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SUPPLEMENTARY MATERIALS  
 

Supplementary Discussion 
 

Tissue-specific aging expression signatures reflect an 

age-related loss of tissue function and homeostasis 

 

In the brain, we reported an increase in the expression 

of genes encoding for components of the Major 

Histocompatibility Complex (MHC) I (H2-T23 (H-2 

class I histocompatibility antigen D-37 alpha chain), 

H2-D1 (histocompatibility 2, D region locus 1), H2-K1 

(histocompatibility 2, K1, K region) and B2m (beta 2 

microglobulin)). These observations are concordant 

with the available literature, indicating that genes 

involved in immune responses, especially in MHC 

antigen processing and presentation, are increasingly 

expressed during aging in the brains of C57BL/6 mice, 

and probably constitute early markers of age-related 

neurodegeneration. Apart from H2-T23, all of the 

MHCI genes identified have been recently shown to be 

upregulated with age in several regions of the central 

nervous system (CNS) in the mouse [1]. Interestingly, 

higher levels of MHCI components have been linked 

with limited synapse density in the mouse hippocampus 

[2], as well as age-related synaptic loss in murine 

neuromuscular junctions [3], while other evidence 

points to an important role of MHCI in maintaining 

synaptic plasticity in healthy aging brain 

[4].  Importantly, our results are consistent with 

observations made in long-lived primate species and 

human fibroblasts that showed increased expression of 

MHC antigen presentation pathway genes with age, 

particularly B2m [5]. Furthermore, increased expression 

of B2m has also been shown to result in impaired 

hippocampal neurogenesis in aged mice, thus 

contributing to cognitive decline [6].  

 

Regarding the heart, we observed the downregulation of 

genes involved in energy metabolism, including Pdhb 

(pyruvate dehydrogenase (lipoamide) beta) and Acaa2 

(acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-

oxoacyl-Coenzyme A thiolase)). Pdhb is involved in the 

irreversible oxidative decarboxylation of pyruvate, as it 

encodes for a catalytic enzyme (E1β subunit) of the 

pyruvate dehydrogenase complex (PDC) [7, 8]. 

Although its role in the aging heart remains unclear, 

PDC is crucial in mitochondrial energy production with 

its end products acetyl-CoA and NADH being central 

molecules in the Krebs cycle and mitochondrial 

respiration, respectively [7, 9]. Interstingly, higher 

efficiency of PDC activity has been reported in older 

F344 rats [10] and, more recently, heart failure patients 
reportedly showed increased PDC activity in the left 

ventricular myocardium, characterized by greater 

expression levels of PDC catalytic enzymes, including 

E1β [11]. It has also been shown that PDC activation is 

able to improve cardiac function in murine hearts [12], 

with the beneficial effects of PDC activity on heart 

function probably being due to increasing energy 

production under large energetic demand conditions. 

Furthermore, Acaa2 is involved in fatty acid beta-

oxidation, which also generates acetyl-CoA and NADH 

[13–15]. Despite not being studied in the context of 

aging, this gene has been shown to play a role in 

maintaining proper cardiac function, with possible 

implications for age-associated heart dysfunction. In 

heart failure-induced rats, a treatment successfully 

improved myocardial energy metabolism through the 

upregulation of the expression of genes involved in fatty 

acid metabolism, including Acaa2 [16]. Additionally, an 

aging-induced decline in fatty acid oxidation has also 

been reported in the hearts of aging mice [17]. We also 

observed the decrease in expression of other genes 

involved in fatty acid oxidation in this tissue, 

particularly of Acaa1a (acetyl-Coenzyme A acyl-

transferase 1A), Adipor1 (adiponectin receptor 1), Auh 

(AU RNA binding protein/enoyl-coenzyme A 

hydratase), Eci2 (enoyl-Coenzyme A delta isomerase 

2), Etfb (electron transferring flavoprotein, beta 

polypeptide), and Hadh (hydroxyacyl-Coenzyme A 

dehydrogenase), which corroborates previous reports of 

age-related cardiac dysfunction mediated by cardiac 

lipotoxicity as a result of impaired oxidation of fatty 

acids [recently reviewed in 18]. Together, these 

observations indicate a general impairment of cardiac 

energy substrate metabolism and suggest that the energy 

requirements of the aging heart are severely 

compromised.  

