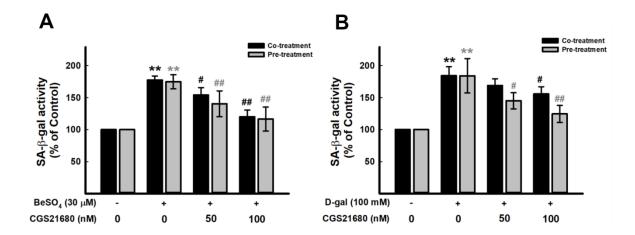
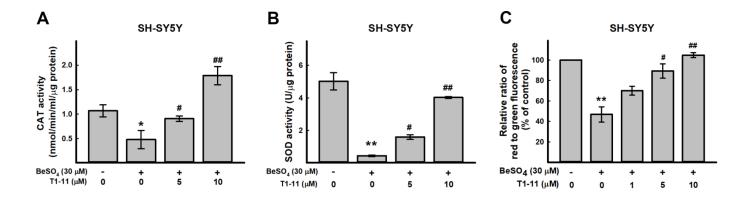
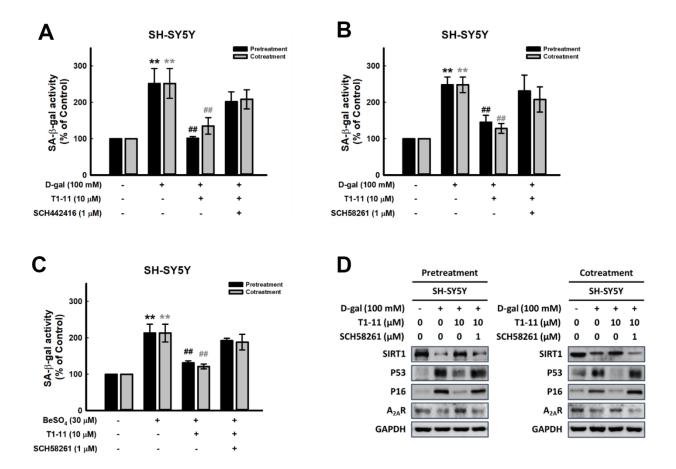
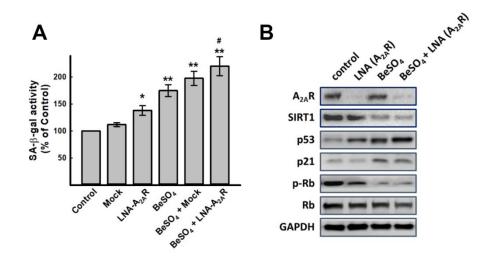
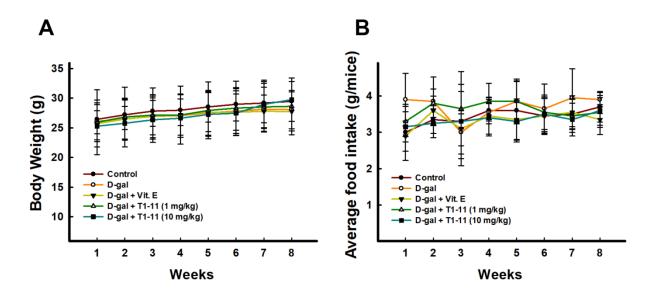

SUPPLEMENTARY FIGURES

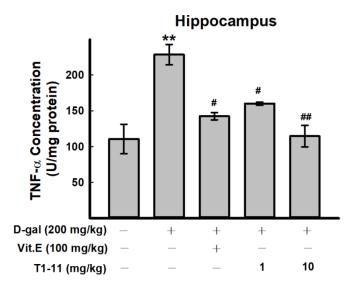

Supplementary Figure 1. Characterization of senescent SH-SY5Y cells (A) Micrographs of senescence-associated β -galactosidase activity in young-generation (passage 3) and senescent-generation (passage 25) SH-SY5Y cells. (B) Western blot analysis of levels of A_{2A}R and loading control, GAPDH, in young-generation and senescent-generation SH-SY5Y cells.

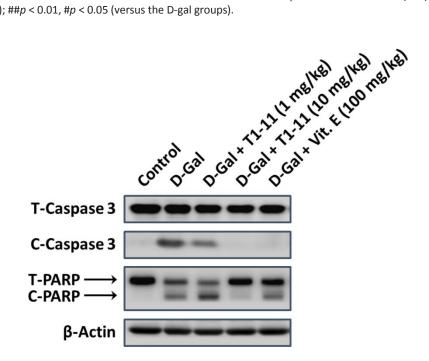

Supplementary Figure 2. Building the cellular aging model. Effect of (A) D-galactose and (B) BeSO₄ on cell viability. Effect of (C) D-galactose and (D) BeSO₄ on cellular senescence. Data are mean \pm SEM. *p < 0.05, ** p < 0.01 compared to control; ## p < 0.01 compared with D-gal treatment.


