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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Methods 

 
Effect of noise rejection for sample data 

 

In the present study, MEG data were not cleaned using 

conventional artefact correction procedures. Here, we 

examined the potential bias of the artefacts on the results 

of source inversion by comparing the original (used in the 

main manuscript) and artefact-cleaned data of a few 

example participants. We have applied the automated 

artefact rejection using independent component analysis 

(ICA) to the MEG data from 10 participants (out of the 

102 participants used in the main analysis). The epoched 

MEG data were decomposed by ICA using FastICA on 

Fieldtrip [1, 2]. Components correlated with EOG and 

ECG channels with more than 0.2 in linear correlation 

coefficient were rejected. The cleaned data were 

processed with identical procedure described in the main 

manuscript (see Materials and Methods section). The 

source images (output from original and artefact-cleaned 

procedures) were rendered on the template anatomical 

brain using MRIcroGL software (https://www. 

mccauslandcenter.sc.edu/mricrogl/) and differences were 

visually inspected. 

 

 ICA results showed that the number of rejected 

components differed between datafiles (i.e., 

participants). Out of 10 datafiles, 2 components were 

rejected in 4 datafiles, while 1 was rejected in other 4 

datafiles and there were no rejected in the remaining 2 

datafiles. Since rejection of more components bring 

larger changes on the MEG data, 2 samples (dataset 

#0005 and #0007) were selected from 4 datasets in 

which 2 components were rejected. The results were 

visually inspected for the selected two datasets.  

 

For datafile #0005 (Supplementary Figure 1), the source 

signals for original and artefact-cleaned source images 

were mostly overlapped (most regions were colored in 

yellow). However, artefact-free data estimated source 

signals in orbitofrontal regions in high-gamma band 

(green-colored regions in Supplementary Figure 1F), 

which were not obvious in the original dataset. The 

results of datafile #0007 showed similar trends 

(Supplementary Figure 2); the source signals were 

overlapped mostly between original and cleaned data, 

except for the high-gamma signals in the orbitofrontal 

regions (green-colored regions in Supplementary Figure 

2F). The results indicated that automated removal of 

EOG and ECG artefacts had minor influence on the 

source signals. 

 

Thickness analysis of MRI data 

 

The individual T1-weighted MRI images obtained by 

3.0-T scanner (please see Materials and Method section, 

for details) were used for cortical thickness analysis. 

ROI-based cortical thicknesses were estimated using 

Computational Anatomy Toolbox (CAT; http://www. 

neuro.uni-jena.de/cat/). The mean cortical thicknesses 

were estimated for caudal and rostral regions (defined 

by Desikan-Killiany Atlas; [3]). The mean cortical 

thickness was plotted against the participants’ age for 

visual inspection, subsequently, Pearson’s correlation 

coefficient was calculated between age and each 

regional cortical thickness. The thickness data were also 

compared between gender using two-sample t-test. 

Results showed that the ageing reduced cortical 

thickness in both rostral (r = -0.43, p < .001) and caudal 

regions (r = -0.62, p < .001). See Supplementary Figure 

3 for visualization. There was gender difference in 

rostral cortical thickness (mean thicknesses were 2.73 

mm for females and 2.78 mm for males, r = -2.18, p 

= .031), but not in caudal thickness (mean thicknesses 

were 2.27 mm for females and 2.27 mm for males, r = 

0.21, p = .834).  
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