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INTRODUCTION 
 

Aging is the greatest risk factor for nearly all diseases 

and is an important global healthcare challenge as the 

older adult group (age ≥ 60 years) is growing faster than 

younger age groups [1, 2]. Because of the considerable 

impact of aging on the overall population, research on 
healthy aging has become a common focus worldwide. 

Consequently, the publication frequency regarding 

aging has steadily increased in recent years (Figure 1). 

Recently, several hallmarks of aging have been 

identified. Of these, cellular senescence (CS) is an 

important topic in scientific research regarding aging 

processes [3, 4]. Disruption of redox homeostasis due to 

prolonged exposure to oxidative stress (OS), manifested 

as reactive oxygen species (ROS)-mediated damage to 

biomolecules, has been identified as a crucial mediator 
for the progression of CS [5–9]. Although selective 

elimination of senescent cells (via senolytics) and 

prevention/slowed progression of senescence features 
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ABSTRACT 
 

The relationship between oxidative stress (OS) and cellular senescence (CS) is an important research topic 
because of the rapidly aging global population. Melatonin (MT) is associated with aging and plays a pivotal role 
in redox homeostasis, but its role in maintaining physiological stability in the brain (especially in OS-induced 
senescence) remains elusive. Here, we systematically reviewed the differential role of MT on OS-induced 
senescence in the SAMP8 mouse model. Major electronic databases were searched for relevant studies. Pooled 
mean differences (MDs)/standardized mean differences (SMDs) with 95% confidence intervals (CIs) were 
calculated to estimate the effect size. Overall, 10 studies met the inclusion criteria. MT treatment was 
associated with the reduction of lipid peroxidation (SMD = −2.00, 95% CI [−2.91, −1.10]; p < 0.0001) and 
carbonylated protein (MD = −5.74, 95% CI [−11.03, –0.44]; p = 0.03), and with enhancement of the reduced-
glutathione/oxidized-glutathione ratio (MD = 1.12, 95% CI [0.77, 1.47]; p < 0.00001). No differences were found 
in catalase and superoxide dismutase activities between MT-treated and vehicle-treated groups. Furthermore, 
nuclear-factor-κB, cyclin-dependent kinase-5, and p53 were regulated by MT administration. MT may improve 
physiological stability during aging by regulating interactions in brain senescence, but acts differentially on the 
antioxidant system. 
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(via senostatics) are attractive strategies, they also have 

undesirable adverse-effects such as high toxicity, low 

bioavailability, and chemical instability [10–12]. 

Therefore, the roles of biomolecules in maintenance of 

physiological homeostasis between OS and CS may 

provide novel strategies to promote healthy aging.  

 

During the aging process, the brain is presumably the 

organ most prone to free radical damage because of its 

high oxygen utilization, high concentrations of 

polyunsaturated fatty acids, and low concentrations of 

cytosolic antioxidants [13]. Lipid peroxidation (LPO) is 

oxidative damage to lipids induced by ROS, whose 

reaction with polyunsaturated fatty acids in cell 

membranes has been proposed as a critical mechanism 

involved in cellular aging [14]. Moreover, protein 

carbonylation is an irreversible oxidative protein 

modification process in cells, organelles, and tissues, 

which increases with age [15]. Its aggregation can 

become toxic to living cells and has been directly linked 

to a large number of age-related disorders [15, 16]. 

Besides, cathepsin-B (lysosomal thiol proteases) 

expression increases proportionally with age and its 

subcellular distribution is apparently altered, thus 

resulting in elevated production of mitochondria-

mediated ROS [17]. Furthermore, the activation of 

several signaling pathways, including those of nuclear 

factor-κB (NF-κB), cyclin-dependent kinase 5 (Cdk5), 

and p53, play pivotal roles in the promotion of OS-

induced CS [18–20]. Taken together, these findings 

have significant implications for the understanding of 

how age-related induction of OS is directly linked with 

premature senescence (i.e., stress-induced premature 

senescence).  

 

The senescence-accelerated mouse prone 8 (SAMP8) 

strain is an excellent mammalian model to study  

OS-induced senescence-related impairments and 

degeneration in the brain [21–24]. The overexpression 

of alpha-synuclein together with phosphorylated tau 

protein significantly reduces antioxidant machinery in 

SAMP8 [25–27], indicating that OS may contribute to 

senescence-dependent brain impairments. Importantly, 

the SAMP8 mouse model expresses premature 

senescence and has features similar to those of aged 

humans, such as shortened lifespan and diminished 

physical activity [28]. The SAMP8 also exhibits age-

related deterioration of learning and memory [29, 30], 

as well as key pathological features that induce 

premature senescence, including OS [29, 31]. The 

SAMP8 mouse is a natural aging animal model, rather 

than a transgenic model of aging or age-related 

diseases. This suggests that underlying mechanisms 

must be linked to premature senescence and more 

closely represent the complex multifactorial nature of 

aging. Furthermore, the lifespan of SAMP8 mice (10–

17 months) is significantly shorter than that of normal 

laboratory mice (22–36 months) [32, 33]. Therefore, 

SAMP8 mice provide the best alternative aging research 

model in terms of time and cost.  

 

Melatonin (MT), an endocrine hormone of the pineal 

gland, can directly scavenge free radicals and was 

previously identified as a potent antioxidant [34–37].

 

 
 

Figure 1. Publications per year related to ‘aging’. The search term ‘aging’ was entered on PubMed on 16 November 2020. Results were 
plotted as publications per year. 
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MT also stimulates antioxidative enzymes such as 

superoxide dismutase (SOD) and glutathione peroxidase 

(GPx); this action further diminishes the cellular 

oxidation state [34, 38]. A previous study demonstrated 

that oral administration of MT to SAMP mice was 

protective against age-related oxidative DNA damage in 

the brain [39]. Another study revealed that MT 

treatment inhibited age-related increases in both LPO 

and protein oxidation in SAMP8 mice [40]. Although 

many studies have demonstrated the protective effects 

of MT in several aging animal models, the mechanism 

underlying the effects of MT in SAMP8 mice remains 

unclear. Furthermore, a systematic review of the 

literature and meta-analysis of preclinical data can 

demonstrate the quality and strength of existing 

research. However, no such study has yet been 

conducted to evaluate the efficacy of MT in the SAMP8 

mouse model. Thus, this systematic review assessed 

previous research concerning the protective effect of 

MT against brain aging in the SAMP8 mouse model. 

This analysis is intended to provide evidence to support 

the therapeutic potential of MT to promote healthy 

aging and prevent age-related diseases by maintenance 

of physiological homeostasis between OS and CS. 

 

RESULTS 
 

Study search and selection 

 

In total, 880 studies were found through an electronic 

database search. After removal of duplicate studies, the 

titles and abstracts of 719 potentially relevant articles 

were screened. Of these, 701 were excluded based on 

title and abstract screening. The remaining 18 studies 

were included in the full-text screening. Of these, eight 

studies were excluded for the following reasons: 

unavailable data (n = 1), review article format (n = 1), 

inappropriate study organ (n =1), inappropriate study 

design (n = 1), inappropriate animal model (n = 2), 

unrelated outcome (n = 1), and ex vivo design (n = 1). 

