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INTRODUCTION 
 

Bladder cancer (BCa), as the twelfth most common 

malignancies around the world, brings a tremendous 

social burden [1]. The 5-year survival rate of muscle-

invasive bladder cancer (MIBC), one of the main 

subtypes of BCa, is dismal: 5%–30% [2]. Nowadays, 

some novel therapeutic methods, such as cisplatin-based 

neoadjuvant chemotherapy and immune checkpoint 

inhibitors (ICIs), have been proposed, making 

considerable strides in BCa treatment [3]. However, 

many BCa patients could not benefit from the current 

therapeutic regimens [4, 5]. Therefore, reliable 

prediction of prognosis was urgently demanded, which 

played an important role in guiding clinical treatment.  
 

With the proliferation of tumor cells, the genomic 

characteristics of progeny cells are different from that 

of their parents, inducing the alternation of drug 

susceptibility, invasiveness, migration, and growth, 

which is known as intra-tumor heterogeneity (ITH) [6]. 

ITH is closely correlated with immunotherapy response 

because the neoantigen on tumor cells with high ITH is 

diluted, and the concentration is not enough to cause the 

antitumor immunity [7]. ITH is also capable of 

predicting the prognosis of patients with malignancies 

[8]. The underlying mechanisms of ITH include 

telomere damage, DNA mismatch repair deficiency, 

microsatellite instability (MSI), and epigenetic changes 

[9], but the understanding of ITH is far from enough for 

the moment.  

 

Various methods, like fluid biopsy, gene sequencing, 

and multi-regional biopsy, have been developed to 

estimate the ITH of BCa patients. Sing-cell RNA 

sequencing (scRNA-seq) has attracted more and more 
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scRNA-seq and ITH was successfully constructed and validated in large cohorts, providing novel clues for ITH 
study of BCa. 
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attention due to its high resolution [10]. For instance, 

Maynard et al. disclosed the dynamic changes of lung 

tumor cells in patients who received target therapy 

via scRNA-seq technology [11], showing single-cell 
sequencing was a powerful tool for ITH research. 
 

In the present study, we quantified the ITH of 396 cases 

with BCa from The Cancer Genome Atlas (TCGA). 

Then scRNA-seq data was collected from Gene 

Expression Omnibus (GEO), where we also down-

loaded the external validation datasets. A gene-pair 

strategy was implemented to improve the robustness of 

the established model [12]. The correlation between risk 

signature and clinical treatment outcomes was also 

explored. Our research constructed a promising tool to 

predict the clinical outcomes and provided some novel 

biomarkers, deepening the understanding of ITH in 

BCa.  

 

RESULTS 
 

ITH estimation of 396 cases with BCa 
 

The workflow chart of this study is shown in Figure 1A. 

We utilized the mutant-allele tumor heterogeneity 

(MATH) algorithm to evaluate ITH of BCa cases from 

TCGA (Supplementary Table 1). Accordingly, the ITH 

of each individual was quantified as MATH value, and 

high MATH represented increased ITH of malignant 

tumors [13]. It was found that the BCa cases with high 

MATH suffered a poorer survival rate (p = 4.146e-02, 

Figure 1B) and lower sensitivity to chemotherapeutic 

agents (Figure 1C). The predictive potential of MATH 

to immunotherapy effectiveness was also evaluated. 

MATH was positively correlated with Tumor 

Mutational Burden (TMB) via Spearman correlation 

(r = 0.15, p = 0.0017, Figure 1D). With ESTIMATE 

algorithm, the proportion of immune and stromal 

components of the tumor microenvironment (TME) was 

calculated [14]. The ratios of immune and stromal 

components in TME in the low-MATH group were 

significantly higher than those in the high-MATH group 

by Wilcoxon test (p < 0.001, Figure 1E). The expression 

level of routine immune checkpoint genes, including 

PD1, LAG-3, GAL-9, CTLA-4, TIM-3, and TIGIT, were 

negatively correlated with MATH (p < 0.05, Figure 1F). 
 

Profiling of scRNA-seq data 
 

The transcriptome sequencing of 2075 cells isolated 

from a patient with primary BCa was obtained from the 

GEO website [15]. Figure 2A displayed the detected 

gene numbers, sequencing count, and the percent of 

mitochondrial genes of each cell. With the sequencing 

depth increased, the percent of mitochondrial genes (r = 

–0.64) and detected gene count (r = 0.92) were also 

significantly changed (Figure 2B). The Top10 genes 

with the most significant variation across 2075 cells 

included TPSB2, TPSAB1, IGFBP7, S100A2, CD74, 
HLA-DRA, MALAT1, HLA-DRB1, PLA2G2A, and FN1 

(Figure 2C). The principal component analysis (PCA) 

was conducted to classify the cells preliminarily (Figure 

2D). The p-value of each principal component (PC) was 

illustrated in Figure 2E, and the correlated genes of 

Top4 PC were shown in Supplementary Figure 1. To 

get a more precise clustering of cell samples, t-

Distributed Stochastic Neighbor Embedding (t-SNE) 

was then implemented, and 2075 cell samples were 

divided into 14 different clusters (Supplementary Table 

2, Figure 2F). A total of 2940 markers genes were 

screened with |logFC| > 0.5 and adjusted p < 0.05 

(Supplementary Table 3), and accordingly, the cell 

types were annotated (Figure 2F). Figure 2G indicated 

the trajectory analysis of 14 cell clusters, which re-

validated the annotation of cell types.  

 

ITH-related genes screening and heterogeneity-

related score (HRS) construction 

 

We calculated the Spearman correlation coefficients 

between MATH values and transcriptome expression 

levels of 2940 cell markers, and 96 genes were screened 

(r > 0.25, p < 0.05, Supplementary Table 4, Figure 3A). 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) functional annotation indicated 

the 96 genes mainly were enriched in the biological 

process related to the cell cycle (Figure 3B and 3C). 

