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INTRODUCTION 
 
Breast cancer is the most pervasive malignancy and the 
second leading cause of cancer-related deaths among 
women, according to the estimated cancer statistic in the 
world [1]. Despite the innovation and progress made in 
systematic treatment  (surgery,  chemotherapy,  hormonal  

 

therapy, targeted therapy and etc.), some patients with 
breast cancer will still develop metastatic disease after 
surgery, especially the triple negative breast cancer [2–3]. 
Accounting for over 90% of the death cases, metastasis is 
the main reason for breast cancer mortality [4]. Patients 
suffering from breast cancer lung metastases have a poor 
prognosis with a median survival time of 21 months [5]. 
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ABSTRACT 
 
As a unique type of RNA, circular RNAs (circRNAs) are important regulators of multiple biological processes in 
the progression of cancer. However, the potential role of most circRNAs in breast cancer lung metastasis is still 
unknown. In this study, we characterized and further investigated circIQCH (hsa_circ_0104345) by analyzing the 
circRNA microarray profiling in our previous study. circIQCH was upregulated in breast cancer tissues, especially 
in the metastatic sites. CCK-8, transwell, wound-healing and mouse xenograft assays were carried out to 
investigate the functions of circIQCH. Knockdown of circIQCH inhibited breast cancer cell proliferation and 
migration to lung. Moreover, luciferase reporter assays and RNA immunoprecipitation assays were performed 
to elucidate the underlying molecular mechanism of circIQCH. The results showed that circIQCH sponges miR-
145 and promotes breast cancer progression by upregulating DNMT3A. In summary, our study demonstrated 
the pivotal role of circIQCH-miR-145-DNMT3A axis in breast cancer growth and metastasis via the mechanism 
of competing endogenous RNAs. Thus, circIQCH could be a potential therapeutic target for breast cancer. 
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To some extent, metastatic breast cancer is unresectable 
and the treatment is limited to systematic treatment with 
unsatisfied efficacy [6, 7]. Thus, it is urgent to identify 
novel accurate biomarkers and develop new therapeutic 
targets for patients with breast cancer. 
 
Recently, circular RNAs (circRNAs) have become a 
hotspot in the field of biomedicine and have been widely 
studied. As a novel type of endogenous noncoding RNAs 
(ncRNAs), circRNAs widely existed and expressed in 
mammalian cells with a cyclic ring structure [8]. With 
highly conversed sequences and stable structure, 
circRNAs formed by the back splicing of exons or 
introns without a head or a tail [9]. Being the mediators 
of a variety of biological process in the cell, circRNAs 
regulate the expression of key genes via multiple 
comprehensive mechanisms, including sponging 
microRNA (miRNA), binding proteins and encoding 
novel proteins [10]. Scientists have discovered that 
circRNAs are the vital regulators of the process of 
multiple diseases, including diabetes, Alzheimer's 
disease, heart failure, cancer and so on [11–14]. Thanks 
to the efforts of researchers, its special roles in the 
development and the progression of cancers were 
gradually uncovered [15]. One of the most famous and 
well-studied circRNAs, CDR1as promotes growth and 
metastasis of different tumors by sponging miR-7 [16–
19]. circFBXW7 is downregulated in tumor tissues which 
can inhibit cell proliferation and metastasis in glioma and 
triple negative breast cancer by encoding a 21kDa novel 
protein FBXW7-185aa and blocking miR-197-3p [20–
21]. However, the potential functions and the underlying 
molecular mechanism of the most circRNAs are still 
unclear. 
 
In this study, we characterized a frequently upregulated 
novel circRNA hsa_circ_0104345 in metastatic breast 
cancer by reanalyzing the circRNA microarray profiling 
in our previous study. circIQCH was upregulated in 
breast cancer tissues, especially in the metastatic sites. 
Knockdown of circIQCH inhibited breast cancer cell 
proliferation and migration to lung. Luciferase reporter 
assays and RNA immunoprecipitation assays were 
performed to elucidate the underlying molecular mecha-
nism of circIQCH. Briefly, our study demonstrated the 
pivotal role of circIQCH-miR-145-DNMT3A axis in 
breast cancer growth and metastasis via the mechanism 
of competing endogenous RNAs. 
 
