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INTRODUCTION 
 

Age is the number one risk factor for several human 

health issues, those referred to as age-related diseases 

[1, 2]. These age-related diseases grow in importance as 

the median age of the world’s population continues to 

increase [3, 4]. As a result, the molecular mechanisms 

influencing aging have long been a topic of interest for 

study [5–7]. Recent developments in the study of the 

human metabolome have allowed for wide-spread study 

of changes in the metabolome in association with aging 

and age-related disease [1, 8, 9]. 
 

Acylcarnitines are carrier forms of fatty acids required 

for import of long-chain (LC) fatty acids into mito-

chondria for β-oxidation to occur [10]. The most common 

 

reported changes is an increase in blood concentration of 

LC acylcarnitines in individuals with age-related diseases 

[11–14]. Dysregulation of acylcarnitine homeostasis has 

been tied to a variety of age-related diseases, including 

cardiovascular disease [11, 12, 15], type II diabetes 

mellitus [13, 16, 17], osteoarthritis [18], chronic 

obstructive pulmonary disease [19], macular degeneration 

[14], glaucoma [20] and Alzheimer’s disease [21–23]. In 

addition to the association with age-related diseases, 

abnormal acylcarnitine levels are associated with 

activation of inflammation [24] and mitochondrial 

dysfunction [25, 26]. Loss of mitochondrial function both 

contributes to the process of aging and is, itself, an 

indirect result of aging. Mitochondrial dysfunction has 

been documented to play a role in development of most 

age-related diseases; however, it occurs independently of 
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ABSTRACT 
 

Acylcarnitines transport fatty acids into mitochondria and are essential for β-oxidation and energy metabolism.  
Decreased mitochondrial activity results in increased plasma acylcarnitines, and increased acylcarnitines activate 
proinflammatory signaling and associate with age-related disease.  Changes in acylcarnitines associated with 
healthy aging, however, are not well characterized.  In the present study, we examined the associations of plasma 
acylcarnitines with age (range: 20-90) in 163 healthy, non-diseased individuals from the predictive medicine 
research cohort (NCT00336570) and tested for gender-specific differences. The results show that long-chain and 
very long-chain acylcarnitines increased with age, while many odd-chain acylcarnitines decreased with age.  
Gender-specific differences were observed for several acylcarnitines, e.g., eicosadienoylcarnitine varied with age in 
males, and hydroxystearoylcarnitine varied in females. Metabolome-wide association study (MWAS) of age-
associated acylcarnitines with all untargeted metabolic features showed little overlap between genders.  These 
results show that plasma concentrations of acylcarnitines vary with age and gender in individuals selected for 
criteria of health.  Whether these variations reflect mitochondrial dysfunction with aging, mitochondrial 
reprogramming in response to chronic environmental exposures, early pre-disease change, or an adaptive response 
to healthy aging, is unclear.  The results highlight a potential utility for untargeted metabolomics research to 
elucidate gender-specific mechanisms of aging and age-related disease. 
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disease [27–29].  Additionally, healthy older individuals 

require more time to reestablish acylcarnitine homeostasis 

after stimulation with insulin, and higher acylcarnitine 

levels are found in aged men with reduced physical ability 

when compared with similarly aged men with normal 

physical ability [30, 31]. Gender differences in 

acylcarnitine associations with age have not been well 

studied, but some differences between men and women 

have been reported [32, 33]. Additionally, gender 

differences in lipid metabolites related to lifespan have 

been reported [34]. 

 

Neither LC acyl-CoA nor free LC fatty acids can 

migrate across the inner membrane of the mitochondria, 

so the formation of acylcarnitines is critical to 

metabolism of LC fatty acids [35].  This system, termed 

the carnitine shuttle [see Reuter & Evans [25] for 

review], normally maintains carnitine and acylcarnitine 

within a narrow range [35]. This ensures normal 

functioning of fatty acid β-oxidation as well as adequate 

availability of CoA.  Acylcarnitines are also transported 

into plasma [25], and as a consequence, plasma acyl-

carnitine levels can serve as an indicator of mito-

chondrial function [36].  

 

Despite the known relationship between acylcarnitine 

homeostasis and mitochondrial function, investigations 

of acylcarnitines have focused primarily on diseased 

populations, and little attention has been given to 

differences in acylcarnitine homeostasis between 

healthy men and women. The current study was 

designed to test whether acylcarnitines vary by age and 

gender in a healthy, non-diseased population. Results 

from high-resolution metabolomics (HRM) analyses 

show that LC and very long-chain (VLC) acylcarnitines 

increase with age and have gender-specific differences 

in healthy individuals. 

 

RESULTS 
 

Study population demographics 

 

All 78 female adults and 85 male adults were healthy, 

without history of smoking, known disease or metabolic 

risk factors for disease (Figure 1A). The mean age was 

43.5 years, ranging from 20 to 90 y (Figure 1B). The 

population included multiple races and ethnicities, but 

the population size was too small for separate analyses.  

There was no difference in age distribution of males and 

females. 