Finally, 10 studies [40–49] fulfilled the eligibility 

criteria and were selected for systematic review and 

meta-analysis (Figure 2). 

 

Study characteristics 

 

The main characteristics of the studies that assessed 

the effect of MT in the SAMP8 model are reported in 

Table 1. These studies were published between 2002 

and 2011. In nine of the 10 included studies, MT was 

administered in the drinking water at a dose of 10 

mg/kg/day. In the remaining study, MT was 

administered at a dose of 1 mg/kg/day subcutaneously 

[45]. Eight studies administered MT when animals 

were 2–10 months of age [41–44, 46–49], one study 

administered MT when animals were 7–12 months of 

age [40], and the remaining one study divided into 

mice into two MT treatment groups based on age 

(group 1: 4–8 months; group 2: 7–11 months) [45]. 

Five studies included both male and female mice [40–

42, 48, 49], and three of these reported sex-specific 

results [41, 42, 48]. Three studies used only male mice 

[43, 45, 46] and the remaining two studies did not 

report animal sex [44, 47].  

 

Risk of bias and quality of reporting 

 

The abridged risk of bias (RoB) assessment used in this 

study is presented in Figure 3A, and the individual RoB 

scores for each study are presented in Figure 3B. 

Randomization is considered a fundamental measure to 

reduce bias, but is rarely reported in preclinical trials. 

Eighty percent of the included studies reported random 

allocation of the animals, although no study sufficiently 

specified the method of randomization. Baseline 

characteristics and random housing were often 

considered indicative of low RoB. However, blinding of 

the investigators and caregivers, random outcome 

assessment, and blinding of outcome assessment items 

were frequently rated as unclear RoB. The rating 

‘unclear’ was defined as insufficient reporting of most 

of the relevant criteria that are considered essential for 

the assessment of preclinical trials. Selective outcome 

reporting and incomplete outcome data were considered 

indicative of low RoB (90–100%). Allocation 

concealment was considered indicative of high RoB. 

Three studies were presumed to have high RoB because 

of random sequence generation/selective outcome 

reporting [41, 43, 46]. During extraction of raw data 

from included studies, we most often used GetData 

Graph Digitizer, thereby other bias parameter was rated 

as unclear RoB. Inadequate reporting of the measures 

used to reduce bias was reflected in our RoB assessment 

because numerous items were scored as unclear. 

 

Meta-analysis 

 

Effects of MT on LPO and carbonylated protein 

The effects of MT on LPO were determined in five 

studies [40, 41, 43, 48, 49]. Of these, two studies [41, 

48] investigated the effects of prolonged MT 

administration on changes in the abundance of LPO, 

separately, in male and female groups. Using a 

random-effects model, we found that prolonged  

oral MT administration significantly reduced LPO 

levels (I2 = 79%; SMD = –2.00; 95% CI [–2.91,  

–1.10]; p < 0.0001) (Figure 4A). Furthermore, four 

studies [40, 43, 44, 49] investigated the effects of 

prolonged MT administration on changes in the 
abundance of carbonylated protein levels. Using a 

random-effects model, we found that prolonged oral 

MT administration significantly reduced carbonylated 



 

www.aging-us.com 9376 AGING 

protein levels (I2 = 93%; MD = –5.74; 95% CI  

[–11.03, –0.44]; p = 0.03) (Figure 4B). 

 

Effects of MT on changes in antioxidant enzyme 

activity 

The effects of MT on major antioxidant enzymes 

including catalase (CAT), GPx, and SOD were assessed 

in two studies each. Additionally, the glutathione 

reductase (GRx) and reduced glutathione/oxidized 

glutathione (GSH/GSSG) ratio were evaluated in three 

and two studies, respectively. Two studies [43, 47] 

investigated the effects of prolonged MT administration 

on changes in CAT activity. Using a fixed-effects 

model, we found that prolonged oral MT administration 

did not change CAT activity (I2 = 0%; MD = –0.92; 

95% CI [–2.75, 0.91]; p = 0.32) (Figure 5A). Two 

studies [40, 48] investigated the effects of prolonged 

MT administration on changes in GPx activity. Of 

these, one study [48] investigated the effects of 

prolonged MT administration on changes in the 

abundance of GPx, separately, in male and female 

groups. Using a random-effects model, we found that 

prolonged oral MT administration significantly 

enhanced GPx activity (I2 = 65%; SMD = 3.33; 95% CI 

[1.89, 4.78]; p < 0.00001) (Figure 5B). Two studies [40, 

47] investigated the effects of prolonged MT 

administration on changes in SOD activity. Using a 

fixed-effects model, we found that prolonged oral MT 

administration did not significantly change SOD 

activity (I2 = 0%; SMD = -0.60; 95% CI [–1.24, 0.05]; p 

< 0.07) (Figure 5C).  

 

Three studies [41, 47, 48] investigated the effects of 

prolonged MT administration on changes in GRx

 

 
 

Figure 2. Flow diagram of study search and retrieval process. 
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Table 1. Characteristics of the included studies.  

Author 

(Year) 
Age Sex 

Con group 

(n) 

MT group 

(n) 
ROA 

Dose 

(MT) 
Duration Evaluated parameters 

Caballero B 

et al. [47] 

(2009) 

Offspring of 

SAMP8 
NR 4 4 

Oral (drinking 

water) 
10 mg/kg 

From 2 

months to 10 

months of 

age 

Brain oxidative stress 

markers: (SOD, GRx, CAT in 

cerebral tissue); lysosomal 

proteases activities: 

(cathepsin B, cathepsin D); 

molecular factors: (Bcl-2, p53 

by western blot) 

Caballero B 

et al. [44] 

(2008) 

One month 

of SAMP8 
NR 4 4 

Oral (drinking 

water) 
10 mg/kg 

From 2 to 10 

months of 

age 

Brain oxidative stress 

markers: (carbonylated 

Protein in the brain); 

molecular factors: (NF-kB in 

the whole brain by western 

blotting; 

immunohistochemistry for 

NF-kB) 

Carretero M 

et al. [48] 

(2009) 

Offspring of 

SAMP8 
Both 

Male=9 

Female=9 

Male=9 

Female=8 

Oral (drinking 

water) 
10 mg/kg 

From 2 

months to 10 

months of 

age 

Brain oxidative stress 

markers: (LPO, nitrite, GPx, 

GRx, GSH/GSSG ratio) 

Cheng S et al. 

[45] (2008) 

Offspring of 

SAMP8 
Male 10 

A. MT-4† 

group=10 

B. MT-7†† 

group=10 

Subcutaneous 1 mg/kg/day 

A. MT-4 

group: from 

4 to 8 

months of 

age 

B. MT-7 

group: from 

7 to 11 

months of 

age 

Morphological factors: cresyl 

violet staining in the 

hippocampal CA1 and CA3 

regions 

García JJ et 

al. [49] 

(2011) 

Offspring of 

SAMP8 

Both 

 
14 16 

Oral (drinking 

water) 
10 mg/kg 

From 2 

months to 10 

months of 

age 

Brain oxidative stress 

markers: (LPO, carbonylated 

Protein, GSH/GSSG ratio); 

lysosomal proteases activities: 

(cathepsin B, cathepsin D) 

*Gutierrez-

Cuesta J et al. 