RESULTS 
 
circIQCH is upregulated in primary and metastatic 
breast cancer 
 
We analyzed the circRNA microarray profiling in our 
previous study and chose the top five upregulated 

circRNAs for further validation [22]. Hsa_circ_0104345 
was the most upregulated circRNA detected in five 
paired primary breast cancer tissues and matched 
metastatic tissues by qRT-PCR analysis (Figure 1A). 
According to the circBase database and University of 
California Santa Cruz Genome Browser, we found that 
hsa_circ_0104345 is derived from gene IQCH (chr15: 
67636400-67665771) which is located on chromosome 
15p23. Thus, we named hsa_circ_0104345 as 
circIQCH. We evaluated the expression of circIQCH in 
breast cancer and adjacent normal tissue by qRT-PCR 
analysis. The result showed that circIQCH was up-
regulated in breast cancer tissues (Figure 1B). We found 
that the expression level of circIQCH was upregulated 
in breast cancer cell lines compared to normal 
mammary cell, especially in SKBR3 and BT474 (Figure 
1C). Subsequently, RNase R digestion experiment was 
conducted to verify the circular characteristics of 
circIQCH (Figure 1D). In addition, Actinomycin D 
assays revealed that the circular transcript circIQCH is 
more stable than the linear transcript IQCH in SKBR3 
cells (Figure 1E). 
 
Downregulation of circIQCH suppresses the 
proliferation of breast cancer cells 
 
To investigate whether circIQCH was involved in the 
proliferation of breast cancer, we next performed loss-of-
function assays. Two siRNAs were designed and to 
knock down circIQCH by targeting the back-splicing 
region. The expression of circIQCH was decreased after 
transfected by siRNAs which had no influence on the 
linear IQCH mRNA expression detected by qRT-PCR 
analysis (Figure 2A, 2B). CCK-8 assays revealed that 
circIQCH downregulation suppressed cell proliferation 
(Figure 2C, 2D). To further assess the functions of 
circIQCH in vivo, mouse xenograft models were 
established. Consistent with the results in cell 
experiments, inhibition of circIQCH could reduce the 
tumor volume (Figure 2E, 2F). In addition, the 
expression of Ki67 were significantly reduced in tumor 
tissues of the si-circIQCH groups (Figure 2G). 
 
Downregulation of circIQCH inhibits the metastasis 
of breast cancer cells 
 
Wound healing assays and transwell assays were 
carried out to evaluate the influence of circIQCH on 
the metastasis of breast cancer. The results showed 
that silencing the expression of circIQCH could inhibit 
the percentage of wound closure and migration ability 
of SKBR3 and BT474 cells (Figure 3A–3D). 
Additionally, this result could also be observed in lung 
metastasis experiment in vivo. Inhibition of circIQCH 
could reduce the number of lung metastases, indicating 
that circIQCH plays an important role in the metastasis 
of breast cancer (Figure 3E, 3F). 
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circIQCH functions as a sponge for miR-145 
 
To explore the underlying molecular mechanism of 
circIQCH in promoting breast cancer progression, we 
used Circular RNA Interactome to predict the potential 
circRNA/miRNA interaction (https://circinteractome. 
nia.nih.gov). Among these candidates, miR-145 was 
predicted to have the potential to interact with circIQCH 
(Figure 4A). According to the previously reported 
studies, miR-145 is downregulated and inhibits tumor 
progression in breast cancer [23–26]. miR-145 was 
downregulated in breast cancer cell lines (Figure 4B). 
circIQCH predominantly existed in the cytoplasm 
indicating that it could interact with miRNA which is 
mostly located in the cytoplasm (Figure 4C, 2D). 
Luciferase reporter assay showed that the luciferase 
activity decreased after transfected with wild type reporter 
and miR-145 mimics (Figure 4E, 3F). In order to confirm 
the direct binding between circIQCH and miR-145, we 
conducted RNA immunoprecipitation (RIP) assays and 
the results revealed that miR-145 was primarily enriched 
in the MS2bs-circIQCH group (Figure 4G). These results 
indicated that circIQCH functions as a sponge for miR-
145 and promotes breast cancer progression. 