Supplementary Figure 3. Effect of T1-11 on cellular senescence after BeSO₄- and D-gal-induced senescence. (A, C) Effect of co-treatment of T1-11 on BeSO₄- and D-gal-induced cellular senescence markers, SA- β -gal activity, in SH-SY5Y cells. (B, D) Effect of co-treatment of T1-11 on BeSO₄- and D-gal-induced cellular senescence related molecules in SH-SY5Y cells. Data are mean±SEM from at least four independent experiments. Significant difference between control and treated cells is indicated by **p < 0.01. Significant difference between the cells treated with D-gal or BeSO₄ alone and the cells treated with D-gal or BeSO₄ combined with T1-11 is indicated by #p < 0.05, ##p < 0.01.


Supplementary Figure 4. Effect of CGS21680 on cellular senescence after BeSO₄- and D-gal-induced senescence. (A, B) Effect of co-treatment and pre-treatment of CGS21680 on BeSO₄- and D-gal-induced cellular senescence markers, SA- β -gal activity, in SH-SY5Y cells. Data are mean±SEM from at least three independent experiments. Significant difference between control and treated cells is indicated by ** p < 0.01. Significant difference between the cells treated with D-gal or BeSO₄ alone and the cells treated with D-gal or BeSO₄ combined with CGS21680 is indicated by #p < 0.05, ##p < 0.01.


Supplementary Figure 5. Effect of T1-11 on activities of antioxidant enzymes and mitochondrial membrane potential ($\Delta\Psi$ m) in BeSO₄-induced aging SH-SY5Y cells. Effect of T1-11 on (A) superoxide dismutase (SOD) and (B) catalase (CAT) activities in SH-SY5Y cells with BeSO₄ treatment. (C) SH-SY5Y cells were pre-treated with T1-11 for 24 hr, then exposed to 30 µM BeSO₄ for 24 hr. Quantification of $\Delta\Psi$ m observed by spectrophotometry. T1-11 protects against $\Delta\Psi$ m damage in SH-SY5Y cells injured by BeSO₄. Data are mean ± SD. * *p* < 0.05, ** *p* < 0.01 compared to control; # *p* < 0.05, ## *p* < 0.01 compared with D-gal or BeSO₄ treated cells at the same incubation time.


Supplementary Figure 6. Effect of combination of T1-11 and $A_{2A}R$ specific antagonists on cellular senescence after BeSO₄- or D-gal-induced senescence. (A, B) Effect of co-treatment or pre-treatment of T1-11 and combination of T1-11 and $A_{2A}R$ specific antagonists (SCH442416 or SCH58261) on D-gal-induced cellular senescence markers, SA- β -gal activity, in SH-SY5Y cells. (C) Effect of co-treatment or pre-treatment of T1-11 and combination of T1-11 and SCH58261 on BeSO₄-induced cellular senescence markers, SA- β -gal activity, in SH-SY5Y cells. (D) Effect of co-treatment of T1-11 and SCH58261 on BeSO₄-induced cellular senescence markers, SA- β -gal activity, in SH-SY5Y cells. (D) Effect of co-treatment of T1-11 and SCH58261 on D-gal-induced cellular senescence related molecules in SH-SY5Y cells. Data are mean ± SEM from at least four independent experiments. Significant difference between control and treated cells is indicated by **p < 0.01. Significant difference between the cells treated with D-gal or BeSO₄ alone and the cells treated with D-gal or BeSO₄ combined with T1-11 is indicated by #p < 0.05, #p < 0.01.


Supplementary Figure 7. Effect of A_{2A}R silencing on cellular senescence in SH-SY5Y cells. Effect of the combination with LNA(A_{2A}R) and BeSO₄ on cellular senescence detected by (**A**) cellular senescence assay and (**B**) western blot assay. Data are mean \pm SEM. *p < 0.05, ** p < 0.01 compared to control group; #p < 0.05, ##p < 0.05 compared with BeSO₄ treated cells.

Supplementary Figure 8. Effect of T1-11 on body weight and food intake of D-gal-induced aging mice. Changes in body weight (A) and food intake (B) of the mice treated with D-gal alone and the mice treated with D-gal combined with Vit.E or T1-11 groups. All data are shown as mean ± SEM (n=6).

Supplementary Figure 9. Effect of T1-11 on TNF- α in hippocampus of D-gal-induced aging mice. The hippocampus tissue was collected for ELISA detection. The levels of TNF- α were shown as above. Values represent means ± SEM (n=6). *** p < 0.001, *p < 0.05 (versus the control group); ##p < 0.01, #p < 0.05 (versus the D-gal groups).

Supplementary Figure 10. T1-11 could decrease D-galactose-induced apoptosis in hippocampus of D-gal-induced aging mice. Western blot analysis of apoptosis related molecules markers in hippocampus of D-gal-induced aging mice.