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INTRODUCTION 
 

Periodontitis, which is a chronic multifactorial 

inflammatory disease related to microbial dysfunction,  

is characterized by the progressive destruction of 

periodontal tissues. It is a worldwide public health 

problem and has a measurable impact on overall health  

of patients [1]. It is widely believed that the occurrence 

and development of periodontitis depends on the 

presence of toxic microorganisms, which are capable of 

causing periodontitis. Although bacteria are initiator of 
periodontitis, and response of host to pathogenic 

infections plays a critical role in the progression of 

periodontitis [2, 3]. After the onset of periodontitis, 

periodontitis will progress rapidly with the loss of 

collagen fibers and attachment to cementum surface, 

migration of the apex of connective epithelium, deepening 

of periodontal pockets, and absorption of alveolar bone 

[4]. If not treated in time, periodontitis will continue to 

develop, leading to bone destruction, tooth movement 

and subsequent tooth loss. In the United States, more 

than half of adults have periodontal disease, and about 10 

% have severe periodontal disease and early tooth loss. 

Traditional periodontal diagnostic parameters include, for 

example, bleeding detection, clinical attachment degree, 
plaque index, and x-ray film to assess alveolar bone level 

[5], which have the advantages of easy-to-use, cost-

effectiveness, and less invasiveness. Clinical reading of 
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tooth attachment with periodontal probes and radiological 

assessments of alveolar bone loss is used to evaluate the 

extent of damage from past destructive events, and this 

requires a 2-3 mm threshold change to determine whether 

a site underwent a significant anatomic event [6]. 

Therefore, effective molecular diagnostic approach, 

medical care, and periodontal management are essential 

to reducing adverse outcomes of periodontitis. 

 

DNA methylation is a heritable epigenetic modification 

of cells to control gene expression without changing gene 

sequence [7, 8–11]. With the flexibility of epigenomic 

modifications, methylation events can respond to 

nutritional and environmental influences and regulate 

gene expression patterns accordingly [12, 13], and may 

also serve as potential biomarkers for early cell 

transformation [14]. A growing number of articles have 

focused specifically on epigenetic changes in DNA, 

highlighting the importance of "epigenetic phenotypes" 

in many diseases. Methylation is defined as enrichment 

in the area of CpG island (CGI), representing an area of 

at least 200 bp, where the ratio of guanine to cytosine is 

greater than 50%, and CpG ratio is greater than 0.6 [15]. 

CGIs mainly focuses on gene promoters and is the first 

candidate for the study of gene expression methylation 

[16]. Evidence of methylation in affecting gene 

expression, especially in cancers, has been found. Serum 

DNA methylation is used as a biomarker for early 

detection of cancer [17–20]. DNA methylation of specific 

genes (SEPT9, RASSF1A, APC, GADD45a) has been 

proposed as a diagnostic and prognostic biomarker for 

colorectal cancer [21–23] and breast cancer [24].  
 

In this study, abnormal expression of methyltransferase 

in periodontitis patients was observed, pointing to 

different methylation patterns in periodontitis patients. 

Simultaneous activation of multiple immunomodulation-

related pathways at the transcriptional level indicated  

that these abnormal methylation patterns may be related 

to the dysregulation of immune pathways. The purpose  

of this study was to integrate high-throughput 

methylation profile and expression profile data of a large 

number of patients, so as to study the altered DNA 

methylation pattern, especially the promoter methylation 

of inflammation-related genes, between periodontitis 

patients and healthy people. This study aimed to identify 

specific DNA methylation sites as potential biomarkers 

and to establish a diagnostic classifier for periodontitis. 

 

RESULTS 
 

The translational disorders in the periodontitis were 

related to immunity and epigenetic inheritance 
 

A total of 18 disordered KEGG pathways were  

identified by GSEA analysis on abnormal KEGG pathway 

in periodontitis samples (Supplementary Table 1). 

