Abstract

Lung cancer is the leading cause of cancer death worldwide and accounts for more than one-third of all newly diagnosed cancer cases in China. Therefore, it is of great clinical significance to explore new driver gene mutations in non-small-cell lung cancer (NSCLC). Using an initial bioinformatic analysis, we identified somatic gene mutations in 13 patients with NSCLC and confirmed these mutations by targeted sequencing in an extended validation group of 88 patients. Recurrent mutations were detected in UNC5D (7.9%), PREX1 (5.0%), HECW1 (4.0%), DACH1 (2.0%), and GPC5 (2.0%). A functional study was also performed in UNC5D mutants. Mutations in UNC5D promoted tumorigenesis by abolishing the tumor suppressor function of the encoded protein. Additionally, in ten patients with lung squamous cell carcinoma, we identified mutations in KEAP1/NFE2L2 that influenced the expression of target genes in vivo and in vitro. Overall, the results of our study expanded the known spectrum of driver mutations involved in the pathogenesis of NSCLC.