circIQCH promotes breast cancer progression via 
circIQCH-miR-145-DNMT3A axis 
 
We used TargetScan algorithm to predict potential 
downstream targets of miR-145 and DNMT3A was 
identified as the candidate target oncogene (Figure 5A). 
DNMT3A encodes a DNA methyltransferase and modify 
DNA methylation which plays an important role in 
tumorigenesis and development in multiple cancers, 
including breast cancer [27–30]. DNMT3A was found 
overexpressed in breast cancer cell lines (Figure 5B). 
Subsequently, luciferase reporter assays and RNA 
immunoprecipitation assays were conducted to determine 
whether miR-145 could directly bind the 3’-UTR of 
DNMT3A mRNA. Luciferase reporter assay showed that 
the luciferase activity decreased after transfection with 
miR-145 mimics and wild type 3’-UTR-DNMT3A 
reporter in SKBR3 and BT474 cells (Figure 5C). 
Moreover, the expression level of DNMT3A was 
decreased by miR-145 mimics and increased by miR-145 
inhibitors, indicating that DNMT3A is regulated by  
miR-145 (Figure 5D). Additionally, Ago2 related RIP 
assays revealed that circIQCH, DNMT3A and miR-145 
were all enriched to Ago2 in SKBR3 and BT474 cells 

 

 
 

Figure 1. circIQCH is upregulated in primary and metastatic breast cancer. (A) The expression level of five candidate circRNAs was 
validated in five paired primary and lung metastatic breast cancer tissues. (B) The relative expression of circIQCH in breast cancer tissues and 
adjacent normal tissues. (C) The relative expression of circIQCH in breast cancer cell lines. (D) RNase R assay confirmed the circular structure 
of circIQCH in SKBR3 cell line. (E) Circular transcripts of IQCH (circIQCH) was more stable than linear transcripts determined by Actinomycin D 
treated assay in SKBR3 cell line. 

https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
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Figure 2. Downregulation of circIQCH suppresses the proliferation of breast cancer cells. (A) Knock down of circIQCH was 
assessed by qRT-PCR analysis. (B) si-circIQCH decreased the expression of circIQCH while had no effect on linear IQCH mRNA. (C, D) CCK-8 
assays detected cell proliferation. (E) Mouse xenograft models were established. (F) Tumor volume was estimated in every four days. 
(G) The xenograft tumors were analyzed by immunohistochemistry analysis, and the representative images of ki-67 expression are presented. 
*P<0.05; **P<0.01. 
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Figure 3. Downregulation of circIQCH inhibits the metastasis of breast cancer cells. (A, B) Wound-healing assays assess the impact 
of circIQCH on cell migration ability. (C, D) Transwell assays to evaluate cell migration capability. (E) HE-stained sections of lung metastases. 
(F) The number of metastases was counted and recorded. 
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Figure 4. circIQCH functions as a sponge for miR-145. (A) Predicted binding sites of miR-145 within the circIQCH. (B) The relative 
expression level of miR-145 in breast cancer cell lines. (C, D) U6, GAPDH and circIQCH in nuclear and cytoplasmic fractions analyzed by qRT-
PCR. (E, F) Luciferase reporter assay of SKBR3 and BT474 cells co-transfected with miR-145 mimics and circIQCH wild type or mutant 
luciferase reporter. The putative miRNA binding site of circIQCH was mutated. (G) MS2-based RIP assay transfected with MS2bs-circIQCH, 
MS2bs-circIQCH-mt or control. *P<0.05; **P<0.01. 
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(Figure 5E). Downregulation of circIQCH could 
remarkably increase DNMT3A enrichment to Ago2 
(Figure 5F). Western blot analysis revealed that knock 
down of circIQCH decreased the expression of 
DNMT3A which could be reversed by the inhibition of 
miR-145 (Figure 5G). In addition, the expression of two 
robust tumor suppressors PTEN and BRCA1 was 

upregulated after silencing circIQCH (Figure 5G). We 
found that exogenously expressing DNMT3A or 
inhibiting miR-145 can rescue the effect of si-circIQCH 
in cell proliferation CCK-8 assay (Figure 5H). 
Additionally, the migration ability was also reversed in 
transwell assay after increasing DNMT3A expression or 
blocking miR-145 in circIQCH knockdown SKBR3 cells 

 

 
 