Noticeably, these 18 pathways were activated in 

periodontitis, many of them were related to immune 

regulation-related pathways (Figure 1A), indicating that 

the abnormal expression of immune-related genes played 

an important role in the regulation of periodontitis. The 

expression distribution of methyltransferase-related genes 

was further analyzed, and it was observed that EZH2, 

DNMT1 and DNMT3B were significantly upregulated in 

normal samples (Figure 1B, 1C, 1E), whereas that of 

DNMT3A was sharply downregulated (Figure 1D), 

indicating that histone methylation and DNA methylation 

were abnormal in periodontitis. Gene correlation analysis 

demonstrated that EZH2 gene was highly positively 

correlated with DNMT1 and DNMT3N in periodontitis 

samples (FDR<0.01) (Supplementary Figure 1). These 

results indicated that apart from the important functions of 

DNA methylation in the progression of periodontitis, the 

co-expression relationship between EZH2 and DNMT 

was related to histone methylation and DNA methylation 

in periodontitis. 

 

Identification of DMPs between periodontitis and 

healthy control samples 

 

Considering that periodontitis transcriptional dys-

regulation is related to immunity and epigenetics, we 

analyzed the difference in methylation between normal 

people and patients with periodontitis, and identified a 

total of 8029 different CpG sites using Limma 

(Supplementary Figure 2). By annotating these CpG 

sites to genes, a total of 4940 genes were obtained, of 

which 275 were determined to be immune-related  

genes (Figure 2A). Methylation distribution of 275 

immune gene promoter differential CpG sites in 

periodontitis and normal samples showed that most of 

these genes were downregulated, which was consistent 

with the downregulation of methyltransferase at 

transcription level (Figure 2B). 275 immune genes were 

mainly distributed in the process of Antimicrobials, 

Cytokines (Figure 2C), which were consistent with 

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 

pathways in the transcription activation, suggesting that 

hypomethylation of promoters of immune-related genes 

upregulated the expression of immune genes and 

activated immune-related pathways. 

 

Weighted co-expression analysis identified immune-

related co-expression of DMPs 

 

To further screen immune-related co-DMPs, the 

methylation profiles of 275 immune-related genes at the 

promoter difference CpG sites were selected, and the 
co-expression network was constructed using WGCNA. 

The power of n = 20 (scale-free R^2 = 0.87) was  

the soft threshold to ensure the scale-free network 



 

www.aging-us.com 19680 AGING 

(Figure 3A, 3B). A total of 2 modules were identified 

here (Figure 3C). We first calculated the spearman 

correlation coefficient between CpG site methylation 

and the occurrence of periodontitis in each module,  

both modules were found to have a high correlation 

with periodontitis, and most of the CpGs in the blue 

module showed a higher correlation with periodontitis 

(Figure 3D). Furthermore, the correlation coefficient 

between the eigenvectors of each module and the CpG 

methylation in the corresponding module was analyzed, 

and we found that CpGs in blue and turquoise modules 

were highly correlated with the corresponding feature 

vectors (Figure 3E). Based on these two methods, we 

selected CpG loci with higher correlation with the 

module than the median of the turquoise module and 

higher correlation with the periodontitis than the median 

of the blue module, and finally 23 CpG loci were 

obtained. 

 

 
 

Figure 1. The translational disorders in the periodontitis were related to immunity and epigenetic inheritance. (A) 
Differences between four immune-related pathways significantly enriched by GSEA in periodontitis and normal samples. (B) Expression 
of EZH2 in periodontitis and normal samples. (C) Expression of DNMT1 in periodontitis and normal samples. (D) Expression of DNMT3A 
in periodontitis and normal samples. (E) Expression of DNMT3B in periodontitis and normal samples. *p<0.05, **p<0.01, ***p<0.001 and 
****p<0.0001. 
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Figure 2. The relationship between different methylation sites and immune genes. (A) Venn diagram of promoter methylation 

differential gene and immune gene. (B) Heat map of methylation sites of immune gene promoters. The horizontal axis is the sample, the 
vertical axis is the CpGs, and the color is the methylation level. (C) Distribution of immune pathways of differentially promoter methylated 
immune genes. 
 