 

Metabolome-wide association study (MWAS) with 

age 

 

After filtering for m/z features present in at least 80% of 

samples, 26045 features (hereafter referred as “metabolic 

features” or “metabolites”) were detected by C18 and 

anion exchange (AE) columns, with 25680 unique m/z 

within 10 ppm.  MWAS (p < 0.05) showed that 1915 

features associated with age (154 features at FDR <0.2), 

with 986 associating positively and 929 associating 

negatively (Figure 2A). In the current study, we retained 

all features with p < 0.05 for annotation of possible 

acylcarnitines and subsequent analysis.  Full listings of 

these are provided (C18, Supplementary Table 1; AE, 

Supplementary Table 2) and respective annotations are 

given (Supplementary Tables 3 and 4). 

 

Annotation of features with accurate mass match to M + 

H adducts of acylcarnitines with xMSannotator [37] 

 

 
 

Figure 1. Background characteristics of 163 healthy adults of the predictive medicine cohort. (A) Mean values with standard 

deviation (SD) of gender, race and clinical measures are shown. (B) Age distribution of the subset. Stacked bars are shown with men in dark 
gray and women in light gray. Mean age was 43.5 years, and ages ranged from 20 to 90 years.  
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resulted in 132 annotated acylcarnitines, 30 of which 

displayed a significant association with age (P<0.05, 

Table 1). For some of the higher abundance features, 

MS/MS spectra showed nominal mass fragments at 85 

and 144, characteristic of acylcarnitines, and the 

features are therefore discussed as the corresponding 

acylcarnitines with accurate mass match (see also 

Figure 5, below).  Among the m/z features matching 

acylcarnitines, 4 were identified by both C18 and AE 

columns, resulting in 26 uniquely annotated acyl-

carnitines that varied with age. Nineteen of these 

correlated positively with age, and 7 correlated 

negatively with age (Figure 2B).  Carnitine (m/z 

162.1116, 42 s) did not vary with age (p = 0.58). 

 

Acylcarnitine associations with age 

 

The 26 acylcarnitines found to associate with age in 

plasma were compared for similarity between individuals 

through one-way hierarchical clustering analysis (HCA), 

with the study population arranged by age (Figure 3). 

Results showed LC and VLC acylcarnitines (≥ 16 carbon 

chain) [38] (Figure 3) clustered together in a major lower 

cluster and several medium-chain (MC) and short-chain 

(SC) acylcarnitines clustered into an upper cluster (see 

also Figure 2B).   

The lower cluster of 12 LC and VLC acylcarnitines 

contained three subclusters, labeled G1-G3 in Figure 3. 

G1 contained C18:3 as well as C10:2 and C10:3 (Figure 

3). G2, the largest of the three, contained 8 

acylcarnitines with 14- and 16-carbon acyl groups as 

well as C8:0, C18:4 and C18:1 (Figure 3). G3 contained 

7 acylcarnitines with 20- and 22-carbon acyl groups as 

well as C18OH (Figure 3). In all three subgroups, 

abundances of LC and VLC acylcarnitines were 

increased with age. 

 

The top three acylcarnitines by strength of association 

were present in G3 and each had 20-carbon acyl groups: 

eicosenoylcarnitine (C20:1; ρ = 0.3249, p < 0.0001; 

Figure 4A), eicosadienoylcarnitine (C20:2; ρ = 0.2827, 

p = 0.0003; Figure 4B) and arachidylcarnitine (C20:0; ρ 

= 0.2820, p = 0.0003; Figure 4C). The following three 

acylcarnitines by strength of association were present in 

G2 and included decadienoylcarnitine (C10:2; ρ = 

0.2754, p = 0.0004; Figure 4D), hydroystearoylcarnitine 

(C18OH; ρ = 0.2439, p = 0.0017; Figure 4E) and 

decatrienoylcarnitine (C10:3; ρ = 0.2421, p = 0.0019; 

Figure 4F). The relative intensity values (Table 1) 

showed that the most highly associated acylcarnitines 

had relatively high abundances compared to other 

acylcarnitines associated with age.  

 

 
 

Figure 2. Metabolome-Wide Association Study (MWAS) of plasma metabolites correlated with age. (A) Type 1 Manhattan plot 

showing -log10 p for correlation of each metabolite plotted by m/z (mass-to-charge ratio) and type 2 Manhattan plot showing -log10 p for 
correlation of each metabolite plotted by chromatographic retention time (RT) in seconds, as separated the C18 column. Plots are shown 
with significance (n = 1505, p = 0.05) and false discovery rate (n= 140, FDR = 0.2) thresholds by dashed lines, and the detailed information of 
metabolic features is provided in Supplementary Table 1. (B) Plot of acylcarnitine correlation strength and direction (Spearman ρ) by –Log10 
p. Acylcarnitines with p < 0.05 are labeled by the chain length, saturation and modification of the acyl group (see Table 1 for details). For 
acylcarnitines detected on both C18 and anion exchange columns, only the C18 data is represented in the plot. The plot is shown with 
significance (n = 26, p = 0.05) and false discovery rate (n= 4, FDR = 0.2) thresholds by dashed lines In all plots, significant negative correlations 
are shown in blue, and significant positive correlations are shown in red. 
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Table 1. Correlation of acylcarnitines with age.  

m/z 
RT 
(s) 