Figure 5. circIQCH promotes breast cancer progression via circIQCH-miR-145-DNMT3A axis. (A) Predicted binding sites of 
miR-145 within the 3’-UTR of DNMT3A mRNA according to TargetScan. (B) The relative expression level of DNMT3A in breast cancer cell 
lines. (C) Luciferase reporter assay of SKBR3 and BT474 cells co-transfected with miR-145 mimics and the 3’-UTR of DNMT3A wild type 
or mutant luciferase reporter. The putative miRNA binding site of 3’-UTR of DNMT3A was mutated. (D) Expression of DNMT3A was 
decreased after transfection with miR-145 mimics. Expression of DNMT3A was increased after transfection with miR-145 inhibitors.  
(E) Enrichment of circIQCH, DNMT3A and miR-145 on Ago2 assessed by RIP assay. (F) Enrichment of Ago2 to circIQCH was decreased 
while DNMT3A was increased after knockdown of circIQCH. (G) Knockdown of circIQCH resulted in the reduction of DNMT3A expression 
which was reversed by miR-145 inhibitors. PTEN and BRCA1 was upregulated after silencing circIQCH. (H) Cell proliferation rate was 
detected by CCK-8 assay after exogenously expressing DNMT3A or inhibiting miR-145 in circIQCH silencing SKBR3 and BT474 cells.  
(I) Cell migration ability was validated by transwell assay after exogenously expressing DNMT3A or inhibiting miR-145 in circIQCH 
silencing SKBR3 cells. *P<0.05; **P<0.01. 
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(Figure 5I). These results supported that miR-145 and 
DNMT3A are the downstream effectors of circIQCH in 
breast cancer. 
 
DISCUSSION 
 
As a novel type of ncRNA, circRNAs have become a hot 
topic in the field of life science and attracted the eyes of 
many researchers. With the huge progress made in high-
throughput sequencing technology and bioinformatics 
algorithms, it is easier for the researchers to detect and 
characterize thousands of circRNAs [31, 32]. In recent 
years, an increasing number of circRNAs have been 
identified and well-studied in the cancer research. A 
circRNA derived from β-catenin gene promotes hepato-
cellular carcinoma cell growth through activation of the 
Wnt pathway by encoding a novel 370-aa β-catenin 
isoform [33]. circPRKCI is overexpressed and promotes 
tumorigenesis in lung adenocarcinoma by sponging miR-
589 and miR-545 [25]. Circular RNA FLI1, circKIF4A, 
circRAD18, circ-DNMT1 and circPLK1 were also 
identified as oncogenic drivers by different mechanisms 
(maintaining DNA methylation, promoting EMT, 
reducing apoptosis or activating autophagy) in breast 
cancer [34–38]. circPRMT5 was discovered as an 
oncogenic event in urothelial carcinoma of the bladder 
which can be existed in the exosomes and secreted into 
serum and urine [39]. 
 
In our study, we reanalyzed the circRNA microarray 
profiling in our previous study and identified hsa_circ_ 
0104345 (circIQCH) as a frequently upregulated novel 
circRNA in metastatic breast cancer. circIQCH was 
upregulated in breast cancer tissues, especially in the 
metastatic sites. We also found that circIQCH was 
upregulated in breast cancer cell lines. Knockdown of 
circIQCH inhibited breast cancer cell proliferation and 
migration to lung in both in vitro and in vivo assays. In 
our further study, we performed luciferase reporter assays 
and RNA immunoprecipitation assays to elucidate the 
underlying molecular mechanism of circIQCH. We 
found that circIQCH sponges miR-145 and promotes 
breast cancer progression by upregulating DNMT3A and 
downregulating PTEN and BRCA1. 
 
Regarded as the most well-known subclass of non-coding 
RNA, miRNAs modulate the expression of targeted key 
genes and intercellular signaling within the tumor 
microenvironment [40]. miR-145 was predicted and 
proved as the downstream of circIQCH in our study. 
Deregulation of miR-145 was found in breast cancer 
tissues and low expression of miR-145 was correlated 
with a worse clinical outcome in breast cancer [23–24]. 
Mucin 1 and ERBB3 were identified as the targets of 
miR-145 which inhibits migration and proliferation in 
breast cancer cells [25, 26]. DNMT3A is a DNA 