[46] (2008) 

Offspring of 

SAMP8 
Male 16 16 

Oral (drinking 

water) 
10 mg/kg 

From 2 

months to 10 

months of 

age 

Molecular factors: (SIRT1 

acetylated p53, acetylated 

NFκB in the brain by western 

blot 

Gutierrez-

Cuesta J et al. 

[43] (2007) 

One month 

of SAMP8 
Male 16 16 

Oral (drinking 

water) 
10 mg/kg 

From 2 to 10 

months of 

age 

Brain oxidative stress 

markers: (LPO, carbonylated 

Protein, CAT in the cerebral 

cortex); morphological 

factors: Nissl stain; molecular 

factors: 

(immunohistochemistry for 

cdk5; cdk5, p35, GSK3, tau 

phosphorylation in the cortex 

by western blotting) 

Nogués MR 

et al. [41] 

(2006) 

One month 

of SAMP8 
Both 

Male= 8 

Female=8 

Male= 8 

Female=8 

Oral (drinking 

water) 
10 mg/kg 

From 2 to 10 

months of 

age 

Plasma oxidative stress 

markers: (LPO, GRx) 

Okatani Y et 

al. [40] 

(2002) 

Offspring of 

SAMP8 
Both 16 15 

Oral (drinking 

water) 
10 mg/kg 

From 7 to 12 

months of 

age 

Brain oxidative stress 

markers: (LPO, carbonylated 

Protein, SOD, GPx in cerebral 

tissue) 

Rodríguez MI 

et al. [42] 

(2007) 

Offspring of 

SAMP8 
Both 

Male=6 

Female=6 

Male=6 

Female=6 

Oral (drinking 

water) 
10 mg/kg 

From 2 to 10 

months of 

age 

Plasma inflammatory 

markers: (IL-1β, IL-2, IL-4, 

IL-5, IL-10, IFN-γ and TNF-

α) 

†melatonin treatment started from 4 months of age.  
††melatonin treatment started from 7 months of age. 
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*the sample size was obtained from the corresponding author.  

Con, control group; MT, melatonin group; n, sample size; ROA, route of administration; SAMP8, senescence-accelerated 
mouse prone 8; NR, not reported; SOD, superoxide dismutase; GRx, glutathione reductase; CAT, catalase; Bcl-2, B-cell 
lymphoma 2; NF-kB, Nuclear factor-κB; LPO, lipid peroxidation; GPx, glutathione peroxidase; GSH/GSSG, reduced 
glutathione/oxidized-glutathione ratio; SIRT1, sirtuin 1; cdk5, cyclin Dependent Kinase 5; GSK3, glycogen synthase kinase 3; 
IL-1β, interleukin-1β; IL-2, interleukin-2; IL-4, interleukin-4; IL-5, interleukin-5; IL-10, interleukin-10; IFN-γ, interferon-gamma; 
TNF-α, tumor necrosis factor-α. 

 

activity. Of these, two studies [41, 48] investigated 

the effects of prolonged MT administration on 

changes in the abundance of GRx, separately, in male 

and female groups. Using a random-effects model, we 

found that prolonged oral MT administration 

significantly enhanced GRx activity (I2 = 90%; SMD 

= 2.59; 95% CI [0.50, 4.68]; p = 0.01) (Figure 6A). 

Two studies [48, 49] investigated the effects of 

prolonged MT administration on changes in the 

GSH/GSSG ratio. Of these, one study [48] 

investigated the effects of prolonged MT 

administration on changes in the GSH/GSSG ratio, 

separately, in male and female groups. Using a 

random-effects model, we found that prolonged oral 

MT administration significantly enhanced the 

GSH/GSSG ratio (I2 = 53%; MD = 1.12; 95% CI 

[0.77, 1.47]; p < 0.00001) (Figure 6B). 

 

Effects of MT on cathepsin B and cathepsin D 

The effects of MT on cathepsin B and cathepsin D were 

determined based on two studies each. With respect to 

cathepsin B, two studies [47, 49] investigated the effects 

of prolonged MT administration on changes in 

cathepsin B levels. Using a fixed-effects model, we 

found that prolonged oral MT administration 

significantly reduced the cathepsin B concentration (I2 = 

0%; MD = –2.11; 95% CI [-2.58, –1.63]; p < 0.00001) 

(Figure 7A). Regarding cathepsin D, two studies [47, 

49] investigated the effects of prolonged MT 

administration on changes in cathepsin D levels. Using

 

 
 

Figure 3. Risk of bias. (A) Overall RoB for each item in the SYRCLE tool for all included studies. Each RoB item is presented as a percentage 
based on all included studies. (B) Individual RoB for each of the included animal studies. Each item in the SYRCLE tool was scored as ‘yes’, ‘no’, 
or ‘unclear’. 
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a fixed-effects model, we found that prolonged oral MT 

administration significantly reduced the cathepsin D 

concentration (I2 = 0%; MD = –5.10; 95% CI [–7.47,  

–2.73]; p < 0.0001) (Figure 7B). 

 

Subgroup analysis 

 

Subgroup analysis was performed to investigate 

heterogeneity among the studies. With regard to LPO, 

we found considerable heterogeneity (I2 = 79%). 

Thus, we performed post hoc subgroup analysis based 

on sex. Two studies [40, 49] used both male and 

female animals, but reported combined results. In 

contrast, three studies [41, 43, 48] reported results 

separately in male animals and two studies [41, 48] 

reported results separately in female animals. The test 

for subgroup differences indicated no statistically 

significant subgroup effect (p = 0.62), suggesting that 

sex did not modify the effect of MT compared with 

control intervention. Notably, the pooled effect 

estimates for male animals did not favor MT 

intervention (p = 0.10), although the pooled effect 

estimates for female animals and combined sex 

subgroups favored MT intervention (p = 0.002; p < 

0.00001, respectively). However, there was 

substantial unexplained heterogeneity between trials 

involving male and female subgroups (males: I2 = 

89%; females: I2 = 56%) (Figure 8). Furthermore, 

there was moderate heterogeneity in the combined sex 

subgroups (I2 = 33%), reduced heterogeneity in 

female animals (overall I2 = 79% to I2 = 56%), and 

enhanced heterogeneity in male animals (overall I2 = 

79% to I2 = 89%). Therefore, the validity of the 

treatment effect estimate for male and female 

subgroups is uncertain because individual trial results 

were inconsistent. 

 

Analysis of GRx revealed considerable heterogeneity 

(I2 = 90%), so we performed post hoc subgroup 

analysis based on sex. Two studies reported male 

animals separately and two studies reported female 

animals separately [41, 48]. The test for subgroup 

differences indicated no statistically significant 

subgroup effect (p = 0.69), implying that sex could 

not significantly modified the effect of MT compared 

with control intervention. However, a smaller number 

of trials and animals contributed data to both male and 

female subgroups, meaning that the analysis may not 

be able to detect subgroup differences. It is interesting 

to note that the pooled effect estimate for both 

subgroups favors MT intervention over the control 

intervention (Figure 9). 