SLC Database Common name 
Median 
intensity 

Correlation 
(ρ) 

p-value 

C18 positive 
162.1116 42 2b HMDB00062 Carnitine (C0) 3.60E6 -0.0437 0.5797 
454.3869 470 3 LMFA07070010 Eicosenoylcarnitine (C20:1) 2.60E5 0.3249 2.32E-5 
452.3712 391 3 LMFA07070011 Eicosadienoylcarnitine (C20:2) 1.78E5 0.2827 2.56E-4 
456.4025 465 3 HMDB06460 Arachidyl carnitine (C20:0) 9.27E4 0.282 2.65E-4 
312.2154 93 3 HMDB13325 Decadienoylcarnitine (C10:2) 3.01E5 0.2754 3.73E-4 
444.3665 348 3 LMFA07070028 Hydroxystearoylcarnitine (C18OH) 7.27E4 0.2439 1.70E-3 
310.1998 76 3 LMFA07070016 Decatrienoylcarnitine (C10:3)* 1.03E6 0.2363 2.39E-3 
472.3387 335 3 HMDB06510 Docosahexaenoylcarnitine (C22:6) 2.42E4 0.2344 2.60E-3 
398.3245 334 3 HMDB06317 Hexadecenoylcarnitine (C16:1)* 6.73E5 0.2341 2.63E-3 
218.1375 258 2b HMDB00824 Propionylcarnitine (C3:0) 5.14E4 0.2327 2.79E-3 
396.3088 313 3 HMDB13334 Hexadecadienoylcarnitine (C16:2)* 2.30E5 0.2005 0.0103 
422.3244 323 3 HMDB06318 Octadecatrienoylcarnitine (C18:3) 2.19E5 0.1947 0.0128 
388.3037 286 3 HMDB13166 Hydroxymyristoylcarnitine (C14OH) 1.21E5 0.1735 0.0268 
474.3564 347 3 HMDB06321 Docosapentaenoylcarnitine (C22:5) 4.26E4 0.1683 0.0318 
420.3089 314 3 HMDB06463 Octadecatetraenoylcarnitine (C18:4) 2.62E4 0.1553 0.0478 

464.3352 309 3 LMFA07070036 
Hydroxyicosatetraenoylcarnitine 

(C20:4OH) 
4.94E3 0.1539 0.0498 

262.1637 258 2b LMFA07070041 Hydroxyvalerylcarnitine (C5OH) 1.51E4 -0.1602 0.0411 
246.1687 265 2b HMDB13128 Valerylcarnitine (C5:0)* 5.07E4 -0.1612 0.0398 
374.2519 311 3 HMDB13327 Dodecanedioylcarnitine (C12DC) 8.53E4 -0.1914 0.0144 
304.1741 257 3 HMDB13328 Pimelylcarnitine (C7DC) 2.97E4 -0.1976 0.0114 
302.231 301 3 HMDB13288 Nonanoylcarnitine (C9:0) 6.07E4 -0.2174 5.30E-3 

Anion exchange 
310.2014 57 3 LMFA07070016 Decatrienoylcarnitine (C10:3)* 3.30E5 0.2421 1.85E-3 
398.3265 76 3 HMDB13207 Hexadecenoylcarnitine (C16:1)* 3.68E5 0.1945 0.0128 
426.3576 111 3 HMDB06351 Octadecenoylcarnitine (C18:1) 2.55E6 0.1808 0.0209 
396.3108 65 3 HMDB13334 Hexadecadienoylcarnitine (C16:2)* 1.21E5 0.1723 0.0279 
369.2828 59 3 HMDB13331 Tetradecadienoylcarnitine (C14:2) 1.20E5 0.1682 0.0318 
288.2169 63 2b HMDB00791 Octanoylcarnitine (C8:0) 5.17E5 0.1632 0.0374 
372.3109 71 3 HMDB05066 Myristoylcarnitine (C14:0) 2.51E5 0.1547 0.0486 
286.2013 570 2b HMDB13324 Octenoylcarnitine (C8:1) 2.72E4 -0.1681 0.032 
246.1698 581 2b HMDB13128 Valerylcarnitine (C5:0)* 7.13E3 -0.1778 0.0232 
330.2272 584 3 HMDB13202 Ketodecanoylcarnitine (Oxo-C10) 2.08E3 -0.1905 0.0149 

Correlation analyzed by Spearman (ρ) and significance of correlation (p-value) are shown for each acylcarnitine detected on 
both C18 and anion exchange columns.  Mass-to-charge ratio (m/z), retention time (RT), Schymanski level of confidence 
(SLC), and Human Metabolome Database (HMDB) or Lipid Maps (LMFA) database identifier are given for each acylcarnitine. 
Although no significant correlation was found for free carnitine (C0), values are given for reference. A SLC of 3 indicates a 
putative identification using LCMS data, whereas a SLC of 2b indicates a probable match using additional diagnostic MS/MS 
data. All acylcarnitines were detected as an M + H adduct. *, acylcarnitine identified by both C18 and anion exchange. 
 

In contrast to the pattern of the LC and VLC 

acylcarnitines, which increased with age, the MC and SC 

cluster decreased in association with age (Figures 2B, 3). 