methyltransferase which plays an important role in 
tumorigenesis and metastasis by modifying DNA 
methylation in multiple cancers, including breast cancer 
[27–30]. miR-145 regulated the expression level of 
DNMT3A by binding to the 3’-UTR of DNMT3A 
mRNA. PTEN and BRCA1 are powerful tumor 
suppressors in cancer and loss of them will accelerate the 
process of tumor development [41–42]. According to the 
published literature, DNMT3A can mediate PTEN and 
BRCA1 promotor hypermethylation and decrease the 
expression of PTEN and BRCA1 in several cancers, 
including breast cancer [43–47]. We found that the 
expression of PTEN and BRCA1 was increased after 
silencing circIQCH, indicating that circIQCH might also 
decrease the expression of these two important tumor 
suppressors by inducing promoter hypermethylation 
through circIQCH- miR-145-DNMT3A axis. 
 
In conclusion, our study demonstrated the pivotal role of 
circIQCH-miR-145-DNMT3A axis in breast cancer 
growth and metastasis via the mechanism of competing 
endogenous RNAs. Therefore, circIQCH could be a 
potential therapeutic target for breast cancer. 
 
CONCLUSIONS 
 
In conclusion, circIQCH promotes breast cancer growth 
and metastasis via a novel circIQCH-miR-145-DNMT3A 
axis and could be a potential therapeutic target for breast 
cancer. 
 
MATERIALS AND METHODS 
 
Patients samples and ethical standards  
 
Fresh primary breast cancer tissues and lung metastatic 
tissues were collected from the First Affiliated Hospital, 
University of South China and were frozen in liquid 
nitrogen immediately after resection. This study was 
approved by the Ethics Committee of the First Affiliated 
Hospital, University of South China and performed in 
accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all patients before 
participation in this study. Animal experiment was 
approved and performed according to the guidelines of 
Institutional Animal Care and Use Committee of the First 
Affiliated Hospital. 
 
Cell culture 
 
All cell lines including MCF-10A, MDA-MB-451, 
HCC38, BT549, HCC1806, MCF-7, MDA-MB-231, 
T47D, BT474, SKBR-3 and MDA-MB-468 used in this 
study were purchased from the American Type Culture 
Collection (ATCC, USA). Cells were cultured 
according to the supplier’s instructions and passaged for 
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less than six months. Cell authenticity was verified by 
DNA fingerprinting. 
 
Quantitative real-time PCR (qRT-PCR) and 
transfection 
 
TRIzol (Invitrogen) was used to extract RNA. Isolation 
of the nuclear and cytoplasmic portions of cellular RNA 
was performed with NE-PER Nuclear and Cytoplasmic 
Extraction Reagents (Thermo Scientific). qRT-PCR was 
performed with SYBR Premix Ex Taq (Takara). Primer 
information is listed in (Supplementary Tables 1, 2). 
Transfection was conducted with Lipofectamine 2000 
(Invitrogen). The miRNA inhibitors and mimics were 
purchased from GeneCopoeia (Rockville). 
 
RNase R digestion assay 
 
After 2 ug extracted total RNA of SKBR3 was incubated 
with RNase R (3 U/ug) or mock for 30 min at 37°C, the 
resulting RNA solution was purified and analyzed by 
qPCR-analysis. 
 
Actinomycin D assay 
 
SKBR3 breast cancer cells were exposed to 3ug / ml 
actinomycin D (Sigma) to block the mRNA 
transcription for 8, 16, and 24 hours. The cells were 
harvested at certain period and the circIQCH and linear 
IQCH mRNA were quantified by qPCR-analysis to test 
the half-life of RNA. 
 
Cell counting kit-8 (CCK-8) assay 
 
Briefly, 1×103 cells were seeded into a 96-well plate. Ten 
microliters of CCK-8 solution (Dojindo Laboratories, 
Japan) was added to each well on a certain day. After 
incubation at 37 °C for 2h, absorbance at at a wavelength 
of 450 nM was measured. 
 
Colony formation assay 
 
A total of 1×103 cells were plated and incubated in each 
well of a 6-well plate. After incubation at 37°C for 14 
days, colonies were fixed with methanol and stained with 
0.1% crystal violet. ImageJ software was used to count 
the colony number. 
 
