuron injury via the Nrf2 and 

TLR4 pathways. TLR4 signaling cascades cause the 

activation of NF-κB and the induction of pro-

inflammatory cytokines [31]. Activation of the 

transcription factor Nrf2 induces several downstream 

neuroprotective genes related to antioxidant enzymes to 

protect hippocampal neuronal cells [32]. In addition, 

studies have shown that crosstalk between Nrf2 and NF-

κB reliant signaling regulates inflammation [31, 33]. 

Our study showed that EA significantly reduced the 

mortality and ROS levels of injured cells, and these 

effects of EA were enhanced in TLR4 siRNA-

transfected neurons. However, knockdown of Nrf2 

dramatically restrained the protective impact of EA on 

Glu-induced toxicity. The current findings suggest that 

the TLR4 and Nrf2 signaling are involved in 

modulating inflammation and oxidative stress-related 

responses in SD. 

 

In conclusion, the present research indicated that EA 

protects mice against SD-induced cognitive 

impairment and anxiety by inhibiting TLR4 and 

activating Nrf2 (Figure 8). These findings suggested 

that EA is a prospective candidate for the  

prevention of SD-induced memory impairment and 

emotional disorders. Thus, EA may be a promising 

nutraceutical ingredient to prevent cognitive 

impairment and anxiety caused by sleep loss in the 

human population. 

 

 

 

Figure 8. EA ameliorates sleep deprivation-induced memory impairment and anxiety via crosstalk between the Nrf2 and 
TLR4 pathways. 
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MATERIALS AND METHODS 
 

Reagents and apparatus 

 

EA (purity > 98%) was purchased from Xi’an Xiaocao 

Biological Technology Co. Ltd. (Xi’an, Shaanxi, 

China). IL-1β, IL-6, TNF-α, SOD, GPx and MDA 

commercial assay kits were from Nanjing Jiancheng 

Bioengineering Institute (Nanjing, China). The open 

field, elevated plus maze, novel object recognition, 

object location, Morris water maze and sleep 

deprivation apparatus were developed by Shanghai 

Yishu Technology Co. Ltd. (Shanghai, China). 

 

Animals and treatments 
 

The study protocol was approved by the Ethics 

Committee of Animal Experimentation of Fourth 

Military Medical University. C57BL/6J mice weighing 

18-22 g were obtained from the Fourth Military Medical 

University’s animal care facility. All animals were kept 

in cages at room temperature (25 ± 1 °C) with free 

access to water and food. Mice were housed in a 12-

hour light/dark cycle and left 7 days to acclimate before 

experimental procedures began. The mice were 

randomly assigned to four groups (n=12 per group): the 

control group, SD group, and SD treated with EA (50 

and 100 mg/kg) groups. The mice were administered 

EA daily intraperitoneally for 21 days, and the control 

and SD groups received physiological saline (0.9% 

NaCl, 10 ml/kg, i.p.) at the same times. After 3 days of 

SD habituation (from 8 a.m. to 11 a.m., 3 hours per day), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all groups except the control group were subjected to 

SD for 72 hours (from 8 a.m. on day 18 to 8 a.m. on day 

21). Then, behavioral tests were carried out after 24 

hours of SD (Morris water maze training began on day 

18). Following the behavioral tests, the mice were 

sacrificed for biomarker assays (shown in Figure 9). 
 

Induction of the SD model 
 

The model of SD was instituted using the modified 

multiple-platform method (Figure 10B), as previously 

described [34]. Eighteen columns (2.5 cm in diameter) 

were placed in a water tank (1 cm above the water 

level). The distance between the 2 columns was 5 cm so 

that the mouse in a water-filled bath could move freely 

on each platform by jumping. Thus, when the animal 

entered a sleep episode, it fell into the water and woke. 

The mice were continuously deprived of sleep for 72 

hours, according to previous studies [35]. During the 

72-hour SD period, the mice had free access to water 

and food. The control group mice were only kept in 

cages. 