These were all relatively low abundance signals (Table 

1).  The MC and SC cluster included odd-chain (OC; C5, 

C7, C9) acylcarnitines, all of which decreased in 

association with age (Figure 3).  The MC and SC cluster 

also contained features matching acylcarnitine 

derivatives of two dicarboxylic acids (DC) (Figures 2B, 

3).  Propionylcarnitine (C3:0) was present in the MC and 

SC cluster but did not decrease with age unlike the other 

OC acylcarnitines (see also Figure 2B).  MS/MS 

fragmentation supported the identity of valerylcarnitine 

(C5:0; Figure 5A), hydroxyvalerylcarnitine (C5OH; 

Figure 5B), octenoylcarnitine (C8:1; Figure 5C) and 

octanoylcarnitine (C8:0; Figure 5D) relative to database 

spectra for methylbutyroylcarnitine. C5:0 matched 

several fragments for methylbutyroylcarnitine (Figure 

5A). C5OH, C8:1 and C8:0 matched with methyl-

butyroylcarnitine, with the exception of one major 

fragment. The mass difference for fragments matched the 

mass differences present between the given acylcarnitine 

and methylbutyroylcarnitine (Figure 5B–5D). 

 

Tests for correlations among the acylcarnitines in 

Figure 3 showed that the high-abundance LC and VLC 

metabolites in G3 were highly positively correlated  

with each other, with the one exception of C22:6,  

which did not correlate with any other LC or VLC 

acylcarnitines (Supplementary Table 5).  In contrast, these 

LC and VLC acylcarnitines were not correlated, either 

positively or negatively, with carnitine or  acetylcarnitine. 
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Figure 3. Heat map of one-way hierarchical clustering analysis (HCA) of the 26 acylcarnitines significantly associating with 
age. Along the x-axis, individuals are organized by age, with youngest on the left. The y-axis is comprised of the one-way HCA of 

acylcarnitines. Each column represents an individuals’ metabolic profile of the 35 acylcarnitines. Degree of deviation of acylcarnitine 
concentration below the mean of the study population are indicated by saturation of blue coloration, and degree of deviation of acylcarnitine 
concentration above the mean of the study population are indicated by saturation of red coloration. Short-chain and medium-chain 
acylcarnitines are labeled in gray, and long-chain and very-long-chain acylcarnitines are highlighted by labeling in black. For acylcarnitines 
detected on both C18 and anion exchange columns, only the C18 data was included in the HCA. The lower major acylcarnitine cluster is 
labeled by its subgroups, G1-3.  

 

 
 

Figure 4. Highest correlations of acylcarnitines with age in human plasma. Log2 transformed intensity values for ions, identified by 

mass-to-charge ratio (m/z) and retention time (RT) for individual plasma samples are plotted against individual ages. Confidence intervals 
(95%) are shown in gray. (A) Eicosenoylcarnitine (C20:1), (B) eicosadienoylcarnitine (C20:2), (C) arachidylcarnitine (C20:0) and (D) 
decadienoylcarnitine (C10:2) were significant at FDR = 0.2. (E) Hydroxystearoylcarnitine (C18OH) and (F) decatrienoylcarnitine (C10:3) were 
significant at p < 0.05. 
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Propionylcarnitine was associated with arachidylcarnitine 

C20:0 (ρ = 0.2968, p = 0.0001). Few associations 

occurred among MC and SC acylcarnitines (Sup-

plementary Table 5). Acylcarnitines with a 10-carbon acyl 

group as well as C14OH had associations with LC and 

VLC acylcarnitines (Supplementary Table 5).  OC acyl-

carnitines had few correlations; only C9:0 correlated with 

C5:0 (ρ = 0.3561, p < 0.0001) and C7DC (ρ = 0.3583, p < 

0.0001; Supplementary Table 5). Hydroxyvalerylcarnitine 

(C5OH) showed no correlation with any other OC 

acylcarnitines. 

 

Gender differences in acylcarnitine associations with 

age 

 

The 6 acylcarnitines with greatest positive rho value 

were examined for their associations with age when 

individuals were separated by gender. This separation 

by gender did not show stronger correlation of 

acylcarnitines with age (Table 2) than observed for the 

combined analyses (Fig 5). Comparisons of genders 

show that C20:1 and C20:2 exhibited stronger 

correlations with age in males than females while 

C20:0, C10:2, C18OH and C10:3 exhibited slightly 

stronger correlations with age in females than males.  

The xMWAS analysis of these 6 acylcarnitines against 

the remainder of the metabolome in each gender 

resulted in different clustering within each network (Fig 

6). The female network grouped into 5 distinct clusters, 

with separate clusters for C18OH, C20:0, C20:1 and 

C20:2 (Clusters 1, 2, 4 and 5, respectively), and C10:2 

and C10:3 (Cluster 3) were consolidated into one cluster 

of metabolites (Figure 6A). Relative to females, the 

male network grouped more tightly resulting in 4 

clusters, with C20:1 and C20:2 in Cluster 4 (Figure 6B). 

Additionally, the three 20 carbon acylcarnitines showed 

associations with more metabolites in the males 

compared to females. 

 

Metabolites associated with these 6 acylcarnitines 

shared little commonality between females and males, 

with less than 11% of those metabolites included in the 

female network also being present in the male network. 