 
 

Figure 3. Weighted co-expression analysis identified immune-related co-expression of DMPs. (A) Analysis of the scale-free fit 

index for various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers. (C) Dendrogram of 
all differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (D) The correlation distribution of CpG site methylation 
in the module and periodontitis. (E) The correlation distribution of CpG site methylation in the module and module. 
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Screening of genomic characteristics of immune-

related co-DMPs 

 

To further screen immune gene-related CpG markers, 

the distribution of 23 CpG sites differentially co-

expressed in the patients and healthy groups was 

analyzed (Figure 4A). As expected, these CpG sites 

were significantly hypomethylated in periodontitis. 23 

genes were annotated to the promoter regions of 20 

immune genes, and we observed significant differential 

expression in 15 genes (79%), 13 of them were 

noticeably overexpressed in the samples of patients with 

periodontitis (Figure 4B). Furthermore, according to the 

methylation level of these 23 CpG sites in the samples, 

those below 0.2 were defined as unmethylated, while 

those above 0.8 were defined as hypermethylated, and 

the distribution of hypermethylated and unmethylated 

CpG sites in each sample was analyzed (Figure 4C). We 

observed that 13 CPGs (cg01930477, cg02786267, 

cg03732055, cg04774620, cg09443479, cg10836855, 

cg14662728, cg16386158, cg17907057, cg19301273, 

cg19503731, cg24116886, cg26594503) were generally 

hypermethylated in the healthy group, and some of 

them were methylated in the majority of patients. The 

13 CpG sites was mainly distributed in the upstream of 

the transcription starting site between 200-1300bp 

(Figure 4D). 

 

Construction and testing of diagnostic model 

 

In training dataset GSE59932 (N=22, Inflammation=10, 

Normal=12), to examine the effect of different com-

binations of diagnostic markers on diagnostic 

efficiency, all 8178 combinations of 13 Co-DMPs were 

calculated, and these combinations were used to 

construct a support vector machine classification model 

to analyze the prediction accuracy distribution of each 

combination. The results showed that all have a high 

prediction accuracy rate, with an average accuracy rate 

of 90% or higher (Figure 5A). The final 5 CpGs 

combinations (cg10836855, cg14662728, cg19301273, 

cg19503731, cg26594503) were determined by stepwise 

regression and were used to construct the classification 

model with support vector machine, and the model test 

was conducted by the ten-fold cross validation method. 

The results demonstrated that the classification accuracy 

was 95.5%, as 21 out of 22 samples were correctly 

classified, and that the sensitivity and specificity of the 

model were 90% and 100%, respectively (Figure 5B), 

area under the ROC curve (AUC) was 0.95 (Figure 5C). 

 

 
 

Figure 4. Genomic characteristics of immune-related co-DMPs. (A) The methylation distribution of 23 co-DMPs in patients and 

healthy groups. (B) The 20 immune genes annotated by 23 co-DMPs were differentially expressed in patients and healthy groups.  
(C) Hypermethylated and unmethylated distributions of 23 co-DMPs in each sample. (D) Distribution of 13 potential disease-specific markers 
in the promoter region. 
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Figure 5. Establishment of diagnostic model. (A) The accuracy of different combinations of co-DMPs in periodontitis prediction. (B) The 

classification of samples in the training data set by the diagnostic model. (C) The ROC curve of the diagnostic model in the training data set. 
(D) The classification of samples in the validation data set by the diagnostic model. (E) The ROC curve of the diagnostic model in the validation 
data set. 
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Furthermore, the established model was applied to 

predict the samples in the validation data set 

(GSE59939, (N=20, Inflammation=9, Normal=11)) to 

determine the prediction performance of the model. 16 

out of the 20 samples were correctly classified, with an 

accuracy of 80%. The sensitivity and specificity of the 

model were 77.8% and 81.8%, respectively (Figure 

5D), and area under the ROC curve (AUC) was 0.8 

(Figure 5E). These results indicated that the established 

diagnostic prediction model could effectively 

distinguish the patients with periodontitis from the 

normal control. 

 

Validation of the diagnostic model 

 

A set of independent data set GSE53849 containing 23 

samples was selected, and the methylation matrix of 5 

CpG was extracted. Here, 8 out of 11 normal samples 

were predicted as normal, and 10 out of the 12 patients 

were predicted as periodontitis samples, showing an 

accuracy rate of 82% (Figure 6A), and area under the 

ROC curve (AUC) of 0.78 (Figure 6B). In general, the 

prediction performance of the model was high across 

the data platform. To analyze the model and immune 

genetic relationship, 5 CpG loci were annotated to the 5 

immune genes (MSR1, NRG1, PMP2, AKT3, ERAP2). 