Transwell assay and wound healing assay 
 
Transwell assays were conducted using migration 
chambers (BD Biosciences). Totally, 2×104 cells were 
added to the upper chambers (serum-free medium) and 
medium (containing 20% FBS) was added to the lower 
chambers. Subsequently, cells in the upper chambers 
were removed, and methanol was used to fix the 

remaining cells. After staining with crystal violet, the 
migrated cells were imaged and counted. For the wound 
healing assay, cells were plated in 6-well plates, and at 
least three linear wounds were made by scratching with a 
200 μL pipette tip. Wounds were imaged at 0 h and 24 h 
time period. 
 
Luciferase reporter assay 
 
SKBR3 and BT474 breast cancer cells were seeded into 
96-well plates with 5 × 103 cells per well. The putative 
miRNA binding site of circIQCH and 3’-UTR of 
DNMT3A was mutated. The constructed reporting 
vectors (circIQCH-wt/mut or DNMT3A 3’-UTR-wt/mut) 
and miRNA inhibitors or mimics were cotransfected into 
cells for 48 hours. Relative luciferase activity was 
evaluated by the dual-luciferase reporter assay system kit 
(Promega). All the procedures were conducted according 
to the manufacturer’s instructions. 
 
RNA immunoprecipitation (RIP) 
 
Cells were cotransfected with MS2bs-circIQCH, MS2bs-
circIQCHmt and MS2bs-Rluc. After 48 h, RIP was 
conducted with a Magna RIP RNA-Binding Protein 
Immunoprecipitation Kit (Millipore). The level of miR-
145 was quantified after the RNA complexes were 
purified. The RIP assay for Ago2 was conducted with an 
anti-Ago2 antibody (Millipore). The abundance of 
circIQCH, DNMT3A and miR-145 was determined after 
purification. 
 
Western blot analysis 
 
Total protein was extracted from RIPA lysis. Then, 
protein was separated by SDS-PAGE and transferred to 
PVDF membranes (Millipore). Primary antibody anti-
DNMT3A (1:1000, Abcam, USA), anti-PTEN antibody 
(1:1000, Affinity, USA), anti-BRCA1 antibody (1:1000, 
CST, USA) and anti-β-actin antibody (1:1000, Affinity, 
USA) are used to detect certain protein. 
 
Mouse xenograft model 
 
Cells (1×107) were subcutaneously inoculated into the 
dorsal flanks of BALB/c nude mice (five mice per 
group, 4-week-old, female) and treated with an intra-
tumoral injection (40 μL si-NC, si-circIQCH#1 or si-
circIQCH#2) every 4 days. We estimated the volume of 
tumors every four days by formula 0.5×length×width2. 
After four weeks, mice were euthanized, and tumors 
were weighed. For lung metastasis, cells (1 × 105) were 
injected through tail veins (five mice per group). The 
lungs were excised 8 weeks later and the number of 
metastatic nodules were counted and validated via micro-
scopy of hematoxylin and eosin (HE)-stained sections. 
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Statistical analysis 
 
All statistical analyses were performed with SPSS 22.0 
software (SPSS Inc., Chicago, IL, USA). Quantitative 
data are presented as the mean ± standard deviation (SD). 
Groups were compared using t test. Survival analysis was 
conducted by Kaplan-Meier plots and log-rank tests. 
P<0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Supplementary Table 1. Primer sequences for qRT-PCRs used in this study. 

Construct Species Direction Sequence (5' - 3') 
18S Human Forward AACTGGAATCGCATCAGGAC 

Reverse AGGAGCTGCTCTGGGTGTAA 
circIQCH Human Forward CCTGATGATGAATGGGTGAA 

Reverse CACGGAAATCGTTGTTGTTG 
DNMT3A Human Forward GCTCTAGACGAAAAGGGTTGGACATCAT 

Reverse GCTCTAGAGCCGAGGGAGTCTCCTTTTA 
GAPDH Human Forward GGAGCGAGATCCCTCCAAAAT 

Reverse GGCTGTTGTCATACTTCTCATGG 
β-actin Human Forward AGCGAGCATCCCCCAAAGTT 

Reverse GGGCACGAAGGCTCATCATT 
 

Supplementary Table 2. The target sequences of siRNAs used in this study. 

siRNA Species  Target sequences 
si-NC Human UUCUCCGAACGUGUCACGUTT 
si-circIQCH#1 Human ATCCCATCATTAGGGATTTTA 
si-circIQCH#2 Human ATATCCCATCATTAGGGATTT 

 