 

 
 

Figure 4. Forest plot comparing changes in the abundance of LPO and carbonylated protein levels between MT-treated and 
vehicle-treated groups. Compared with vehicle treatment, (A) LPO and (B) carbonylated protein levels were both significantly reduced in 
the MT-treated group. The unit for LPO almost in all studies is nmol/mg, except Nogues MR et al. (nmol/ml). For carbonylated protein the 
unit is nmol/mg. The prism represents the overall statistical results of the experimental data, squares represent the weight of each study, and 
horizontal lines represent the 95% CIs for each study. MT, melatonin; LPO, lipid peroxidation; CI, confidence interval; SD, standard deviation; 
IV, independent variable. 
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Sensitivity analysis 

 

Sensitivity analysis by excluding individual studies 

revealed that the LPO (Supplementary Table 1), and GRx 

(Supplementary Table 4) results were not modified when 

compared to the overall effect and their heterogeneity, 

indicating that our results were not driven by any single 

study and that similar results could be obtained after 

excluding any of the included studies. The sensitivity 

analysis based on carbonylated protein indicated that 

heterogeneity decreased (I2 =0%, p = 0.81) when 

reference [43] was excluded; the adjusted MD was -3.00; 

95% CI [-4.59, -1.40] (Supplementary Table 2). In 

accordance with GPx, the sensitivity analysis indicated 

that heterogeneity decreased (I2 =5%, p = 0.30) when 

reference [48] was excluded; the adjusted SMD was 2.61 

95% CI [1.77, 3.46] (Supplementary Table 3). According 

to GSH/GSSH ratio, the sensitivity analysis indicated that 

heterogeneity decreased (I2 =27%, p = 0.24) when 

reference [48] was excluded; the adjusted MD was 1.25; 

95% CI [0.93, 1.58] (Supplementary Table 5). Overall, 

sensitivity analysis demonstrated that the results produced 

in this meta-analysis were robust. 

 

Publication bias 

 

Except for GRx activity (p = 0.0000, Egger's test) there 

was no evidence of publication bias for studies 

examining the effects of LPO (p = 0.0767, Egger's test; 

funnel plot: Supplementary Figure 1), and carbonylated 

protein (p = 0.7538, Egger's test). Using the trim-and-

fill method, one potentially missing study was imputed 

for the analysis of GRx (Supplementary Figure 2). The 

imputed effect size of GRx was SMD 1.81; 95% CI 

[−1.12, 4.74].  

 

Systematic review of senescence-associated factors  

 

Effects of MT on senescence-associated molecular 

factors  

NF-κB pathways are currently considered the primary 

causes of OS-induced CS [18]. Furthermore, OS

 

 
 

Figure 5. Forest plot comparing changes in antioxidant enzyme activity between MT-treated and vehicle-treated groups. 
Compared with vehicle treatment, (A) CAT activity was unchanged in the MT-treated group, (B) GPx activity was significantly enhanced in the 
MT-treated group, and (C) SOD activity did not differ in the MT-treated group. The unit for catalase and SOD are μmol/mg, and U/mg, 
respectively. For GPx, the unit is nmol/min/mg in Carretero M et al. and mU/min/mg in Okatani Y et al. The prism represents the overall 
statistical results of the experimental data, squares represent the weight of each study, and horizontal lines represent the 95% CIs for each 
study. MT, melatonin; CAT, catalase; GPx, glutathione peroxidase; SOD, superoxide dismutase; CI, confidence interval; SD, standard deviation; 
IV, independent variable. 
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induces nuclear translocation of NF-κB leading to its 

activation and the simultaneous generation of inflam-

matory factors such as tumor necrosis factor-α (TNF-α), 

interleukins, and chemokines [50–52]. Importantly, 

higher levels of NF-κB p50 subunits have been found in 

the nucleus in SAMP-8 mice at 10 months of age, 

indicating activation of this transcriptional factor in 

association with age-related enhanced OS [44]. In 

contrast, MT treatment reduced NF-κB p50 subunit 

levels in SAMP-8 mice and led to a clear reduction in 

nuclear localization [44]. Another study reported that 

pro-inflammatory mediators such as interleukin-1β, TNF-

α, and interleukin-6 expression were elevated in SAMP-8 

at 10 months of age, particularly in the hippocampal 

region [53]. Consistent with these findings, Rodríguez et 

al. also reported that pro-inflammatory cytokines, mainly 

interferon gamma and TNF-α, were elevated in plasma 

from SAMP8 mice at 10 months of age. These elevated 

levels were counteracted by prolonged MT treatment 

[42]. Similarly, Gutierrez-Cuesta et al. demonstrated that 

prolonged MT treatment reduced NF-κB in the 10-

month-old SAMP8 mouse brain, although to a lesser 

extent [46]. Thus, reduced longevity could be due to 

sustained activation of NF-κB, which leads to age-related 

diseases [54]. 

 

Cdk5 may be an important link between OS and CS 

[19]. In SAMP8 mice, the activation of Cdk5 was 

significantly increased at 10 months of age [43], the 

age of senescence onset [55]. Importantly, oral MT 

administration (10 mg/kg, from 2 to 10 months of 

age) reduced this activation [43], suggesting that a 

reduction in CS leads to diminished age-related 

neurodegeneration. In the same study, MT lowered 

the levels of Cdk5/p35 and active glycogen synthase 

kinase 3β (GSK3β), and enhanced the levels of 

inactive GSK3β (Ser9), in 10-month-old SAMP8, thus 

causing reduced tau hyperphosphorylation [43]. These 

findings indicate that Cdk5 and GSK3β might be 

interrelated and may contribute to senescence. 

 

p53 is a pro-apoptotic transcriptional factor that is 

induced by OS and is considered important in the 

induction of CS [20]. Surprisingly, the deacetylation of 

p53 through sirtuin-1 (SIRT1) may suppress CS and 

apoptosis induced by OS [56]. In previous time-course 

studies, SIRT1 expression showed progressive 

reduction from 3 to 12 months of age in SAMP8 mice 

[57]. Likewise, compared with untreated animals, oral 

administration of MT treatment (10 mg/kg) in drinking 

water induced significant enhancement of SIRT1 

expression and reduced the expression of acetylated p53 

in SAMP8 mice [46]. Western blot analysis also 

showed that a gradual age-dependent enhancement of 

p53 levels was reduced by chronic MT treatment in the 

SAMP8 mouse brain [47]. In addition, p53-mediated

 

 
 

Figure 6. Forest plot comparing changes in GRx activity and GSH/GSSG ratio between MT-treated and vehicle-treated 
groups. Compared with vehicle treatment, (A) GRx activity and (B) GSH/GSSG ratio were both significantly enhanced in the MT-treated 
group. The unit for GRx almost in all studies is nmol/mg, except Nogues MR et al. (nmol/ml). The prism represents the overall statistical 
results of the experimental data, squares represent the weight of each study, and horizontal lines represent the 95% CIs for each study. MT, 
melatonin; GRx, glutathione reductase; GSH/GSSG, reduced-glutathione/oxidized-glutathione; CI, confidence interval; SD, standard deviation; 
IV, independent variable. 
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suppression of apoptosis inhibitory proteins, such as 

Bcl-2, was augmented by long-term MT treatment in 

SAMP8 mice [47].  