After cyclically pairing the screened 96 genes, 1256 

gene pairs were identified. Subsequently, 10 ITH-

related gene-pairs were extracted with the Lasso-Cox 

algorithm (Figure 3D and 3E), 8 of which were included 

in the prognostic model via multivariate Cox regression 

with stepwise (Supplementary Table 5, Figure 3F). 

Here, we defined the risk score, which was calculated 

based on the established risk model, as a heterogeneity-

related score (HRS). To help clinicians better under-

stand HRS, a nomogram was drawn (Figure 4A). The 

expression level of 13 genes, which comprised the 8-

gene-pair model, in 14 different cell subgroups were 

sown in Figure 3G. Figure 3H illustrated the mutational 

rates of the genes in different tumor pathological stages.  

 

Validation of HRS 
 

The calibration analysis indicated the estimated 3- 

(Figure 4B) and 5-year (Figure 4C) OS rates from HRS 

were close to the actual survival rates. The optimal HRS 

value, which was detected through X-tile software [16], 

was equal to 2.16, according to which each case was 

labeled with low- or high-risk (Supplementary Table 6). 

Compared with the patients with low-risk, the 

individuals with high-risk suffered significantly poorer 
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prognosis (p = 0, Figure 4D). With HRS increasing, 

more deaths were observed (Figure 4G and 4J). Besides, 

HRS could be used to evaluate the survival rate in almost 

all subgroups by stratification survival analysis 

(Supplementary Figure 2). The external validation was 

also conducted in GSE13507 and GSE328094 datasets, 

which included 165 and 224 cases, respectively. The 

details of clinicopathological features of the datasets 

enrolled were s shown in Table 1. Based on the optimal 

cut-off of 2.16, the patients from these two researches 

were divided into low- and high-risk subgroups 

(Supplementary Tables 7 and 8). Kaplan-Meier survival 

plots displayed HRS could effectively predict the 

survival rates in GSE13507 (p = 2.497e-02, Figure 4E) 

 

 
 

Figure 1. Evaluation of ITH with MATH in BCa. (A) The workflow of this study. (B) The patients with high MATH values suffered an 
unfavorable prognosis. (C) The estimated MATH values acted as a potential predictor for chemosensitivity with Wilcoxon signer-rank test. 
(D) MATH values were positively correlated with TMB. (E) The cases in the high-MATH group had significantly lower immune and stromal 
components in TME. (F) Spearman correlation analysis indicated MATH values were negatively correlated with routine immune checkpoint 
genes, including PD1, LAG3, GAL9, CTLA4, TIM-3, and TIGIT. The red lines and green lines represented positive correlation and negative 
correlation, respectively. The boldness of the lines was positively associated with the strength of the correlation. *p < 0.05; **p < 0.01; 
***p < 0.001. 
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and GSE32894 (p = 3.423-02, Figure 4F) cohorts. The 

distribution of HRS and survival status of GSE13507 

(Figure 4H and 4K) and GSE32894 (Figure 4I and 4L) were 

also analyzed and illustrated. Wilcoxon signed-rank test 

conformed that the 13 genes involved in HRS were mostly 

differentially expressed between adjacent normal and BCa 

tissues (Supplementary Figure 3), and most of them could 

predict OS with significant efficacy (Supplementary Figures 

4 and 5, Supplementary Tables 9–11). Besides, we also 

compared the mRNA expression level of the 13 genes 

between normal urothelium cell line SV-HUC-1 and BCa 

cell line T24 via Real-time quantitative PCR (RT-qPCR, 

Supplementary Figure 6), and the sequences of primers 

utilized are shown in Supplementary Table 12. 

 

 
 

Figure 2. Characterization of scRNA-seq from 2075 cells. (A) Quality control plots of cell samples. (B) The sequencing depth was 
negatively correlated with the proportion of mitochondrial genes and positively associated with detected gene numbers. (C) 1500 variable 
genes across cell samples were identified. (D, E) PCA was conducted to reduce the dimension of data sets. (F) Cell samples were classified into 
14 clusters with the t-SNE algorithm. (G) The trajectory analysis of 14 cell clusters.  



 

www.aging-us.com 19419 AGING 

Clinical evaluation by HRS 
 

Compared with other clinicopathological features, like 

age, gender, pathological stages, pathological T stages, 

M stages, and pathological N stages, HRS was an 

independent prognostic factor no matter in the 

univariate Cox (Figure 5A) and multivariate Cox 

(Figure 5B) analysis. The areas under curves (AUCs) of 

HRS were also higher than those clinical parameters in 

1-year (Figure 5C), 3-year (Figure 5D) and 5-year 

 

 
 

Figure 3. Establishment of HRS. (A) 96 of 2075 cell marker genes were significantly correlated with MATH. (B, C) GO functional annotation 
(B) and KEGG pathway enrichment (C) of the 96 genes. (D, E) 10 crucial gene-pairs correlated with OS were identified via Lasso-Cox 
regression. (F) 8 of 10 gene pairs were included in the prognostic model by multivariate Cox analysis with stepwise. (G) The expression values 
of 13 genes comprising the 8-gene-pair signature in 14 cell subpopulations. (H) The mutational rates of the 13 genes in different stages in 
BCa. The size of the bubble represented the mutational rates in all samples. 
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(Figure 5E) receiver operating characteristic (ROC) 

curves. The strip curve indicated HRS was significantly 

associated with pathological tumor stages via the Chi-

square test (p < 0.05, Figure 6A). Wilcoxon test 

displayed that the HRS was also correlated with other 

clinicopathological traits (Figure 6B–6G), which were 

widely regarded as risk factors for BCa.  