 

Novel object recognition (NOR) and object location 

(OL) tests 
 

The NOR was carried out to assess recognition and 

memory ability as described previously [36]. The 

experiment consisted of 3 phases (habituation, training 

and testing phase) (Figure 1A). Mice spent 10 

minutes/phase for 3 days exploring the apparatus 

without any stimulus and each phase was recorded  by a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Experimental design procedure. Mice were randomly divided into four groups after habituation for 7 days. Then, 
mice were administered EA daily intraperitoneally EA for 21 days. After 3 days of SD habituation (from 8 a.m. to 11 a.m., 3 hours 
per day), all groups except the control group were subjected to SD for 72 hours (from 8 a.m. on day 18 to 8 a.m. on day 21). Behavioral 
tests were carried out after 24 hours of SD (Morris water maze training began on day 18). 
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video tracking system. On day 1, the mice were placed 

in a chamber to adapt to the new environment 

(habituation phase). On day 2, the mice were permitted 

to explore the same 2 cylinders (training phase). On day 

3, one cylinder was replaced by the same volume of 

cube and then the mice were allowed to explore (testing 

phase). In the object location (OL) test, the same device  

and software as for the NOR used in this test (Figure 

1A). In the habituation phase, the mice were placed in 

an empty black plastic box to adapt to the new 

environment for 10 minutes. In the training phase, 2 

cylinders were placed near the corner of the same wall. 

Each mouse was allowed to explore for 10 minutes. In 

the testing phase, one of cylinder was placed in the 

opposite position of the original position. Interaction 

parameters were specified as contact with the object 

(tail only excluded) or facing the object (distance < 2 

cm). The “discrimination index” was calculated as the 

exploration novel object (location) time/total 

exploration time. 

 

Morris water maze (MWM) test 

 

The spatial learning and memory of the mice were 

evaluated using the MWM with slight modifications 

[37]. A circular tub (60 cm in semidiameter and 50 cm 

in height) enriched by white opaque water (22-25°C) 

was divided into 4 equal-sized quadrants. Extramaze 

visual cues were placed in the 4 corners for spatial 

orientation. Mice experienced a training phase with the 

platform hidden in the target quadrant and a probe test 

phase without the platform. In the training phase, mice 

were trained for 4 days (60-second trial time, 4 trials 

each day with an approximately 20-minute intertrial 

interval) to seek the hidden escape platform (10 cm 

diameter, 2 cm below the water level). The entry 

quadrant varied but the platform location remained 

constant. The latency to find the platform was 

measured. If a mouse failed to find the platform within  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the maximally allowed time of 60-second, it was guided 

to the platform by the experimenter and allowed to 

remain for 15 seconds before being removed. A single 

60-second probe trial was conducted with the platform 

removed after the final learning trial. The latency to the 

target area, time spent in the target quadrant, platform 

crossings and distance traveled were calculated. An 

automatic tracking system was used to record all 

behavior in real time. constant. The latency to find the 

platform was measured. If a mouse failed to find the 

platform within the maximally allowed time of 60-

second, it was guided to the platform by the 

experimenter and allowed to remain for 15 seconds 

before being removed. A single 60-second probe trial 

was conducted with the platform removed after the final 

learning trial. The latency to the target area, time spent 

in the target quadrant, platform crossings and distance 

traveled were calculated. An automatic tracking system 

was used to record all behavior in real time. 

 

Open field test 
 

The open field test was conducted to test locomotor 

activity [38]. Briefly, mice were placed in a square 

arena (30 cm × 30 cm × 30 cm) with clear Plexiglas 

walls and dim illumination. Then, all mice were allowed 

to freely explore for a 15-minute period. The mouse 

movements were recorded by a camera and analyzed 

with a video tracking system. 

 

Elevated plus maze (EPM) test 

 

The elevated plus maze was conducted as described 

previously [39]. The apparatus comprised two open arms 

(25 cm × 8 cm × 0.5 cm) and two closed arms (25 cm × 8 

cm × 12 cm) that extended from a common central 

platform (8 cm × 8 cm). Mice were allowed to habituate 

to the testing room for 2 days before the test and 

pretreated with gentle handling two times per day to mini- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (A) Structure of ellagic acids (PubChem CID: 5281855). (B) Simple illustration of the modified multiple-platform 
method used for SD mice. 
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mize anxiety. For each test, an individual animal was 

placed in the center square, facing an open arm, and 

allowed to move freely for 5 minutes. The entrance was 

defined as all four paws placed inside an arm. The 

number of entrances and time spent in each arm were 

recorded. 