 

Effects of MT on senescence-associated 

morphological factors 

Data from several studies suggest that senescence 

accelerates gliosis during aging, which might contribute to 

neuronal dysfunction [58]. Nissl staining analysis showed 

that gliosis in cortical layers was reduced following 9 

months of dietary intake of MT, compared with vehicle-

treated SAMP8, suggesting a neuroprotective effect of 

MT during aging [43]. Moreover, cresyl violet staining in 

the hippocampal CA1 and CA3 regions of SAMP8 

showed that subcutaneous MT treatment (1 mg/kg/day) 

increased the density of pyramidal neurons, when 

compared with untreated mice (P < 0.01) [45]. No 

differences were observed between the early-age MT 

treatment group (SAMP8 age = 4–8 months) and the late-

age MT treatment group (SAMP8 age = 8–11 months). 

Furthermore, in hippocampal CA3 regions, the early-age 

MT treatment group showed markedly greater numbers of 

pyramidal neurons, compared with the late-age MT 

treatment group (P < 0.05). No differences were observed 

between the late-age MT treatment and control  

groups [45]. 

 

DISCUSSION 
 

This study systematically reviewed previous research 

concerning the protective effect of MT against brain 

aging in the SAMP8 mouse model, which shares similar 

pathophysiological features with humans in terms of 

brain aging [22]. The principal aim was to provide 

evidence for the therapeutic potential of MT to promote 

healthy aging and prevent age-related diseases by 

maintenance of physiological homeostasis between OS 

and CS. In recent years, several feasible interventions 

(e.g., MT) to delay aging have been studied in SAMP8 

mice, although these have led to some conflicting 

results [40, 45, 47]. Furthermore, no single systematic 

review and meta-analysis has been conducted to 

evaluate the efficacy of MT in this context. To our 

knowledge, this is the first systematic review and meta-

analysis concerning the effects of MT on OS-induced 

brain aging in SAMP8 mice. Our results suggest that 

prolonged MT treatment increases oxidative stability 

and antioxidative enzyme activity, reduces lysosomal 

enzymatic function, and regulates senescence-associated 

factors in the brain. Among the indicators and 

oxidant/antioxidant factors considered during 

investigation of this topic, LPO, carbonylated protein, 

CAT, GPx, SOD, GRx, GSH/GSSG ratio, cathepsin B, 

and cathepsin D have been evaluated in meta-analyses 

of animal trials. Additionally, senescence-associated 

molecular and morphological factors (e.g., NF-κB, 

Cdk5, and p53) were systematically reviewed in the 

SAMP8 mouse model.  

 

Despite extensive efforts, we were only able to include 

10 studies in this review. Of these, five aimed to 

evaluate the effects of prolonged MT treatment on

 

 
 

Figure 7. Forest plot comparing changes in the levels of cathepsins B and D between MT-treated and vehicle-treated groups. 
Compared with vehicle treatment, (A) cathepsin B and (B) cathepsin D levels were both significantly reduced in the MT-treated group. The 
unit for cathepsin B and cathepsin D are mU/mg, and U/mg, respectively. The prism represents the overall statistical results of the 
experimental data, squares represent the weight of each study, and horizontal lines represent the 95% CIs for each study. MT, melatonin; CI, 
confidence interval; SD, standard deviation; IV, independent variable. 
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changes in LPO levels. The meta-analysis results 

showed that MT treatment led to a significant reduction 

in the amount of LPO (p < 0.0001), indicating that MT 

was effective against oxidative degradation of lipids 

during aging. These results are consistent with the 

findings of Verma et al. (2020), who found that MT 

supplementation could alleviate age-related enhan-

cement of LPO through the maintenance of normal 

redox homeostasis [59]. Taken together, these data 

indicate that the age-dependent decline in pineal MT 

synthesis may contribute to increased production of 

LPO end products, and that MT supplementation can 

reverse these detrimental effects. Mitochondrial LPO 

exhibited a sharp enhancement at 10 months of age in 

SAMP8 mice [49]. Thus, we assessed the effects of MT 

at ≥ 10 months of age. However, these data must be 

interpreted cautiously because there was substantial 

unexplained heterogeneity between trials within male 

and female subgroups (male: I2 = 89%; female: I2 = 

56%). Therefore, the validity of the treatment effect 

estimate for male and female animals is uncertain 

because individual trial results were inconsistent. 

A prior study by Carney and colleagues [60] revealed 

age-related increases in carbonyl concentrations in an 

animal model of brain aging. The formation of 

carbonyl protein by free radicals (widely regarded as 

an indicator of oxidative damage) is primarily 

involved in cell damage during normal aging and 

aging-related diseases [15, 60]. In the brain, oxidized 

protein exhibits complex connections with the levels 

of antioxidative enzymes, proteolytic elimination of 

oxidized proteins, and generation of pro-oxidant 

substances [61]. Consistent with published literature, 

our meta-analysis revealed that prolonged MT 

treatment significantly reduced the formation of 

carbonylated proteins, compared with untreated 

SAMP8 mice (p = 0.03), suggesting that age-related 

enhancement of oxidative brain damage could be 

prevented by reducing carbonylated protein levels. 

Notably, the positive results might have been due to a 

high degree of heterogeneity (I2 = 93%) among the 

included studies. Hence, the validity of the treatment 

effect estimate for this outcome is dubious because 

individual study results were inconsistent. 

 

 
 

Figure 8. Subgroup analysis of LPO levels stratified according to sex. The test for subgroup differences showed no statistically 

significant subgroup effect (p = 0.62), indicating that sex did not modify the effect of MT intervention, compared with vehicle-treated groups. 
However, considerable heterogeneity was observed in the male (I2 = 89%) and female (I2 = 56%) subgroups. The unit for LPO almost in all 
studies is nmol/mg, except Nogues MR et al. (nmol/mL). The prism represents the overall statistical results of the experimental data, squares 
represent the weight of each study, and horizontal lines represent the 95% CIs for each study. LPO, lipid peroxidation; MT, melatonin; I, 
heterogeneity; CI, confidence interval; SD, standard deviation; IV, independent variable. 
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Accumulation of high protein content was observed in 

the aged SAMP8 mouse brain [44], presumably due to 

neurodegeneration and age-related OS [43]. These 

aggregations may result from disturbances in typical 

enzymatic activity caused by OS during brain aging. 

Changes in the activities of antioxidant enzymes, 

including CAT, led to elevated levels of OS in SAMP8 

mice until 10 months of age; this may be one cause of 

senescence-related impairments and degeneration in the 

brain [43]. Surprisingly, no differences were found in 

CAT activity between the MT and vehicle treatment 

groups (p = 0.32). This outcome is contrary to that of 

Tütüncüler et al., who found that the administration of 

exogenous MT effectively protected against brain injury 

by increasing CAT activity [62]. Conversely, Gutierrez-

Cuesta et al. reported that long-term MT treatment 

significantly reduced CAT expression in SAMP8 mice, 

compared with untreated SAMP8 mice [43]. One 

possible explanation is that long-term MT treatment 

differentially interacted with CAT activity. Specifically, 

prolonged presence of MT led to low OS, suggesting a 

linear relationship between OS and CAT activity [43]. 