Correlation between HRS and clinical treatment 
 

HRS was significantly associated with MATH values 

through Wilcoxon signed-rank test (p = 0.0037, Figure 

7A) and Spearman correlation analysis (r = 0.17, p = 

0.00095, Figure 7B). We also found that the high-HRS 

group had a relatively lower GAL-9 expression level 

 

 
 

Figure 4. Validation of HRS. (A) A nomogram was plotted to visualize the HRS. (B, C) The calibration curves for 3- (B) and 5-year (C) OS 
prediction. (D–F) Kaplan-Meier survival analysis of HRS in TCGA (D), GSE13507 (E) and GSE32894 (F) cohorts. (G–I) The distribution of HRS in 
TCGA (G), GSE13507 (H) and GSE32894 (I). (J–L) The distribution of survival status in TCGA (J), GSE13507 (K) and GSE32894 (L).  
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Table 1. The baseline information of 785 cases enrolled in the present study. 

Parameters TCGA (n = 396) GSE13507 (n = 165) GSE32894 (n = 224) 

Survival status    

Alive 243 (61.3%) 96 (58.1%) 199 (88.8%) 

Dead 153 (38.6%) 69 (41.8%) 25 (11.1%) 

Follow-up (day) 778.19 ± 814.38 1451.45 ± 1127.70 1196.98 ± 767.38 

Age 67.84 ± 10.53 65.18 ± 11.93 69.43 ± 11.28 

Gender    

Female 104 (26.2%) 30 (18.1%) 61 (27.2%) 

Male 292 (73.7%) 135 (81.8%) 163 (72.7%) 

Pathological Stage    

I 2 (0.5%) – – 

II 124 (31.3%) – – 

III 138 (34.8%) – – 

IV 130 (32.8%) – – 

Unknown 2 (0.5%) – – 

pT stage    

T0 1 (0.2%) 0 (0.0%) 0 (0.0%) 

Ta 0 (0.0%) 23 (13.9%) 110 (49.1%) 

T1 3 (0.7%) 81 (49.0%) 63 (28.1%) 

T2 113 (28.5%) 31 (18.7%) 43 (19.1%) 

T3 190 (47.9%) 19 (11.5%) 7 (3.1%) 

T4 57 (14.3%) 11 (6.6%) 1 (0.4%) 

Unknown 32 (8.0%) 0 (0.0%） 0 (0.0%) 

M stage    

M0 189 (47.7%) 158 (95.7%) – 

M1 10 (2.5%) 7 (4.2%) – 

Unknown 197 (49.7%) 0 (0.0%) – 

pN stage    

N0 229 (57.8%) 149 (90.3%) 27 (12.0%) 

N1 44 (11.1%) 8 (4.8%) 3 (1.3%) 

N2 75 (18.9%) 6 (3.6%) 10 (4.4%) 

N3 7 (1.7%) 1 (0.6%) 0 (0.0%) 

Unknown 41 (10.3%) 1 (0.6%) 184 (82.1%) 

Risk stratification    

High 123 (31.0%) 51 (30.9%) 52 (23.2%) 

Low 273 (68.9%) 114 (69.0%) 172 (76.7%) 

HRS 1.90 ± 1.58 1.96 ± 1.03 1.52 ± 1.20 

Abbreviations: TCGA: The Cancer Genome Atlas; HRS: heterogeneity-related score. 
 

than the low-HRS group via the Wilcoxon test (p < 

0.001, Figure 7C). With the CIBERSORT algorithm 

[17], we estimated the infiltration proportion of 22 

immune cells in TME and found some cell types, 

including CD8
+
 T cells, Tregs, M0 macrophages, 

resting mast cells, and neutrophils, were closely 
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associated with HRS by Wilcoxon test (p < 0.05, 

Figure 7D). Most of the HRS-related immune cells 

have been reported to influence immunotherapeutic 

outcomes [18–20]. It was also found that the 

evaluated chemotherapy sensitivity to cisplatin, 

methotrexate, and vinblastine was different in the 

low-HRS and high-HRS subgroup by means of the 

Wilcoxon test (p < 0.05, Figure 7E). In all, HRS had 

the potential to serve as a biomarker for the 

effectiveness of clinical treatment, containing 

immunotherapy and chemotherapy, in BCa.  

 

HRS-related biological pathways detection 
 

Gene Set Enrichment Analysis (GSEA) and Gene 

Set Variation Analysis (GSVA) were both 

performed to ensure the predictive accuracy of the 

pathway enrichment results. The analysis results of 

GSVA were shown in Figure 8A and Supplementary 

Table 13, and GSEA results were supplemented in 

Supplementary Tables 14 and 15. Among the related 

biological process, G2M checkpoint, mitotic 

spindle, mTORC1 signaling, and epithelial-

mesenchymal transition (EMT) were observed to be 

positively correlated with HRS (Figure 8B and 8C), 

while DNA repair and oxidative phosphorylation 

(OXPHOS) had a significantly negative association 

(Figure 8D and 8E).  

The candidate compounds targeting HRS 
 

To analyze the potential HRS-related compounds, we 

uploaded the differentially-expressed genes (DEGs) 

extracted from high-HRS and low-HRS patients and 

illustrated in Figure 9A and Supplementary Table 16 to 

the CMap database. Seven potential compounds, 

including cephaeline (Figure 9C), LY-294002 (Figure 

9D), lycorine (Figure 9E), naltrexone (Figure 9F), 

nefopam (Figure 9G), tanespimycin (Figure 9H), and 

wortmannin (Figure 9I), were the predicted small 

molecule drugs with the most significance (Figure 9B, 

Supplementary Table 17).  
 