The expression profiles of these 5 genes were extracted 

from the dataset GSE10334. We observed the 

expression of the 5 genes was significantly higher in 

patients with periodontitis than healthy controls (Figure 

6C). Considering the small number of validation 

samples, we supplemented and combined two sets of 

validation data sets (GSE59939 and GSE53849) to 

form a larger data set incorporating 43 samples in total. 

Based on this data set, we verified the CpG methylation 

model again, and found that 20 out of the 22 normal 

samples were predicted as normal, and that 20 out of 21 

patients were predicted as periodontitis patients, 

showing an accuracy of 93% and the area under the 

ROC curve of 0.93 (Figure 6D, 6E). Furthermore, the 

expression profiles of these 5 genes were used to 

establish a diagnostic model with support vector 

machine for prediction. Among them, 27 out of 64 

normal patients were predicted as normal samples, and 

177 out of 183 patients were predicted as periodontitis 

patients, showing an accuracy rate of 82.6% (Figure 

6F) and area under the ROC curve (AUC) of  

0.69 (Figure 6G). The above results indicated a high 

consistency between transcription level and 

methylation level. 

 

DISCUSSION 
 

Periodontal disease is caused by bacteria at the tooth 

biofilm. To eliminate bacteria, immune system cells 

release substances that may cause inflammation and 

damage the gums, periodontal ligament, or alveolar  

bone, thereby causing swelling and bleeding of the  

gums, which is a sign of gingivitis. Damage from 

periodontal disease may also lead to tooth relaxation  

[25]. In this study, differences in gene expression 

between periodontitis patients and healthy control 

samples were compared. We found that there were 

various immune pathway disorders,  such as PRIMARY_ 

IMMUNODEFICIENCY, AUTOIMMUNE_THYROID 

_DISEASE, B_CELL_RECEPTOR_SIGNALING_ 

PATHWAY, etc., in periodontitis patients. This again 

proved that the inflammation-related pathway was more 

active in periodontitis [26]. Interestingly, we also  

found that the TYPE_II_DIABETES_MELLITUS 

pathway was significantly activated in patients  

with periodontitis, showing a certain relationship 

between periodontitis patients and diabetes, and that 

periodontitis may affect diabetes and diabetes-related 

complications [27]. Furthermore, by analyzing the 

expression characteristics of methyltransferase-related 

genes such as EZH2 and DNMT, we found that these 

genes were significantly altered in periodontitis 

patients, and that EZH2 was highly positively correlated 

with DNMT1 and DNMT3N, indicating that both DNA 

methylation and histone methylation may play an 

important role in periodontitis patients [28, 29]. In 

addition, we preliminarily evaluated methyltransferase 

molecule EZH2 in periodontitis, and examined its role 

in PDLSCs, PDLSCs+LPS, PDLSCs+LPS+GSK126. 

RT-pPCR data showed a lower expression of EZH2 in 

inflammatory cells, which was consistent with the results 

of our data analysis and was also confirmed by Western 

Blot. 

 

DNA methylation is an important epigenetic 

modification that suppresses gene transcription by 

inhibiting the binding of specific transcription factors 

[30]. New evidence showed that epigenetics plays a key 

role in human pathology, including in inflammation and 

cancer development. Epigenome is influenced by 

environmental factors throughout life. Nutritional 

factors have profound effects on the expression of 

specific genes through epigenetic modifications and 

may be passed on to offspring. Many cancers are 

associated with epigenetic changes, which will lead to 

changes in the expression of genes involved in cell 

growth or differentiation. The incidence of autoimmune 

diseases and tumors increases with age, and epigenetic 

disorders are considered as a potential explanation for 

differences in CpG methylation status, single allele 

silencing, and other epigenetic regulatory mechanisms 

observed in key inflammatory response genes [31]. In 

this study, CpGs of 8,029 differentially promoter 
regions were screened, and 4,940 genes were annotated, 

among which, immune genes showed stronger promoter 

methylation differences than random ones, indicating 
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Figure 6. Validation of the diagnostic model. (A) The classification of samples in the GSE53849 data set by the diagnostic model. (B) The 