Annotations of the features in the female and male 

xMWAS networks are provided in Supplementary 

Tables 6 and 7, respectively. Pathway enrichment 

analyses of the metabolic features associated in both  

the female and male xMWAS networks resulted in 

distinctly different pathways associating with age-

associated acylcarnitines in women and in men. 

 

 
 

Figure 5. Identification of acylcarnitines by MS/MS. Experimental MS/MS fragmentations of (A) valerylcarnitine, (B) 

hydroxyvalerylcarnitine, (C) octenoylcarnitine and (D) octanoylcarnitine are juxtaposed below a library MS/MS fragmentation of 
methylbutyroylcarnitine. Diagnostic fragments common between library and experimental fragmentations are labeled. Pertinent MS/MS 
peaks are labeled for mass-to-charge ratio (m/z) by broken line. Additionally, distinctive fragments equivalent in mass difference to that of 
the mass difference between the represented acylcarnitine and methylbutyroylcarnitine are labeled with proposed fragment structure 
displayed. MS/MS peaks and matching proposed fragment structure are labeled by dotted line.  
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Table 2. Comparison of correlations of acylcarnitines with age by gender.  

Name Structure 
Female 

(ρ, p) 

Male 

(ρ, p) 

Eicosenoylcarnitine C20:1 0.2828, 0.0121 0.3551, 8.55E-4 

Eicosadienoylcarnitine C20:2 0.1344, 0.2409 0.3693, 5.04E-4 

Arachidylcarnitine C20:0 0.3078, 6.11E-3 0.2397, 0.0271 

Decadienoylcarnitine C10:2 0.3194, 4.37E-3 0.2323, 0.0324 

Hydroxystearoylcarnitine C18OH 0.3455, 2.95E-3 0.1457, 0.1845 

Decatrienoylcarnitine C10:3 0.2456, 0.0330 0.2304, 0.0365 

For the 6 acylcarnitines with the highest correlation with age in the whole population, correlation  
with age by gender was tested. Spearman’s ρ and p-value are shown for correlations in females  
and males. 

 

Cytochrome P450 metabolism (females: p = 0.001; 

males: p = 0.030) and vitamin E metabolism (females: p 

= 0.006; males: p = 0.001) changed in association with 

age-associated acylcarnitines in both genders (Table 3). 

In females, glycerophospholipid metabolism (p = 

0.004), leukotriene metabolism (p = 0.004), fatty acid 

activation (p = 0.017), glycosphingolipid metabolism (p 

= 0.020), prostaglandin formation (p = 0.028), 

tryptophan metabolism (p = 0.032) and fatty acid 

biosynthesis (p = 0.039) changed in association with 

age-associated acylcarnitines (Table 3). In males, the 

carnitine shuttle (p = 0.002), cholesterol biosynthesis (p 

= 0.011) and steroid biosynthesis (p = 0.030) changed in 

association with age-associated acylcarnitines (Table 3). 
 

DISCUSSION 
 

Our results show that plasma LC and VLC 

acylcarnitines increase with age in healthy individuals. 

In individuals with no age-related disease nor metabolic 

risk factors, all age-associated acylcarnitines with acyl 

groups of carbon chains 16 carbons or longer increased 

in association with age. All OC acylcarnitines except 

for C3:0 were decreased with age.  The results also 

 

 
 

Figure 6. Association of top 6 age-associated acylcarnitines with metabolome. (A) xMWAS network of top 6 age-associated 

acylcarnitines as associated with metabolome within females. Cluster 1 (orange) has features predominantly associated with 
hydroxystearoylcarnitine (C18OH). Cluster 2 (green) is comprised of features associated most closely with arachidylcarnitine (C20:0). Cluster 3 
(yellow) contains features clustered around decadienoylcarnitine (C10:2) and decatrienoylcarnitine (C10:3). Cluster 4 (dark blue) has features 
mainly associated with eicosenoylcarnitine (C20:1). Cluster 5 (light blue) has features mainly associated with eicosadienoylcarnitine (C20:2). 
See Supplementary Table 6 for detailed annotation of metabolites included in the female network. (B) xMWAS network of top 6 age-
associated acylcarnitines as associated with metabolome within males. Clusters 1-3 form around the same acylcarnitines as their respective 
acylcarnitines in the female subset. Cluster 4 (blue) has features mainly associated with both C20:1 and C20:2. See Supplementary Table 7 for 
detailed annotation of metabolites included in the male network. Positive associations are shown in red, while negative associations are 
shown with blue lines.  
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Table 3. Metabolic pathways associated with top 6 age-related acylcarnitines by gender.  

Metabolic Pathway 
Number of metabolites at  

p < 0.05 

Number of metabolites from 

pathway detected 
p-value 

Females 

Cytochrome P450 drug metabolism 5 26 0.001 

Glycerophospholipid metabolism 4 28 0.004 

Leukotriene metabolism 6 51 0.004 

Vit E metabolism 4 30 0.006 

Fatty acid activation 3 24 0.017 

Glycosphingolipid metabolism 3 25 0.020 

Prostaglandin formation 4 40 0.028 

Tryptophan metabolism 4 41 0.032 

Fatty acid biosynthesis 3 29 0.039 

Males 

Vit E metabolism 6 30 0.001 

Carnitine shuttle 5 28 0.002 

Cholesterol biosynthesis 4 31 0.011 

Steroid biosynthesis 5 53 0.030 

Cytochrome P450 drug metabolism 3 25 0.030 

 

show that among the most strongly age-associated 

acylcarnitines, C20:2 and C18OH show difference in 

strength of association between genders, and the 

genders differ considerably in lipid pathways which 

vary in association with age-associated acylcarnitines. 