DISCUSSION 
 

BCa is among the most malignant tumors around the 

world. The prognosis of BCa is unfavorable, especially 

for the cases with locally advanced cancers and distant 

metastasis [21]. Therefore, the accurate prediction of 

BCa prognosis remains one of the topics we are 

concerned about most. ITH, a hallmark of malignant 

cancers, refers to the change of molecular biology and 

genomic features in tumor cell evolution [22]. It has 

been widely accepted that ITH acted as one of the 

fundamental causes of many phenotypes of cancers. 

Recent research characterized ITH across 38 different 

tumors, uncovering some latent driving factors [9]. 

 

 
 

Figure 5. HRS showed superiority in OS prediction compared with the clinicopathological features. (A, B) HRS was an 
independent prognosis predictor in univariate (A) and multivariate (B) analyses. (C–E) ROC analysis indicated HRS had better ability than the 
clinical traits in 1- (C), 3- (D) and 5-year (E) OS prediction.  
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Nevertheless, it is a long and complex process to 

comprehensively understand ITH, and more studies 

should be conducted. At present, more and more 

evolution traits of malignant cells have been revealed 

based on single-cell level [23], demonstrating single-

cell technology was a valuable maneuver to analyze 

ITH.  

 

Some previous studies contributed to the prognosis 

prediction of BCa. For example, according to TP53 

mutation status, Wu et al. developed and validated a 

predictive model for OS of BCa [24]. Based on glucose 

metabolism, an 18-gene signature was successfully built 

to predict prognosis in urothelial carcinoma [25]. These 

efforts helped for individualized treatment and the 

underlying mechanisms exploring. However, the 

prognostic value of ITH-related signature has not been 

reported in BCa. Besides, most of the previous studies 

were based on the DEGs identified from the tissues with 

different statuses, like tumor and paracarcinoma, or 

high and low immune infiltration, which might omit 

important biomarkers because of the ignorance of the 

 

 
 

Figure 6. The correlation between HRS and other clinicopathological variables. (A) The strip curve displayed HRS was significantly 
correlated with pathological tumor stages. (B–G) Correlation analysis of HRS with age (B), gender (C), pathological stages (D), pathological T 
stages (E), pathological N stages (F), and M stages (G). 
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differences among various cell subsets. Given the 

reason mentioned above, some researchers have 

constructed and successfully validated the scRNA-seq-

based prognostic models in cancers [26, 27], but no risk 

signature on the basis of scRNA-seq has developed in 

BCa. Therefore, the present study established an ITH-

related prognosis signature based on scRNA-seq, which 

was reasonable and urgently demanded.  

 

This study first evaluated the ITH of 396 BCa cases 

from the TCGA-BLCA dataset via the MATH 

algorithm, which was developed based on mutant-allele 

fractions (MAFs) and validated in head and neck 

squamous cell carcinoma [8, 13]. The MATH values 

were positively correlated with ITH, as well as the 

unfavorable survival rate (Figure 1B). Then scRNA-seq 

data of 2075 cells obtained from a patient with primary 

BCa was analyzed, and 14 different cell types were 

identified. Based on the cell markers of cell clusters, 96 

genes were screened as ITH-related genes via co-

expression analysis with MATH values. GO and KEGG 

analysis displayed that the genes mainly were enriched 

in cell cycle-related pathways. Subsequently, 96 genes 

were cyclically paired, and a 0-or-1 matrix was built 

with gene-pair strategy, where there was no need for 

definite expression level of genes. Lasso and 

multivariate Cox with stepwise helped establish an 

8-gene-pair prognostic model, and accordingly, the 

heterogeneity-related score (HRS) was calculated for 

each individual. The cases with high HRS suffered 

poorer survival in the TCGA-BLCA, GSE13507, and 

GSE32895 datasets, indicating that HRS might serve as 

a reliable risk predictor. Besides, the expression value 

of GAL-9 and CD8
+
 T cell infiltration proportion in the 

high-HRS group was significantly lower than that in the 

low-HRS populations, showing HRS might be linked to 

 

 
 

Figure 7. HRS was a potential predictor for clinical treatment of BCa. (A, B) HRS was significantly correlated with MATH, 
codetermined by difference (A) and correlation (B) analysis. (C) GAL-9 was differentially expressed between low- and high-HRS groups. (D) 
The cases in the high-HRS group were more likely to be associated with the high infiltration of M0 macrophages, activated mast cells, 
and neutrophils, whereas they were negatively correlated with the infiltration of CD8+ T cells and Tregs. (E) High HRS was linked to a 
lower IC50 for chemotherapeutics like cisplatin and doxorubicin, whereas it was correlated to a higher IC50 of methotrexate. 

*
p < 0.05; 

**p < 0.01; ***p < 0.001. 
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immunotherapy response. It was also found the HSR had 

the potential to indicate chemotherapy effectiveness, 

including cisplatin, doxorubicin and methotrexate.  

 

Several biomarkers were firstly reported to be 

correlated with the development of BCa. KDELR3, 

which was up-regulated in tumor samples and cell lines 

compared with that in adjacent normal tissues and 

normal cell lines (Supplementary Figures 3 and 6), 

served as a predictor for poor prognosis of BCa 

(Supplementary Figures 4 and 5). It was reported that the 

loss of KDELR3 in the genetically engineered mouse 

 

 
 

Figure 8. Functional enrichment analysis. (A) The heatmap showing the analysis results of GSVA. (B, C) Four pathways, including G2M 
checkpoint, mitotic spindle, mTORC1 signaling, and epithelial mesenchymal transition, were positively related to HRS, which was 
codetermined by GSEA and GSVA. (D, E) Two pathways, including DNA repair and oxidative phosphorylation, were negatively associated with 
HRS through the combined analysis by GSEA and GSVA. 
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would lead to the metastasis depression of melanoma 

cells by interacting with KAI1, which was a metastasis 

suppressor [28]. GPSM3 was found to be up-regulated in 

normal samples and the cases with favorable prognosis 

(Supplementary Figures 3–6), indicating GPSM3 acted as 

a tumor suppressor for BCa. GPSM3 was found to be a 

regulator to immune cells like leukocytes and monocytes 

[29, 30]. However, the functions of GPSM3 in malignant 

tumors remain unclear. Other novel biomarkers, like 

RFC4, RPA3, IFI27L2, and APH1A, were also identified, 

despite the unclear associated mechanisms. Totally, our 

risk signature helped identify novel biomarkers and 

might provide clues for mechanisms of BCa from the 

prospect of ITH. 