ROC curve of the diagnostic model in the GSE53849 data set. (C) Heat map of the expression distribution of 5 immune genes annotated by 5 
CpG in disease and normal samples. (D) The classification of samples in the combined validation data sets (GSE59939 and GSE53849) by the 
diagnostic model. (E) The ROC curve of the diagnostic model in the combined validation data sets (GSE59939 and GSE53849) data set. (F) The 
classification result of the sample by the diagnostic model constructed by immune genes. (G) ROC curve of the diagnostic model constructed 
by immune genes. 
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that DNA methylation plays an important role in the 

transcriptional regulation of immune inflammatory 

genes in chronic periodontitis. 

 

In addition, if patients with periodontitis are left 

untreated, periodontitis can continue to develop, leading 

to bone destruction, tooth movement and subsequent 

tooth loss. Therefore, early diagnosis of periodontitis and 

personalized medical intervention are of great 

significance. Some studies have been conducted to screen 

biomarkers for periodontitis. JANET S. KINNEY et al. 

[32] determined that pyridinoline cross-linked carboxy-

terminal peptides can predict future disease activity from 

oral fluids. Giannobile WV screened gingival sulcus fluid 

for biomarkers indicative of bone loss [33]. Frodge BD et 

al. [34] identified a bone remodeling biomarker for 

periodontal disease from saliva. Yoon AJ et al. [35] 

assessed the association between diabetes and periodontal 

status and oral inflammatory burden, and identified 

inflammatory biomarkers in saliva. In this study, 5 CpGs 

were determined based on the differences in promoter 

methylation of immune-related genes, and the classifier 

was constructed and verified. The high accuracy of the 

classifier in the training set and the external data set 

indicated that these genes had a strong ability to classify 

periodontitis and were applicable to different data 

platforms. Despite reduced accuracy, different methods 

of data standardization and batch effect as well as 

environmental factors, different regions, races, diets and 

some other factors could also the accuracy of external 

dataset validation. Furthermore, we used the trans-

criptome data set and the 5 immune genes annotated by 

the 5 CpGs to build a diagnostic model, which showed an 

accuracy of periodontitis prediction of 82.6%. These 

results indicated that these 5 CpGs and 5 immune genes 

can be used as diagnostic markers for periodontitis, and 

provide targets and references for clinicians and 

biological experimentalists. 

 

The 5 CpGs were annotated to 5 immune genes 

including MSR1, NRG1, PMP2, AKT3, ERAP2. MSR1 

is an important marker of macrophages and its abnormal 

expression is associated with multiple diseases 

including Porphyromonas gingivalis [36–38]. NRG1, 

which controls the formation of excitatory and 

inhibitory synapses in cortical circuits, is a schizo-

phrenia risk gene [39], and is associated with multiple 

relapsing disorders. In addition, NRG1 plays an 

important role in parabens of fibroblasts and macro-

phages [40]. Overexpression of mutant PMP2 also leads 

to CMT1 phenotype [41], and aberrant AKT3 

expression helps form M2 macrophage specificity [42]. 

These genes are directly or indirectly associated with 
periodontal disease, and multiple gene expressions will 

increase the possibility of macrophage abnormalities, 

suggesting that aberrant methylation of these CpGs may 

be involved in the development and progression of 

periodontitis via macrophages. 

 

Although bioinformatics techniques were used to identify 

potential candidate genes involved in periodontitis in 

large samples, some limitations of this study should be 

noted. Firstly, the samples lacked clinical follow-up 

information, especially some diagnostic details, therefore 

we did not differentiate diagnostic biomarkers for 

periodontitis by taking into account factors such as the 

presence of other patient health conditions. Secondly, the 

results obtained by bioinformatics analysis alone were 

not convincing enough, and experimental verification is 

required to confirm the current results. Therefore, further 

genetic and experimental studies with larger sample sizes 

and experimental validation should be performed. 