Additionally, we demonstrated that MT supplemen-

tation significantly enhanced GPx activity (p < 0.00001) 

in SAMP8 mice. This result implies that MT 

administration promoted antioxidant enzyme activity in 

the brain and may thereby provide indirect protection 

against free radical injury [63]. Surprisingly, MT 

treatment did not affect SOD activity in the SAMP8 

brain (p = 0.07), although randomized controlled trials 

of MT showed marked increases in SOD expression 

[64]. This result contributes to the ongoing controversy 

regarding the link between SOD activity and aging [65], 

whereby SOD activity was not influenced by MT 

administration [62]. In contrast, GRx activity in SAMP8 

mice was significantly reduced during aging, and MT 

treatment significantly enhanced GRx activity 

compared with the untreated group in the same mouse 

model (p = 0.01). These findings indicated that the 

decline in GRx activity may play a significant role in 

brain damage. Notably, the results may be biased due to 

insufficient trials (two studies per subgroup) and 

numbers of animals in each subgroup (male = 34; 

female = 33), so the covariate distribution is 

problematic for this subgroup analysis. Furthermore, the 

GSH/GSSG ratio significantly decreases with age [66], 

although our meta-analysis results showed that long-

term MT treatment significantly enhanced the 

GSH/GSSG ratio (p < 0.00001) in SAMP8 mice. This 

result is in agreement with the findings of Alzoubi et al., 

who demonstrated that MT reduced OS by enhancing 

the GSH/GSSG ratio in the rat hippocampus [67]. 

 

Cathepsins B and D are the main lysosomal proteases 

and are abundantly expressed in the brain [68, 69]. It is 

unsurprising that the levels of these proteases increase 

with age, as well as in several age-dependent 

neurodegenerative diseases [70, 71]. The results from 

previous studies revealed that the levels of these 

proteases were increased in the aged SAMP8 mouse 

brain [49]. In particular, cathepsin D is regarded as a 

marker of aging [72]. Our meta-analysis results showed

 

 
 

Figure 9. Subgroup analysis of GRx levels stratified according to sex. The test for subgroup differences showed a significant subgroup 

effect (p = 0.69), suggesting that sex did not modified the effect of MT intervention, compared with vehicle-treated groups. It is interesting to 
note that the pooled effect estimate for both subgroups favors MT intervention over the control intervention. The unit for GRx almost in all 
studies is nmol/mg, except Nogues MR et al. (nmol/mL). The prism represents the overall statistical results of the experimental data, squares 
represent the weight of each study, and horizontal lines represent the 95% CIs for each study. GRx, glutathione reductase; MT, melatonin; I, 
heterogeneity; CI, confidence interval; SD, standard deviation; IV, independent variable. 
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that MT significantly reduced both cathepsin B (p < 

0.00001) and cathepsin D (p < 0.0001) levels in  

the brains of SAMP8 mice, indicating that lysosomal 

impairment may be involved in brain aging. This 

finding broadly supports the work of other studies 

 in this area that link lysosomal impairment with aging 

[73, 74]. 

 

Most recently, Bernal et al. showed that the activation 

of NF-κB led to CS acceleration via telomere 

dysfunction [75]. In addition, an age-related increase in 

the inflammatory response is considered a hallmark of 

CS [76]. Moreover, lysosomal enzymes (e.g., cathepsin 

B) indirectly activate NF-κB, resulting in microglial 

senescence-induced brain aging [77]. In our systematic 

review, we found that prolonged MT treatment reduced 

NF-κB p50 levels in SAMP8 mice, and markedly 

reduced nuclear localization indicating lower NF-κB 

activity [44]. On the basis of these data, we infer that 

potent NF-κB activation and its associated 

inflammatory response may contribute to aging 

processes linked to accelerated senescence in SAMP8 

mice. In contrast, prolonged MT treatment may 

suppress CS and age-related disorders by down-

regulation of NF-κB signaling. These results are in 

agreement with the findings of Fang et al., who showed 

that MT prevented senescence through inhibition of NF-

κB signaling pathways [78]. 

 

Previously, Lee et al. demonstrated that Cdk5 stabilizes 

and activates p53, a common pathway that promotes CS 

[79], thereby supporting the notion that Cdk5 is 

involved in senescence induction [19, 80]. The 

activation of Cdk5 and the levels of active GSK3β 

(Tyr216) were significantly increased at 10 months of 

age in SAMP8 mice, although MT mitigated these 

changes [43], thus implying that Cdk5 and GSK3β 

might be related and may contribute to senescence. 

These results reflect the findings of Liu et al., who 

reported the inhibition of Cdk5 and GSK-3β activities, 

as well as reduction of Alzheimer's disease-like 

pathology, in senescence-accelerated mice [81].  

 

OS plays a critical role in the activation of the p53 

transcriptional responses, which is responsible for the 

regulation of both CS and aging [20]. Surprisingly, 

the deacetylation of p53 through SIRT1 may suppress 

both OS-induced CS and OS-induced apoptosis [56]. 

The expression of Bcl-2 is enhanced in human 

fibroblasts naturally during senescence and upon 

induction of OS-induced senescence-like growth 

arrest, implying its role in maintenance of their 

extended viability [82, 83]. These findings suggested 
that elevated OS during the aging process 

dysregulates apoptosis, thereby inducing CS. They 

also corroborate previous results, in that senescent 

cells do not readily undergo apoptosis [84]. Our data 

suggest that oral MT treatment (10 mg/kg) induced 

significant elevation of SIRT1 expression and reduced 

the expression of acetylated p53 in SAMP8 mice [46]. 

In accordance with the present results, earlier findings 

demonstrated that SIRT1 overexpression led to 

reduction of p53 gene expression [85, 86]. 

Additionally, Liu et al. demonstrated that SIRT1 

reversed senescence via attenuation of OS-induced 

apoptosis and promotion of p53 degradation [86]. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

This study was performed to evaluate the ability of 

MT to foster healthy aging and counteract age-related 

disorders by inhibition of pathways involved in 

accelerated senescence. The findings of this study 

suggest that orally administered long-term MT 

treatment reduces formation of LPO, carbonylated 

proteins, and lysosomal proteases. Moreover, it 

increases the activities of GPx and GRx, as well as the 

GSH/GSSG ratio. Although the potential source of 

heterogeneity has been investigated through leave-

one-out sensitivity analyses, our findings have some 

limitations with respect to generalizability. For 

instance, there was substantial unexplained hetero-

geneity between trials within male and female 

subgroups. If the debate is to be moved forward, a 

better understanding of sex-specific long-term MT 

effects is needed. Another important result was that 

the CAT and SOD activities remain unchanged with 

MT intervention. Further research should explore how 

short-term and long-term MT interventions 

differentially impact CAT and SOD activities during 

aging. The second major finding was that MT 

administration can regulate senescence-associated 

molecular and morphological factors. Although we 

only narratively described these results because of the 

small number of studies, the findings offer some 

insight into how MT non-destructively regulates CS. 