 

The potential compounds targeting HRS were also 

predicted with CMap. Some of the compounds could 

interact with malignant tumors from previous research. 

Lycorine promoted apoptosis of gastric tumor cells by 

FBXW7-MCL1 axis [31]. Low-dose naltrexone 

inhibited PI3K/AKT/mTOR pathway and thus 

suppressed the proliferation of cervical cancer cells 

[32]. Tanespimycin acted as an antineoplastic drug 

through targeting HSP90 [33]. Wortmannin was a DNA 

repair inhibitor and could delay the production of 

cisplatin resistance [34] in ovarian cancer. Here, we 

listed some potential compounds targeting ITH, which 

might help develop some new therapeutic plans.  

 

The shortcomings of the present study should not be 

neglected. First, although the prognostic value of HRS 

was validated in 785 BCa cases from three different 

cohorts, a prospective, large-scale, and multi-center 

clinical trait would help revalidate the clinical 

 

 
 

Figure 9. The candidate compounds targeting HRS. (A) The volcano plot displayed the DEGs between low-HRS and high-HRS 
cases. (B–I) Seven compounds, including cephaeline (C), LY-294002 (D), lycorine (E), naltrexone (F), nefopam (G), tanespimycin (H), and 
wortmannin (I), were identified.  
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usefulness. Second, several biological pathways and 

candidate compounds were found to be linked to HRS, 

which needed to be further experimental validated. 

 

In a word, we developed a novel ITH-related signature to 

predict the prognosis of BCa based on scRNA-seq, and 

validated the robustness in large cohorts, which provided 

a promising tool for clinicians and identified novel 

biomarkers to disclose the underlying mechanisms.  

 

MATERIALS AND METHODS 
 

Transcriptome data acquisition 

 

The RNA-seq data of 427 samples, containing 19 

paracancerous and 408 BCa samples, were downloaded 

from the TCGA website (https://portal.gdc.cancer.gov/), 

along with the following-up and clinicopathological 

information. The external validation datasets, which 

included GSE13507 and GSE32894, were obtained on 

the GEO database (https://www.ncbi.nlm.nih.gov/geo/), 

and their expression matrices were directly downloaded. 

After excluding the cases with the following-up less 

than 30 days, a sum of 785 cases, including 396 cases 

from TCGA, 165 patients from GSE13507 and 224 

individuals from GSE32894, were enrolled in this 

study. 

 

ITH evaluation and TMB calculation 

 

Here, we utilized a reported method, known as the 

MATH algorithm, to infer the degree of ITH [13, 35]. 

After obtaining the maf files in the TCGA-BLCA 

dataset with the TCGAmutations R package, we 

estimated the MATH value of each individual using the 

maftools package, which was also implemented to 

calculate the TMB based on the masked somatic 

mutation data downloaded from TCGA.  

 

Profiling of scRNA-seq 
 

Compared with the DEGs screened from bulk-seq 

data, those extracted based on scRNA-seq data might 

be able to reflect the ITH with higher efficacy. Here, 

we downloaded the expression matrix of 2075 cells 

isolated from a patient with primary BCa from GEO 

database [15]. To make sure the DEGs were all 

obtained from human, we discarded two other samples 

in the raw dataset obtained from mice. Seurat package 

was used to filter the cells with poor quality, where the 

detected gene, cell, and mitochondria gene counts 

were also calculated. The cells with less than 200 

genes detected and more than 5% of mitochondria 

gene proportion would be excluded. Based on the Top 

1500 variable genes across all cell samples, PCA and 

t-SNE were then performed to classify the cell 

samples, and the marker genes were screened with 

|logFC| > 0.5 and adjusted p < 0.05 filtering. We 

annotated the cell categories based on the marker 

genes with CellMarker [36] (http://biocc. 

hrbmu.edu.cn/CellMarker/) and CancerSEA [37] 

(http://biocc.hrbmu.edu.cn/CancerSEA/) databases. 

Pseudotime analysis was conducted with the monocle 

package of R. 

 

Survival analysis 
 

Lasso-Cox regression with 10-fold cross-validation and 

multivariate Cox analysis with stepwise were performed 

via glmnet and survival packages, respectively. The 

nomogram and calibration plots were drawn with rms 

package. Kaplan-Meier survival analysis with log-rank 

test was carried out with survival R package, where the 

optimal cut-off value was determined by X-tile [16]. 

SurvivalROC package helped to conduct the time-

dependent ROC analysis.  

 

Gene-pair strategy 

 

To ensure the risk model could suit the BCa samples 

tested by whatever technical means, a gene-pair strategy 

was adopted, where there was no need for concrete gene 

expression values [38]. If the mRNA expression value 

of gene A is higher than that of gene B, A plus B, or 

“A|B”, is defined as 0; otherwise, it will be regarded 

as 1. All genes will be cyclically paired, and a 0-or-1 

matrix will be successfully constructed. Besides, if 0 or 

1 accounts for less than 20% of the gene pairs, this pair 

would be considered to be meaningless and excluded 

from the present study. 