 

By correlating the expression of inflammation-related 

genes and the methylation relationship of their promoter 

regions and combining with the co-expression network, 

this study identified and screened diagnostic markers 

for periodontitis. A diagnostic model for the prediction 

and prevention of periodontitis was established based 

on the pattern recognition of support vector machine 

(SVM). We determined the expression and methylation 

characteristics of epigenetic key genes in periodontitis, 

and found that these gene promoter methylation was 

closely related to the occurrence and development of 

periodontitis. Although our gene expression profile still 

lacks high specificity required for immediate diagnostic 

application, CpG methylation in oral samples could 

predict periodontitis with high accuracy (AUC = 0.95), 

providing a target and reference for clinicians and 

biological experimentalists. 

 

MATERIALS AND METHODS 
 

Data collection 

 

We screened three sets of gene methylation data and one 

set of gene expression data from the Gene Expression 

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/ 

geo/) [43]. The methylation data came from the 

GPL13534 platform (Illumina HumanMethylation450 

BeadChip). The gene expression profile data was from 

GPL570 platform (Affymetrix Human Genome U133 

Plus 2.0 Array) numbered GSE10334 [44]. The data set 

contained a total of 183 periodontitis patient samples and 

64 healthy control samples. The sample distribution of 

each data set is shown in Table 1. The work flow chart is 

shown in Figure 7. 

 

Methylation data processing 

 

The methylation β values of the standardized CpG 

sites were downloaded, and the missing values of CpG 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


 

www.aging-us.com 19687 AGING 

Table 1. Sample distribution of data set. 

GEO Accession  No. of Normal   No. of Periodontitis   

GSE59932 12 10 

GSE59939 11 9 

GSE53849 11 12 

GSE10334 64 183 

 

sites greater than 20% in each sample were removed. 

The missing value completion was performed using 

the R package impute [45]. Probes binding to sex 

chromosomes, cross-hybridizing to multiple locations, 

or targeting a single-nucleotide polymorphism (SNP) 

were removed, according to previous annotation [46, 

47]. By referring to the processing method of Zhang et 

al. [48], the methylation site of the non-promoter 

region was further removed, resulting in 232189 

probes for DNA methylation analysis. All analysis was 

performed using β values to improve the statistical 

calculation of differential methylation [49, 50]. β 

values are also included in the tables for biological 

interpretation. 

 

Gene chip data processing 

 

For gene expression data, we first downloaded the 

standardized chip data. R package hgu133plus2.db was 

used for probe annotation. Probes that match multiple

 

 
 

Figure 7. Work flow chart. 
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genes were removed. When multiple probes matched to 

one gene, the median of these probes were used as the 

expression value of the modified gene. Finally, the 

expression profiles of 20549 genes were obtained. In 

addition, we also downloaded 2498 immune genes from 

InnateDB [51]. 

 
Identification of differential methylation 

 
The R software package limma [52] was used to  

detect different methylation sites between 

periodontitis patients and normal samples. Difference 

multiple greater than 20% and FDR <0.05 was the 

threshold to include more CpG sites with statistical 

differences. 

 
Gene set enrichment analysis 

 
Gene Set Enrichment Analysis(GSEA) [53] was 

performed by the JAVA program (http://software. 

broadinstitute.org/gsea/downloads.jsp) using the 

MSigDB [54] C2 Canonical pathways gene set 

collection with 1320 gene sets. After performing 1000 

permutations, significantly enriched gene set was 

defined as having a p value less than 0.05. 

 
Co-expression network construction 

 
CpG methylation data profile of DMPs was assessed to 

evaluate whether the samples and CpGs included were 

qualified. Then, we used the weighted gene co-

expression network analysis (WGCNA) [55] package 

in R to construct scale-free co-expression network for 

the DMPs. Pearson's correlation matrices and average 

linkage method were performed for all pair-wise 

CpGs. Then, a weighted adjacency matrix was 

constructed using a power function Amn = |Cmn|
β (Cmn = 

Pearson's correlation between CpG m and CpG n; Amn 

= adjacency between CpG m and CpG n). β was a soft-

thresholding parameter that could emphasize strong 

correlations between CpGs and penalize weak 

correlations. After choosing the power of β, the 

adjacency was transformed into a topological overlap 

matrix (TOM) to measure the network connectivity  

of a CpG, which is defined as the sum of its adjacency 

to all other CpGs for network CpG ration. The 

corresponding dissimilarity (1-TOM) was also 

calculated. To classify CpGs with similar expression 

profiles into CpG modules, average linkage 

hierarchical clustering was conducted according to the 

TOM-based dissimilarity measured with a minimum 

size (CpG group) of 30 for the CpGs dendrogram. To 

further analyze the module, we calculated the 

dissimilarity of module eigenCpGs, determined a  

cut line for module dendrogram and merged some 

modules. 