Further studies would be useful regarding validation 

of the anti-senescence role of MT. Finally, our quality 

assessment using the SYRCLE RoB tool indicated 

that all included studies had considerable 

methodological limitations, a high risk of selection 

bias, and unclear risk of detection bias. Information 

regarding key measures essential for bias reduction 

(e.g., allocation concealment, random outcome 

assessment, and blinding) was often missing or 

insufficiently reported. Unfortunately, this is common 

in animal studies and limits our ability to draw 

plausible conclusions [87, 88]. We strongly 

recommend improvements to the reporting system for 

animal models to reduce the RoB; recently developed 

guidelines should be followed to enhance the quality 

of animal studies [89, 90]. 
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MATERIALS AND METHODS 
 

Search strategy 

 

Research articles reporting the effects of MT on the 

brain in SAMP8 were included in this systematic review 

and meta-analysis. The literature search was executed 

using keywords such as ‘melatonin’ in combination 

with ‘brain, aging, CS, and SAMP8’ in the following 

databases: PubMed, Embase, and CINAHL for studies 

published until August 2019. The reference lists of the 

included studies and those of relevant reviews were 

examined to identify additional relevant studies. The in-

depth search strategy performed in the PubMed 

electronic database is shown in Supplementary Table 6. 

No limits on language or publication date were used. 

 

Inclusion and exclusion criteria 

 

A systematic review and meta-analysis of research 

assessing the effects of exogenous MT on OS in the brain 

or plasma of SAMP8 mice was performed if the 

parameter of interest was reported in two or more studies. 

The systematic review focused on senescence-associated 

molecular and morphological factors. The meta-analysis 

focused on the levels/activities of brain/plasma OS 

markers (e.g., LPO, carbonylated protein, SOD, GPx, 

GRx, CAT, and GSH/GSSG ratio), as well as the 

levels/activities of lysosomal enzymes (e.g., cathepsins B 

and D), which were compared between vehicle control 

and MT treatment groups. Studies were excluded if they 

did not use SAMP8 mice, used interventions other than 

MT, were ex vivo or in vitro experiments, were unrelated 

outcome or review format, or were not published in 

English (Supplementary Table 7). 

 

Study selection 

 

After removal of duplicates, all unique trials were 

imported into a Rayyan-a web application [91] to allocate 

the references randomly. Next, two authors individually 

screened the titles and abstracts to select relevant studies 

from the randomly allocated references. Finally, the full 

texts of the selected articles were evaluated to identify 

trials that fulfilled our eligibility criteria. Any 

disagreement concerning study selection was settled by 

consultation with a third author. Notably, screening for 

the presence or absence of specific outcome measures was 

not performed during this phase because some outcome 

measures were not described in the abstract. 

 

Data extraction 

 

Two authors individually extracted the data from each 

of the included studies. Information related to the 

authors, publication year, age, sex, sample size, 

intervention (i.e., dose, route of administration, and 

duration), and outcome measures were extracted. For 

studies with multiple interventions, only data from the 

control and MT treatment groups were considered in 

this analysis. If published outcome data were 

incomplete, attempts were made to contact the study 

authors to obtain the original data. A reminder was sent 

by email to authors who had not responded within 2 

weeks. If efforts to acquire the original data failed, the 

article was eliminated from the meta-analysis. If the 

data were only presented graphically, GetData Graph 

Digitizer (http://getdata-graph-digitizer.com/) was used 

to extract numerical data from graphs or figures. 

 

Assessment of methodological quality 

 

The RoB in the included articles was evaluated by two 

independent reviewers using the SYRCLE RoB tool 

[92], which was developed based on the Cochrane RoB 

tool [93] to evaluate aspects of bias specifically 

encountered in animal intervention studies. The tool 

contains 10 items related to six types of bias (selection, 

performance, detection, attrition, reporting, and other 

bias). Responses of ‘yes’, ‘no’, and ‘unsure’ indicated 

low, high, and unclear RoB, respectively.  

 

Data analysis 

 

The experimental and control group data from the 

included studies were extracted and entered into the 

Review Manager software (RevMan 5.3, The Nordic 

Cochrane Centre, Copenhagen, Denmark). A meta-

analysis was performed when at least two studies were 

analogous in terms of population, intervention, 

comparison, outcome process, and study design, and 

when these studies provided relevant data. For effect 

size analysis, the MD was used when the outcome 

measures of all studies employed the same scale, and 

the SMD was used when the studies assessed the same 

outcome by means of distinct measurements. For both 

strategies, 95% CIs were calculated. Large SMD effect 

size was considered 0.8, moderate 0.5, and small 0.2 

[94]. The I2 test was used to assess heterogeneity among 

studies. A fixed-effects model was used for the meta-

analysis when I2 was ≤ 50%, and a random-effects 

model was used when I2 was > 50%, indicating 

substantial heterogeneity [95]. Subgroup analyses were 

performed only when subgroups contained at least two 

independent comparisons. Whenever three or more 

studies were included, a leave-one-out sensitivity 

analysis was performed by iteratively removing 1 study 

at a time to confirm that our findings were not driven by 

any single study, as well as, to assess potential sources 
of heterogeneity [96]. Publication bias was investigated 

via Egger's test (≥ 4 studies) and visual inspection of 

funnel plots (≥ 5 studies) using Stata/SE software, 

http://getdata-graph-digitizer.com/
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Version 16.0 (Stata Corp., College Station, TX) 

(p < 0.05) [97, 98]. Whenever publication bias was 

detected either funnel plot asymmetry or Egger’s 

regression test, the trim and fill method was used to 

calculate the effect size by estimating the number of 

missing studies [99]. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

Supplementary Figure 1. Symmetric funnel plot in studies reporting the impact of MT on LPO levels. SMD, standardized mean 

difference; MT, melatonin. 

 

 
 

Supplementary Figure 2. Asymmetric funnel plot showing the publication bias in studies reporting the impact of MT on GRx 
levels. SMD, standardized mean difference; MT, melatonin; GRx, glutathione reductase. 
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Supplementary Tables 
 

Supplementary Table 1. Leave-one-out sensitivity analyses on LPO. 

 Pooled SMD [95% CI] Between-study heterogeneity 

Overall -2.00[-2.91, -1.10] p < 0.0001; I2=79% 

Omitted study 

Carretero M (2009) female -1.86[-2.85, -0.88] p < 0.0001; I2=81% 

Carretero M (2009) male -2.21[-3.20, -1.22] p = 0.0003; I2=78% 

Garcia J (2011) -1.99[-3.08, -0.91] p < 0.0001; I2=82% 

Gutierrez-Cuesta J (2007) -1.75[-2.63, -0.86] p = 0.002; I2=74% 

Nogues MR (2006) female -2.08[-3.14, -1.03] p < 0.0001; I2=82% 

Nogues MR (2006) male -2.29[-3.13, -1.44] p = 0.005; I2=70% 

Okantani Y (2002) -1.83[-2.81, -0.85] p = 0.0003; I2=78% 

 

Supplementary Table 2. Leave-one-out sensitivity analyses on carbonylated protein. 