 

Changes in acylcarnitines with age alone point toward 

decreased mitochondrial function with age. Elevated 

acylcarnitines, especially LC and VLC acylcarnitines, 

serve as markers of mitochondrial deficiency in fatty acid 

oxidation [25, 26]. Downstream associations of increased 

LC acylcarnitines with other lipid metabolic pathways, 

such as glycerophospholipid, glycosphingolipid, fatty  

acid and cholesterol metabolism, further suggests  

that the effect of age occurs through changes in 

mitochondrial function [39]. Inverse association of 

hydroxyvalerylcarnitine (C5OH) with age as well as the 

lack of association of C5OH with any other age-related 

OC acylcarnitines suggests changes in other mito-

chondrial pathways such as branched chain amino acid 

(BCAA) metabolism [40, 41]. Negative association of 

dicarboxylic acylcarnitines (C7DC and C12DC) with age 

suggests decreased β-oxidation of LC dicarboxylic 

acylcarnitines in the peroxisome with age [42]. Increased 

LC and VLC with age and dysregulation of BCAA 

metabolism and mitochondrial and peroxisomal lipid 

metabolism are consistent with the effect of age being 

upstream of the mitochondria.  Such upstream effects on 

mitochondrial lipid and amino acid metabolism and 

peroxisomal activity are known to occur through changes 

in mTOR/PPARα activity with age [43, 44]. 

 

The increase in acylcarnitines in healthy individuals 

with increased age alone suggests a need for improved 

matching of case and control groups in studies of age-

related disease. For instance, in some studies on 

increased acylcarnitines in age-related disease, case 

groups were older than controls [12–14, 23].  Other 

studies used populations in which there was no 

significant difference in age of cases and controls, but 

the case group mean age was over 5 years greater than 

that of the control group [16, 19, 22].  The consistency 

of these studies with regard to associations of 

acylcarnitines and disease supports the correctness of 

the authors conclusions; none-the-less, the magnitude of 

effects might be impacted by non-disease-related, age-

associated changes of acylcarnitines in the controls.     

 

Two LC acylcarnitines, C16:1 (hexadecenoylcarnitine) 

and C18:1 (octadecenoylcarnitine), positively correlated 

with age in the present study, have been reported to be 

positively associated with age-related disease in some 

of these studies. Bouchouirab et al. [13] reported 

decreased plasma clearance of C18:1 in response to 

insulin or postprandially in individuals with type II 

diabetes when compared to controls who were non-

diabetic with no family history of diabetes. In this 

study, the mean age of individuals with type II diabetes 

was nearly twice that of the controls group. Similarly, 

Adams et al. [16] reported increased fasting C18:1 in 

obese, African American women with type II diabetes 

compared to that of obese, African American women 

without disease. In this study, the mean age of diabetic 

individuals was 5 years older than that of controls, and 

the maximum age studied for the diabetic group was 18 

years greater than that of the control group. Lastly, a 

recent study of neovascular age-related macular 

degeneration [14] reported increased C16:1 and C18:1 
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in diseased individuals compared to controls. Their 

study controlled for age in the analysis, and the mean 

age for both groups was above 70 years old.  Our 

present study mostly had individuals 20-70 years of age, 

and this limits conclusions which may be drawn from 

comparisons. 

 

The difference in direction of association of C3:0 

compared to all other OC acylcarnitines may be a result 

of decreased flux with age because propionyl-CoA is a 

product of OC fatty acid β-oxidation [45]. Increased 

C3:0 with age may be indicative of an age-related 

change in metabolism of OC LC fatty acids, which have 

been shown to associate negatively with heart disease 

and type II diabetes [46, 47]; however, we observed no 

association of OC LC acylcarnitines with age. 

Alternatively, the decrease in C5:0, C7DC and C9:0 

with age may be a result of decreased dairy 

consumption with age, as dairy products are an 

important source of OC fatty acids in the diet [48, 49]. 

This increase in C3:0 with age could also be due to age-

related differences in composition of the microbiome or 

in dietary fiber intake [50]; these parameters were not 

assessed in our study population.  Future study of 

metabolic flux using stable isotope-labeled OC fatty 

acids could shed light on whether this observation is 

due to an age-related change in metabolism or an 

external factor such as dietary fiber or dairy intake.   

 

As with previously noted differences in acylcarnitine 

association with age in men and women, we also found 

differences in strength of association of several 

acylcarnitines with age between genders. Previously, 

Muilwijk et al. [33] reported an increase in concentrations 

of several acylcarnitines with age in individuals who were 

without age-related disease but whose clinical measures 

were not controlled. They noted that increases observed in 

acylcarnitines with age were higher in women, and 

several more significant changes in acylcarnitines with 

age were reported for women than were for men. Yu et al. 