Construction of diagnostic prediction model and 

evaluation of model prediction performance 
 

A diagnostic prediction model was constructed using 

feature genes based on support vector machine (SVM) 

classification [56]. SVM is a supervised learning 

model of machine learning algorithm, and can analyze 

data and identify patterns. A support vector 

mechanism creates a hyperplane in a high or infinite 

dimensional space and can be used for classification 

and regression. All the samples were randomly and 

uniformly divided into training data set and 

verification data set. The model was constructed in the 

training data set, and the classification ability of the 

model was verified by ten-fold cross validation 

method. The established model was then used to 

predict the samples in the validation data set. The 

predictive performance of the model was assessed with 

the area under the ROC curve (AUC), and the 

sensitivity and specificity of the model for predicting 

periodontitis were analyzed. 
 

Clinical effectiveness of the model 
 

Two sets of Illumina HumanMethylation450 BeadChip 

platform data sets GSE59939 [57] and GSE53849  

were selected as independent external verification data 

sets. After downloading the standardized data, the 

methylation level of characteristic CpGs was extracted 

and substituted into the model to assess the prediction 

ability of the model. Furthermore, a set of expression 

profile data set GSE10334 [58] was used to extract  

the expression profile of immune genes from  

the characteristic CpGs annotation to the promoter. A 

diagnostic model was established to distinguish normal 

healthy samples from periodontitis. 
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Supplementary Figure 1. Correlation between EZH2 and DNMT expression. (A) Correlation between EZH2 and DNMT1 expression. 
(B) Correlation between EZH2 and DNMT3A expression. (C) Correlation between EZH2 and DNMT3B expression. 
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Supplementary Figure 2. Volcanic map of methylation difference, x axis is the difference multiple, y axis is the difference 
significance, red is the up-regulation of DMPs, green is the down-regulation of DMPs. 
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Supplementary Table 
 

 

Supplementary Table 1. 18 disordered KEGG Pathways. 

Term ES NES NP FDR FWER 

KEGG_PRIMARY_IMMUNODEFICIENCY 0.7327 1.6282 0.0097 0.1174 0.549 

KEGG_PRION_DISEASES 0.635 1.632 0.0099 0.1213 0.538 

KEGG_LEISHMANIA_INFECTION 0.711 1.6323 0.01 0.1303 0.538 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.5487 1.6037 0.0361 0.1374 0.608 

KEGG_CELL_ADHESION_MOLECULES_CAMS 0.5644 1.6349 0.0117 0.1376 0.531 

KEGG_AUTOIMMUNE_THYROID_DISEASE 0.6821 1.6422 0.0118 0.1397 0.507 

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 0.4577 1.5942 0.0279 0.1403 0.625 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 0.6315 1.6439 0.004 0.1503 0.501 

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.5668 1.5776 0.0214 0.152 0.661 

KEGG_TYPE_II_DIABETES_MELLITUS 0.4272 1.5695 0.0319 0.1547 0.682 

KEGG_CHEMOKINE_SIGNALING_PATHWAY 0.5679 1.6508 0.0079 0.1569 0.487 

KEGG_GRAFT_VERSUS_HOST_DISEASE 0.7032 1.5577 0.0385 0.1638 0.7 

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 0.6361 1.7256 0.0039 0.1669 0.303 

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE 0.6808 1.5406 0.0261 0.1709 0.731 

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 0.7548 1.6661 0.0019 0.1728 0.446 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.5915 1.6524 0.002 0.1738 0.484 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 0.5746 1.7432 0.002 0.1797 0.271 

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 0.373 1.5017 0.0339 0.1858 0.797 

 