 Pooled MD [95% CI] Between-study heterogeneity 

Overall -5.74[-11.03, -0.44] p < 0.00001; I2=93% 

Omitted study 

Caballero B (2008) -6.38[-13.25, 0.48] p < 0.00001; I2=95% 

Garcia JJ (2011) -6.40[-13.29, 0.49] p < 0.00001; I2=95% 

Gutierrez-Cuesta J (2007) -3.00[-4.59, -1.40] p = 0.81; I2=0% 

Okantani Y (2002) -6.84[-13.44, -0.24] p < 0.00001; I2=92% 

 

Supplementary Table 3. Leave-one-out sensitivity analyses on GPx. 

 Pooled SMD [95% CI] Between-study heterogeneity 

Overall 3.33[1.89, 4.78] p = 0.06; I2=65% 

Omitted study 

Carretero M (2009) 

female 
3.53[0.91, 6.14] p = 0.02; I2=81% 

Carretero M (2009) male 2.61[1.77, 3.46] p = 0.30; I2=5% 

Okantani Y (2002) 4.04[2.38, 5.71] p = 0.20; I2=40% 

 

Supplementary Table 4. Leave-one-out sensitivity analyses on GRx. 

 Pooled SMD [95% CI] Between-study heterogeneity 

Overall 2.59[0.50, 4.68] p < 0.00001; I2=90% 

Omitted study 

Caballero B (2009)  3.35[0.69, 6.00] p < 0.00001; I2=91% 

Carretero M (2009) female 1.87[-0.13, 3.87] p < 0.0001, I2=88% 

Carretero M (2009) male 1.65[-0.16, 3.45] p = 0.0001, I2=86% 

Nogues MR (2006) female 3.35[0.62, 6.09] p < 0.00001, I2=90% 

Nogues MR (2006) male 2.92[0.01, 5.83] p < 0.00001, I2=92% 
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Supplementary Table 5. Leave-one-out sensitivity analyses on GSH/GSSH ratio. 

 Pooled MD [95% CI] Between-study heterogeneity 

Overall 1.12[0.77, 1.47] p = 0.12; I2=53% 

Omitted study 

Carretero M (2009) female 0.99[0.66, 1.33] p = 0.21; I2=36% 

Carretero M (2009) male 1.25[0.93, 1.58] p = 0.24; I2=27% 

Garcia JJ (2011) 1.12[0.44, 1.81] p = 0.04; I2=76% 

 

Supplementary Table 6. PubMed search strategy (01 August 2019). 

Search Query Items found 

#1 
("melatonin"[MeSH Terms] OR "melatonin"[All Fields] OR "n acetyl 5 

methoxytryptamine"[All Fields]) 
25030 

#2 

(((("brain"[MeSH Terms] OR "brain"[All Fields]) AND ("aging"[MeSH Terms] 

OR "aging"[All Fields] OR "agings"[All Fields] OR "ageing"[All Fields] OR 

"ageings"[All Fields])) OR ("sensation"[MeSH Terms] OR "sensation"[All Fields] 

OR "senses"[All Fields]) OR ("geriatrics"[MeSH Terms] OR "geriatrics"[All 

Fields] OR "geriatric"[All Fields] OR "gerontol"[All Fields])) AND "cellular 

senescence"[MeSH Terms]) OR "cellular senescence"[All Fields] 

18,940 

#3 

(("rodentia"[MeSH Terms] OR "rodentia"[All Fields] OR "rodent"[All Fields] OR 

("rats"[MeSH Terms] OR "rats"[All Fields] OR "rat"[All Fields]) OR 

("mice"[MeSH Terms] OR "mice"[All Fields]) OR ("mice"[MeSH Terms] OR 

"mice"[All Fields] OR "mouse"[All Fields]) OR ("rats"[MeSH Terms] OR 

"rats"[All Fields] OR "rattus"[All Fields]) OR "mus"[All Fields]) AND 

"SAM"[All Fields]) OR "samp"[All Fields] OR "SAMP8"[All Fields] OR 

"SAMP10"[All Fields] OR (("aging"[MeSH Terms] OR "aging"[All Fields] OR 

"senescence"[All Fields]) AND ("mice"[MeSH Terms] OR "mice"[All Fields])) 

53,179 

#4 #2 OR #3 67,390 

#5 #1 AND #4 303 
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Supplementary Table 7. Explanations for the full-text article exclusions. 

SL/NO Title Reasons 

1 

Gutierrez-Cuesta J, Tajes M, Jimenez A, Camins A, Pallas M. [Effects of melatonin 

in the brain of the senescence-accelerated mice-prone 8 (SAMP8) model]. Rev 

Neurol. 2011; 52: 618–22. 

Review 

2 

Asai M, Ikeda M, Akiyama M, Oshima I, Shibata S. Administration of melatonin in 

drinking water promotes the phase advance of light-dark cycle in senescence-

accelerated mice, SAMR1 but not SAMP8. Brain Res. 2000; 876: 220–4. 

Unrelated 

outcome 

3 

Lardone PJ, Alvarez-García Ó, Carrillo-Vico A, Vega-Naredo I, Caballero B, 

Guerrero JM, Coto-Montes A. Inverse correlation between endogenous melatonin 

levels and oxidative damage in some tissues of SAM P8 mice. Journal of Pineal 

Research. 2006; 40: 153–7. 

Wrong study 

organ 

4 

Rosenfeld SV, Togo EF, Mikheev VS, Popovich IG, Khavinson VK, Anisimov VN. 

Effect of epithalon on the incidence of chromosome aberrations in senescence-

accelerated mice. Bull Exp Biol Med. 2002; 133: 274–6. 

Wrong study 

design 

5 

Shibata S, Asai M, Oshima I, Ikeda M, Yoshioka T. Melatonin normalizes the re-

entrainment of senescence accelerated mice (SAM) to a new light-dark cycle. Adv 

Exp Med Biol. 1999; 460: 261–70. 

Unavailable 

6 

Parisotto EB, Vidal V, García-Cerro S, Lantigua S, Wilhelm Filho D, Sanchez-

Barceló EJ, Martínez-Cué C, Rueda N. Chronic Melatonin Administration Reduced 

Oxidative Damage and Cellular Senescence in the Hippocampus of a Mouse Model 

of Down Syndrome. Neurochem Res. 2016; 41: 2904–13. 

Wrong animal 

model 

7 

Morioka N, Okatani Y, Wakatsuki A. Melatonin protects against age-related DNA 

damage in the brains of female senescence-accelerated mice. J Pineal Res. 1999; 27: 

202–9. 

Wrong animal 

model 

8 

Cristòfol R, Porquet D, Corpas R, Coto-Montes A, Serret J, Camins A, Pallàs M, 

Sanfeliu C. Neurons from senescence-accelerated SAMP8 mice are protected 

against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal 

Res. 2012; 52: 271–81. 

Ex-vivo 

 