 

Evaluation of immune infiltration 
 

To estimate the proportion of immune and stromal 

components in TME, we implemented the ESTIMATE 

algorithm [14], which has been widely utilized in many 

different tumors, including BCa [39]. Besides, the 

CIBERSORT algorithm was also used for the evaluation 

of the infiltration level of 22 immune cells [17]. 

 

Chemotherapeutic sensitivity estimation 
 

The half inhibitory centration (IC50) of the common 

chemotherapeutic drugs, like cisplatin, doxorubicin, 

gemcitabine, methotrexate, and vinblastine, were 

evaluated with the pRRophetic package on the basis of 

the transcriptome RNA-seq data.  

 

Functional enrichment analysis 
 

GO and KEGG enrichment was performed through the 

clusterProfiler package. GSVA was conducted via 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CancerSEA/
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GSVA package, and limma package was used for the 

HRS-related pathways screening under |logFC| > 0.05 

and adjusted p < 0.05 threshold. GSEA software 

(version 4.1.0) was downloaded from GSEA’s official 

website (https://www.gsea-msigdb.org/gsea/), and Nom 

p < 0.05 and FDR q < 0.25 were set as the filtering 

criteria. The hallmark gene signature (version 7.2), 

downloaded from the Molecular Signatures Database 

(MSigDB), was chosen as the reference gene set.  

 

Identification of novel candidate compounds 
 

Based on the transcriptome expression data of 396 cases 

from TCGA, the DEGs extracted between high-HRS 

and low-HRS groups were screened via limma package. 

The genes with |logFC| > 0.5 and adjusted p < 0.05 were 

considered to be significant. Subsequently, the gene 

symbols of the DEGs were all transformed into 

Affymetrix probe ID, which would be uploaded to the 

CMap website (https://portals.broadinstitute.org/cmap/). 

The predicted compounds with p < 0.001 would be 

considered meaningful, and the analysis results were 

visualized by the ggplot2 package. The 3D structures of 

the compounds were obtained from the PubChem 

database (https://pubchem.ncbi.nlm.nih.gov/).  

 

Cell culture and real-time quantitative PCR 
 

T24 and SV-HUC-1 cell lines were purchased from the 

Chinese Academy of Sciences Shanghai Cell Bank, and 

cultured in McCoy’s 5A modified medium (Gibco, USA) 

and F12K medium (Gibco, USA), respectively. 1% 

antibiotic and 10% fetal bovine serum (FBS, Gibco, USA) 

were added to the medium. The cells were maintained in a 

humidified atmosphere with 5% CO2 at 37°C.  

 

According to the manufacturer’s protocol, the total 

RNA of these cells was extracted with Trizol 

(ThermoFisher Scientific, Germany). First-strand cDNA 

was synthesized with PrimeScript RT Reagent Kit 

(Takara, China) and amplified by SYBR Premix ExTaq 

kit (Takara, China). The mRNA expression values were 

detected via ABI Prism 7000 (Applied Biosystems, 

USA). GAPDH was chosen as an internal reference, and 

2
−ΔΔC

 was utilized to calculate the gene expression 

values. Student’s t test was used to detect the expression 

difference. All the primers were obtained from 

PrimerBank (https://pga.mgh.harvard.edu/primerbank/) 

and shown in Supplementary Table 12. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The Top 4 components and the correlated genes in PCA analysis. (A) The Top related genes to each 
principal component. (B) The heatmap indicating the expression level of the Top related genes. The colors ranging from purple to yellow 
represented the expression values from low to high.  
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Supplementary Figure 2. The Kaplan-Meier survival stratification analysis in TCGA-BLCA cohorts. (A) Age > 64 years. (B) Age ≤ 64 
years. (C) Female. (D) Male. (E) Pathological stage I and II. (F) Pathological stage III and IV. (G) Pathological T0-2. (H) Pathological T3 and 4. (I) 
Pathological N0 and 1. (J) Pathological N2 and 3. (K) M0. (L) M1.  



 

www.aging-us.com 19434 AGING 

 
 

Supplementary Figure 3. The expression level of 13 genes comprising HRS in paracancerous and BCa tissues in TCGA (A), GSE13507 (B), and 
GSE32894 (C) cohorts. *p < 0.05; **p < 0.01; ***p < 0.001.  
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Supplementary Figure 4. Kaplan-Meier survival analysis of the 13 genes in TCGA (A) and GSE13507 (B) datasets. The optimal cut-off was 
determined through X-tile. 
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Supplementary Figure 5. Kaplan-Meier survival analysis of the 13 genes in GSE32894 cohort. X-tile was used for detecting the 
optimal cut-off value. 
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Supplementary Figure 6. The expression values of the 13 HRS genes, including ANLN (A), APH1A (B), CDCA8 (C), GPSM3 (D), IFI27L2 (E), 
KDELR3 (F), KIFC1 (G), KPNA2 (H), MKI67 (I), PHGDH (J), RFC4 (K), RHEB (L), and RPA3 (M), in T24 cells and SV-HUC-1 cells via RT-qPCR 
detection. 

*
p < 0.05; 

**
p < 0.01; 

***
p < 0.001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4, 6–8, and 14–17. 

 

Supplementary Table 1. The evaluated MATH value of each individual from TCGA-BLCA cohort. 

Supplementary Table 2. 2075 cell samples were classified into 14 clusters. 

Supplementary Table 3. The screened cell markers of 14 cell clusters. 

Supplementary Table 4. The spearman correlation coefficients of 2940 cell markers to MATH values.  

Supplementary Table 5. The details of the established model constructed via multivariate Cox regression.  