[32] reported C18:1 as a correlate with age in both men 

and women; however, in women the relationship was 

much stronger. In neither of these studies were the 

differences in strengths of correlation a focus. Similarly, 

our data show that there is difference between the genders 

in how strongly acylcarnitines associate with age. Our 

study shows different associations of acylcarnitines with 

the remainder of metabolism. Generally, women exhibited 

more lipid metabolic pathways which were altered in 

association with age-associated acylcarnitines. In addition 

to this, women exhibited changes in leukotriene 

metabolism, prostaglandin formation and tryptophan 

metabolism in association with age-associated acyl-

carnitines.  Association of these inflammatory-related 

pathways with age-associated acylcarnitines in women 

but not in men support previous findings that gender 

differences in inflammatory pathways tend to magnify in 

old age [51–54]. 

 

The present study used stringent selection criteria for 

health of individuals studied; however, the population 

was small and cannot be considered representative of 

the general population, especially for racial and ethnic 

comparisons. Additionally, this was a cross-sectional 

study of individuals at different ages and does not 

address longitudinal changes within individuals as a 

result of aging.  Studies are needed to evaluate changes 

in acylcarnitines which occur as a result of loss of 

mitochondrial function and other physiological 

measures of aging, such as telomeric shortening, loss of 

proteostasis, deregulated nutrient-sensing or physical 

frailty [55, 56]. 

 

In summary, the present results show that abundant 

acylcarnitines increase in plasma with age in healthy 

individuals.  The results emphasize the importance of 

strict control for age in metabolomic studies of age-

related diseases in order to account for metabolic 

alterations which occur as an adaptive response in 

healthy aging regardless of disease state.  The study also 

shows important gender differences in glycerolipids and 

other metabolic networks linked to acylcarnitines that 

vary by age. Thus, the results provide justification for 

detailed studies of lipid metabolism in aging, 

specifically to understand gender differences which 

could impact underlying gender-specific disease 

mechanisms.  

 

MATERIALS AND METHODS 
 

Chemicals 

 

HPLC grade acetonitrile and methanol, LC-MS water and 

98% formic acid were obtained from Sigma-Aldrich (St. 

Louis, MO). A mixture of 14 stable isotopic chemicals 

used as an internal standard [57] included [13C6]-D-

glucose, [15N]-indole, [2-15N]-L-lysine dihydrochloride, 

[13C5]-L-glutamic acid, [13C7]-benzoic acid, [3,4-13C2]-

cholesterol, [15N]-L-tyrosine, [trimethyl-13C3]-caffeine, 

[15N2]-uracil, [3,3-13C2]-cystine, [1,2-13C2]-palmitic acid, 

[15N,13C5]-L-methionine, [15N]-choline chloride and 2’-

deoxyguanosine-15N2,
13C10-5’-monophosphate from 

Cambridge Isotope Laboratories, Inc (Andover, PA).  
 

Human plasma samples 
 

A subset of samples (n = 163) from the Predictive 

Medicine Research (PREMED) cohort (ClinicalTrials.gov 

Identifier: NCT00336570) was used; the subset 

represented all available samples and did not appear to 

have selection bias. The study was reviewed and approved 

by the Emory University Investigational Review Board 
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(IRB00024767). PREMED subjects were healthy 

individuals between 20 and 90 years of age. Participants 

were originally studied to define a “normal” clinical value 

or range of values for plasma contents in healthy 

individuals to evaluate methods for detecting early 

multiorgan disease (NCT00336570). Included participants 

possessed low BMI, LDL cholesterol and blood pressure 

as well as no history of smoking. Participants were 

excluded by use of lipid lowering medication, presence of 

any number of chronic or acute diseases or disorders, 

listed in full detail at ClinicalTrials.gov. Blood plasma 

was collected with EDTA, and samples were stored at -

80°C prior to LC-MS analysis. 

 

High-resolution metabolomics (HRM) 

 

Plasma samples were analyzed as described previously 

[58]. Briefly, 50 µL plasma samples were treated 2:1 

(v/v) with acetonitrile, and 2.5 µL internal standard of a 

mixture of 14 stable isotope standards was added. 

Proteins were precipitated and pelleted by incubation at 

4°C for 30 min followed by centrifugation for 10 min at 

21000 x g at 4°C. Supernatants were placed in 

autosampler vials and maintained at 4°C in an 

autosampler. Samples were analyzed by liquid 

chromatography-Fourier transform mass spectrometry 

at 60,000 resolution (Accela-LTQ Velos Orbitrap; m/z 

range from 85-2000) in triplicate. A dual 

chromatography setup was utilized, using AE and C18. 

Electrospray ionization was performed in positive ion 

mode. Data collection occurred continuously throughout 

10 min of chromatographic separation. 