 

Hematoxylin and eosin (H & E) staining 

 

After the behavior tests, the brains were fixed in cold 

4% paraformaldehyde in 0.1 M phosphate-buffered 

saline. Coronal sections (20 μm) from the hippocampus 

were cut on a cryostat, and stained with H & E. The 

sections were observed to evaluate the morphological 

changes in the hippocampus under light microscopy 

(Olympus, Japan) after staining. 

 

Determination of pro-inflammatory cytokine and 

antioxidant enzyme activities in the hippocampus 

 

For the biochemical assays, the mice were anesthetized 

and euthanized. Then, the hippocampus was quickly 

removed, homogenized and centrifuged (12000×g, 10 

minutes, 4°C). The supernatants were collected for later 

experiments. Then, the levels of IL-6, TNF-α and IL-1β 

and the activities of SOD, GPx and MDA were 

measured by using commercial assay kits (Nanjing 

Jiancheng Bioengineering Institute, Nanjing, China). 

The final results were expressed as pg/mg tissue for IL-

6, TNF-α and IL-1β and U/mg protein for SOD and 

GPx activities. 

 

Golgi-Cox staining and spine density analysis 
 

As SD induced memory impairment and anxiety were 

confirmed, SD mice were subjected to Golgi staining as 

described previously [40]. Mice were anesthetized with 

pentobarbital sodium and brains were removed. 

Thereafter, brains were incubated in Golgi-Cox solution 

(1% potassium dichromate, 1% mercuric chloride, 

0.75% potassium chromate) for 12 days at room 

temperature in the dark, followed by gradient ethanol 

dehydration. Coronal sections were sectioned (120 μm) 

using a vibratome. Hippocampal slices were collected 

on slides using neutral balsam and imaged on an 

Olympus BX51 light microscope using DP-BSW 

software with a 100x/NA 1.4 oil immersion lens. 

 

Western blot analysis 
 

The hippocampus was homogenized in ice-cold RIPA 

lysis buffer. Then, the homogenate was centrifuged 

(12000×g, 10 min, 4°C), and the supernatant was 

collected. BCA protein assay kits (Pierce Biotechnology, 

Rockford, IL, USA) were used to determine the protein 

concentration. Protein amounts of 30 μg were 

electrophoresed and transferred to a polyvinylidene 

difluoride (PVDF) membrane (Millipore, Billerica, MA. 

USA). Then, 5% nonfat milk in 0.1% Tween 20 in TBS 

(TBST) was used to block nonspecific binding for 1 hour 

at room temperature. The blots were incubated overnight 

at 4°C with primary antibodies to anti-TLR4 (1:2000), 

anti-MyD88 (1:2000), anti-p-IκBα (1:2000), anti-NF-

κB p65 (1:2000), anti-Nrf2 (1:1000), anti-HO-1 

(1:1000) and anti-β-actin (1:10,000). Immunoreactive 

bands were detected by an enhanced chemi-

luminescence kit and imaged using a Tanon imaging 

system (Tanon 4200, China). 

 

Primary hippocampal neuronal cultures and 

treatment 

 

Primary hippocampal neurons were prepared from 

embryonic d15 mouse embryos. Embryonic brain tissue 

was mechanically triturated and centrifuged. Neurons 

were cultured in an atmosphere of 5%/95% CO2/air at 

37°C using the Dulbecco’s modified Eagle’s medium 

(DMEM) which contains 10% fetal bovine serum, 100 

U/mL penicillin, and 100 μg/mL streptomycin. The 

coincubation model incorporating samples and Glu was 

used to evaluate the protective effects of EA on Glu-

induced toxicity in cells. The equivalent volume of PBS 

was used in the control groups. All operations were 

repeated three times.  

 

Determination of ROS and cell viability 
 

Cultured neuronal cells were transfected with TLR4 or 

Nrf2 siRNA (100 nM) (Santa Cruz Biotech) for 18 

hours to examine the effects of gene knockdown in 

neurons. After recovery for 24 hours, the cells were 

treated with EA for 24 hours before being harvested for 

measurement of cell viability and intracellular ROS 

levels. Cell death was detected and quantified using the 

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

bromide (MTT) assay. 
 

Statistical analysis 
 

Data were analyzed using the GraphPad Prism 6.0 

software package. All values are expressed as the mean 

± standard error of the mean (SEM). Differences among 

all the groups were determined by one-way analysis of 

variance (ANOVA) followed by the least significant 

difference post hoc test. Significant differences were 

reported at P < 0.05. 
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