Id coef HR HR.95L HR.95H p value 

KDELR3_RFC4 0.59906044 1.820407615 1.284993084 2.578911845 0.000749008 

GPSM3_IFI27L2 –0.437820457 0.645441657 0.452983804 0.919668494 0.015371371 

ANLN_MKI67 0.374716571 1.454579086 1.0085688 2.097824479 0.0448955 

ANLN_CDCA8 0.589653534 1.803363503 1.199952669 2.710206833 0.004554417 

ANLN_KIFC1 0.343999231 1.410577551 0.946384138 2.102453906 0.091154079 

KPNA2_APH1A 0.501950219 1.651939776 1.164418355 2.343577815 0.004907379 

RPA3_PHGDH –0.623979584 0.535807896 0.324557473 0.884558593 0.01470563 

RHEB_PHGDH –0.41459758 0.660606069 0.464862245 0.938773546 0.020758688 

Supplementary Table 6. The HRS and risk grouping of the cases from TCGA-BLCA cohort. 

Supplementary Table 7. The HRS and risk grouping of the patients from GSE13507 cohort. 

Supplementary Table 8. The HRS and risk grouping of the patients from GSE32894 cohort. 

Supplementary Table 9. The p values of the 13 genes to OS via Kaplan-Meier survival analysis with log-rank test 
in TCGA cohort.  

Gene p value 

KDELR3 0.0089878 

GPSM3 0.0552757 

ANLN 0.0009752 

KPNA2 0.000127 

RPA3 0.1100399 

RHEB 0.3161838 

RFC4 0.3074479 

IFI27L2 0.1198286 

MKI67 0.1708345 

CDCA8 0.2304972 

KIFC1 0.5828702 

APH1A 0.0906864 

PHGDH 0.0002743 
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Supplementary Table 10. The p values of the 13 genes to OS via Kaplan-Meier survival analysis with log-rank 
test in GSE13507 cohort. 

Gene p value 

KDELR3 0.0058833 

GPSM3 0.0062059 

ANLN 0.0008713 

KPNA2 0.1358367 

RPA3 0.0288977 

RHEB 0.1812605 

RFC4 0.0043104 

MKI67 0.0005092 

CDCA8 0.0003619 

KIFC1 0.0009507 

APH1A 0.1464289 

PHGDH 0.0050507 

IFI27L2 0.0824967 

 

Supplementary Table 11. The p values of the 13 genes to OS via Kaplan-Meier survival analysis with log-rank 
test in GSE32894 cohort. 

Gene p value 

KDELR3 0.000973 

GPSM3 0.035384 

ANLN 1.58E-05 

KPNA2 0.00709 

RPA3 0.000375 

RHEB 0.331377 

RFC4 0.002442 

MKI67 9.06E-05 

CDCA8 4.09E-05 

KIFC1 2.52E-05 

APH1A 0.011216 

PHGDH 0.000521 

IFI27L2 0.028095 

 

Supplementary Table 12. The primers utilized in present study. 

Id Forward primer (5′ –> 3′) Reverse primer (5′ –> 3′) 

KDELR3 TCCCAGTCATTGGCCTTTCC CCAGTTAGCCAGGTAGAGTGC 

GPSM3 AGGAGTTTTTCCCAGTCTCAGT  TTCTCTTCCCACCCAAACAGC 

ANLN TGCCAGGCGAGAGAATCTTC CGCTTAGCATGAGTCATAGACCT  

KPNA2 CTGCCCGTCTTCACAGATTCA GCGGAGAAGTAGCATCATCAGG  

RPA3 AGCTCAATTCATCGACAAGCC TCTTCATCAAGGGGTTCCATCA 

RHEB TTGTGGACTCCTACGATCCAA  GGCTGTGTCTACAAGTTGAAGAT  

RFC4 CCGCTGACCAAGGATCGAG AGGGAACGGGTTTGGCTTTC  

IFI27L2 CCACATCATCCAACATCCTCC TCATCTTCTTTAGCCTCGGGTT  
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MKI67 ACGCCTGGTTACTATCAAAAGG CAGACCCATTTACTTGTGTTGGA  

CDCA8 GAAGGGCAGTAGTCGGGTG  TCACGGTCGAAGTCTTTCAGA 

KIFC1 GGTGCAACGACCAAAATTACC  GGGTCCTGTCTTCTTGGAAAC 

APH1A TTTTTCGGCTGCACTTTCGTC  TGCGACCAGGATGATAACGC  

PHGDH CTGCGGAAAGTGCTCATCAGT TGGCAGAGCGAACAATAAGGC  

Supplementary Table 13. The results of GSVA analysis. 

Id logFC AveExpr t p value 
adj. 

P. Val 
B 

HALLMARK_MTORC1_SIGNALING 0.091526202 −0.04214319 4.418777 1.28E-05 0.0006389 2.8557429 

HALLMARK_OXIDATIVE_PHOSPHORYLATION −0.102512372 −0.04601685 –4.206509 3.20E-05 0.0015677 2.0000334 

HALLMARK_MITOTIC_SPINDLE 0.090202864 −0.04325266 4.1063592 4.87E-05 0.0023374 1.6096638 

HALLMARK_DNA_REPAIR −0.0680874 −0.04970153 –3.971025 8.48E-05 0.0039839 1.0958871 

HALLMARK_PEROXISOME −0.059440425 −0.03764865 –3.824692 0.0001517 0.006978 0.5582572 

HALLMARK_G2M_CHECKPOINT 0.12383884 −0.02058956 3.6655883 0.0002798 0.012592 −0.005001 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 0.136256246 −0.01514403 3.5184996 0.0004835 0.0212741 −0.50582 