 

Raw files were converted to .cdf files using Xcalibur file 

converter from Thermo Fisher (San Diego, CA). Data 

extraction was performed using apLCMS [59] and 

xMSanalyzer [60], generating m/z features, a m/z feature 

consisting of mass-to-charge ratio (m/z), retention time 

(RT) and ion intensity. Feature and sample filtering 

retained features with a median CV of 50% or less, a 

minimum mean Pearson correlation coefficient of 0.7 

between technical replicates of each sample, and which 

were detected in at least 30% of samples.  Two pooled 

human reference plasma samples were concurrently 

analyzed, as described by [61]. Briefly, NIST SRM1950 

was analyzed at the beginning and end of the study. A 

second pooled reference sample (Q-Standard 3; Qstd3) 

was analyzed at the beginning of each batch of 20 

samples. Qstd3 was prepared from plasma pooled from 2 

separate lots from Equitech-Bio, Inc (Kerrville, Texas). 

 

Metabolite annotation and identification 

 

The m/z features were annotated for possible identities 

against the Human Metabolome Database (http://www. 

hmdb.ca/) and the LIPID MAPS Lipidomics Gateway 

(http://www.lipidmaps.org/) using xMSannotator [37], 

which scores annotations based on correlation 

modularity clustering and isotopic, adduct and mass 

defect grouping. This provides annotation at a 

confidence equivalent to a Schymanski level of 

confidence (SLC) 3 as defined by Schymanski et al. 

[62]. All metabolites were matched at < 10 ppm 

accuracy. All acylcarnitines were detected in the form 

of a M + H adduct.  All age-associated acylcarnitines 

were tested for probable structure using MS/MS 

fragmentation with the Accela-LTQ Velos Orbitrap. 

Acylcarnitines for which probable structure could be 

identified by diagnostic fragments compared against 

values from the METLIN MS/MS metabolite database 

[63] were designated as SLC 2b as defined by 

Schymanski et al. [62]. 

 

Metabolome-wide association study of age 

 

Using the R package, xmsPANDA (https://github.com/ 

kuppal2/xmsPANDA), a metabolome-wide association 

study (MWAS) was performed to identify m/z features 

which associate with age in healthy individuals. 

Intensities for m/z features from xMSanalyzer, which had 

intensities for at least 80% of samples were log2 

transformed and quantile normalized. Missing values 

were replaced by half of the minimum reported intensity 

for that feature. Normalized m/z features were tested by 

Spearman’s rank correlation for association with age, with 

a p < 0.05 considered significant. A Benjamini/Hochberg 

false discovery rate (FDR) method was used to correct for 

multiple comparisons, with an FDR threshold of 0.2 [64].  

Hierarchical clustering analysis (HCA) was performed 

using MetaboAnalyst [65].  

 

All acylcarnitines found to associate with age from the 

C18 column were analyzed for correlation between 

acylcarnitine subtypes. Age-associated acylcarnitines 

from the C18 column were chosen over those from the 

AE column due to greater coverage of acylcarnitines. In 

addition to those found to be age-associated, free 

carnitine (C0) and acetylcarnitine (C2) were included 

for analysis. Correlations were analyzed using 

Spearman’s rank correlation test, and a Bonferroni 

correction was applied [66], resulting in p < 1.98 * 104 

being considered significant.  

 

The top 6 age-associated acylcarnitines were tested for 

associations with other components of the metabolome 

in each gender using xMWAS based on partial least-

squares regression [67]. After using the data 

normalization and filtering methods described above, 

the top 6 age-associated acylcarnitines were tested for 

associations with 26040 metabolites within both female 

(n = 78) and male (n = 85) subsets of the population. In 

generation of both networks, metabolites were filtered 

http://www.hmdb.ca/
http://www.hmdb.ca/
http://www.lipidmaps.org/
https://github.com/kuppal2/xmsPANDA
https://github.com/kuppal2/xmsPANDA
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so that the 10000 metabolites with the lowest relative 

standard deviation were included in the partial least 

squares analysis. Thresholds for inclusion in the 

network were |r| > 0.30 and p < 0.01. Pairwise results 

from MWAS of the metabolites used for generation of 

network structures were used for pathway enrichment 

analysis using mummichog (v1) [68]. For each gender, 

enriched pathways were filtered for those that included 

at least 3 significantly associated metabolites at p < 

0.05. 

 

Abbreviations 
 

AE: anion exchange; BCAA: branched-chain amino 

acid; CoA: coenzyme A; FDR: false discovery rate; 

HCA: hierarchical clustering analysis; HRM: high 

resolution metabolomics; LC: long-chain; MC: 

medium-chain; MWAS: metabolome-wide association 

study; m/z: mass-to-charge ratio; OC: odd-chain; RT: 

retention time; SLC: Schymanski level of confidence; 

SC: short-chain; VLC: very long-chain. 
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Please browse Full Text version to see the data of Supplementary Tables 1 to 7. 

 

Supplementary Table 1. Age-associations of metabolites from C18 column. 

Supplementary Table 2. Age-associations of metabolites from anion exchange column. 

Supplementary Table 3. Annotations of age-associated metabolites from C18 column. 

Supplementary Table 4. Annotations of age-associated metabolites from anion exchange column. 

Supplementary Table 5. Correlations between acylcarnitines.  

Supplementary Table 6. Annotations of metabolites included in female network of metabolome-wide associations 
with the top 6 age-associated acylcarnitines (Figure 6A). 

Supplementary Table 7. Annotations of metabolites included in male network of metabolome-wide associations 
with the top 6 age-associated acylcarnitines (Figure 6B). 