HALLMARK_E2F_TARGETS 0.11558866 −0.01157635 3.0847107 0.002178 0.0936557 −1.869989 

HALLMARK_FATTY_ACID_METABOLISM −0.045102033 −0.04568334 –2.986091 0.0029983 0.1259277 −2.156347 

HALLMARK_PROTEIN_SECRETION 0.068457724 −0.03805288 2.9706073 0.0031502 0.129157 −2.200499 

HALLMARK_ANGIOGENESIS 0.092499901 −0.025644 2.918166 0.0037184 0.1487362 −2.348405 

HALLMARK_ANDROGEN_RESPONSE 0.054163091 −0.04380175 2.8860864 0.0041106 0.1603138 −2.437639 

HALLMARK_HYPOXIA 0.057318158 −0.0384402 2.8665723 0.0043673 0.165956 −2.491458 

HALLMARK_BILE_ACID_METABOLISM −0.043584756 −0.04440084 –2.837239 0.0047806 0.1768806 −2.571699 

HALLMARK_ADIPOGENESIS −0.038230578 −0.04633641 –2.596801 0.0097542 0.3511514 −3.199459 

HALLMARK_UV_RESPONSE_DN 0.057263757 −0.04566087 2.5444044 0.011319 0.3961639 −3.329144 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.043122271 −0.04807679 2.476172 0.0136901 0.465464 −3.494188 

HALLMARK_SPERMATOGENESIS 0.035904577 −0.02105281 2.4301759 0.0155276 0.5124106 −3.602991 

HALLMARK_TGF_BETA_SIGNALING 0.055378448 −0.04224624 2.3295063 0.020326 0.6504325 −3.834211 

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY −0.04290982 −0.05314658 –2.27996 0.0231323 0.7170998 −3.944516 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.070965528 −0.03196946 2.2615103 0.0242604 0.7278121 −3.985 

HALLMARK_COAGULATION 0.056094838 −0.01821846 2.2064716 0.0279148 0.8095302 −4.103868 

HALLMARK_HEDGEHOG_SIGNALING 0.052376405 −0.04787308 2.205812 0.0279614 0.8095302 −4.105275 

HALLMARK_GLYCOLYSIS 0.0313427 −0.04681433 2.161573 0.0312398 0.8434745 −4.198719 

HALLMARK_INFLAMMATORY_RESPONSE 0.069240648 −0.02762496 2.0932041 0.0369561 0.9608593 −4.339494 

HALLMARK_MYC_TARGETS_V1 0.05896169 −0.03787073 2.0074322 0.0453714 1 −4.509842 

HALLMARK_APICAL_JUNCTION 0.043373326 −0.04002215 2.006346 0.0454876 1 −4.511954 

HALLMARK_XENOBIOTIC_METABOLISM −0.027357847 −0.03182934 –1.875082 0.061505 1 −4.758987 

HALLMARK_COMPLEMENT 0.043843668 −0.03093177 1.6110832 0.1079452 1 −5.206029 

HALLMARK_KRAS_SIGNALING_UP 0.039222297 −0.03820804 1.5973272 0.1109772 1 −5.227493 

HALLMARK_MYC_TARGETS_V2 0.047231895 −0.03622899 1.4396179 0.1507525 1 −5.460575 

HALLMARK_IL6_JAK_STAT3_SIGNALING 0.044389386 −0.02740203 1.35617 0.1758051 1 −5.574214 

HALLMARK_APOPTOSIS 0.022787978 −0.03955432 1.1226794 0.2622427 1 −5.856423 

HALLMARK_NOTCH_SIGNALING −0.020422791 −0.04917705 –1.120955 0.2629753 1 −5.858312 

HALLMARK_IL2_STAT5_SIGNALING 0.025344043 −0.04030152 1.0703473 0.2851042 1 −5.912431 

HALLMARK_UV_RESPONSE_UP −0.012238878 −0.04667981 –0.906738 0.3650877 1 −6.070377 

HALLMARK_P53_PATHWAY −0.012958715 −0.04582705 –0.739255 0.460183 1 −6.205088 
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HALLMARK_PANCREAS_BETA_CELLS 0.011969347 0.002796107 0.607188 0.5440684 1 −6.292031 

HALLMARK_HEME_METABOLISM 0.0066419 −0.04233163 0.5188347 0.604161 1 −6.340692 

HALLMARK_ALLOGRAFT_REJECTION 0.013818118 −0.02391175 0.3724455 0.7097571 1 −6.404527 

HALLMARK_KRAS_SIGNALING_DN −0.005060721 −0.0324103 –0.366763 0.7139888 1 −6.406582 

HALLMARK_INTERFERON_GAMMA_RESPONSE 0.01207391 −0.02766363 0.3239049 0.7461782 1 −6.421068 

HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.005372206 −0.04847371 0.3000273 0.7643112 1 −6.428358 

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.003545514 −0.04628076 0.2088272 0.8346888 1 −6.451071 

HALLMARK_INTERFERON_ALPHA_RESPONSE −0.007399147 −0.02553256 –0.18075 0.8566546 1 −6.456425 

HALLMARK_APICAL_SURFACE 0.003052593 −0.04552941 0.161198 0.8720183 1 −6.459698 

HALLMARK_ESTROGEN_RESPONSE_LATE −0.002251102 −0.04602582 –0.1469 0.8832846 1 −6.461854 

HALLMARK_MYOGENESIS 0.002295383 −0.03740793 0.0912882 0.927309 1 −6.468338 

HALLMARK_WNT_BETA_CATENIN_SIGNALING 0.001386947 −0.05009891 0.0732182 0.9416688 1 −6.469793 

HALLMARK_PI3K_AKT_MTOR_SIGNALING 0.000522011 −0.04980514 0.0321418 0.9743749 1 −6.471911 

 

Supplementary Table 14. The results of GSEA analysis for the cases with high-HRS in TCGA-BLCA dataset. 

Supplementary Table 15. The results of GSEA analysis for the cases with low-HRS in TCGA-BLCA dataset. 

Supplementary Table 16. The differentially-expressed genes between high-HRS and low-HRS groups through 
limma. 

Supplementary Table 17. The potential compounds targeting HRS via Connectivity Map analysis.  

 