 

As for the muscle, we found a general decline in the 

expression of genes mainly involved in regulating 

muscle hypertrophy, regeneration, and homeostasis, 

as is the case of Anxa2 (annexin A2), Lrp1 (low 

density lipoprotein receptor-related protein 1) and Fn1 
(fibronectin 1). Regarding Annexin A2, it encodes for 

a protein belonging to the annexin family and is 

known to play an important role in plasma membrane 

repair of skeletal muscle cells [19–21].  Loss of Anxa2 

is associated with impaired myofiber repair and 

regeneration as well as progressive muscle weakening 

with age [22]. Interestingly, and contrary to our 

observations, Anxa2 expression has been found to 

increase with age both in healthy humans [23] and in 

ad libitum fed rats [24]. Lrp1 is a large endocytic 

receptor involved in muscle fibrosis, where Lrp1-

Decorin pathway leads to activation of TGF-β, 

promoting the expression of pro-fibrotic molecules 

[25, 26]. Additionally, Lrp1 depletion impairs fracture 

repair in the bones of old mice, while overexpression 
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improves it [27]. Notwithstanding these observations, 

the role of Lrp1 should be further elucidated in the 

context of skeletal muscle aging. Finally, fibronectin 

is an extracellular matrix component that has been 

shown to be an important player in muscle fiber 

regeneration by interacting with satellite cells, the 

muscle’s stem cells [28]. Our observations of 

decreased levels of Fn1 with aging are in line with 

previous findings reporting not only that the aged 

stem cell niche displays substantially lower 

fibronectin mRNA and protein levels, as well as that 

the knock-out of Fn1 results in decreased numbers of 

muscle stem cells [29]. Overall, our results indicate 

that skeletal muscle structure and functioning declines 

with age, where key genetic players in muscle 

regeneration are found to be downregulated. However, 

the exact role and underlying mechanisms of these 

genes in the aging mammalian skeletal muscle 

remains a marker of interest to be explored in future 

studies. 

 

Lastly, we observed an overall increase in gene 

expression associated with immune responses during 

hepatic aging, with significantly dysregulated genes 

including the inflammatory chemokine Ccl5 

(chemokine (C-C motif) ligand 5), Cd79a (CD79A 

antigen (immunoglobulin-associated alpha)) and 

Cd79b (CD79B antigen), and H2-Aa (histo-

compatibility 2, class II antigen A, alpha) and H2-Eb1 
(histocompatibility 2, class II antigen E beta). Ccl5 is 

a chemokine – chemotactic cytokine – involved in 

directing leukocyte migration [30]. In agreement with 

our observations, Ccl5 mRNA levels were reported to 

be significantly increased in aged mice, and 

accompanied by other markers of chronical 

inflammation [31]. Moreover, up-regulation of Ccl5 

expression has been linked to several hepatic diseases, 

many of them having age as an important risk factor, 

such as non-alcoholic fatty liver disease (NAFLD) 

and hepatocellular carcinoma (HCC) [32–34]. Cd79a 

and Cd79b encode for components of the B cell 

antigen receptor, whose expression is important for B 

cell maturation [35]. In line with our observations of 

increased expression with aging of these genes, 

Schaum et al., the authors of the original study, report 

high numbers of B cells in the livers of old mice (18-

30m) based on Cd79a expression [36]. Moreover, a 

different study of the same authors reported age-

related overexpression of MHC II antigens H2-Aa and 

H2-Eb1 in the same tissue [37]. Up-regulation of 

these genes has also been found in a NAFLD mouse 

model [38]. Taken together, these findings are in 

agreement with the notion that exacerbation or 
dysregulation of inflammatory response is associated 

with liver pathology [addressed in 39], expanding it to 

the aging process. 

Sex-dimorphic expression of genes involved in 

metabolic-related pathways 

 

We also reported a decreased male-enriched expression 

of genes involved in the biosynthesis of lipids in the 

aging liver (shift point within old age; 24-27 months), 

including Elovl2 and Elovl3 (elongation of very long 

chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 2 

and 3), encoding for fatty acid elongase enzymes. These 

observations are in agreement with a previously found 

male bias of genes enriched in functions related to fatty 

acid metabolism in the liver of mammals [40], even 

though the dynamics of their expression over time 

haven’t been addressed. Interestingly, a recent critical 

review on sex-differences in NAFLD has pinpointed the 

male sex as a positive risk factor for the occurrence of 

this disease that, not only is age-related, but also is 

characterized by hepatic lipid accumulation [41]. 

Together, this evidence suggest a male-biased impair of 

lipid metabolism with aging, most likely mediated by 

intensification of lipid biosynthesis, however, more 

studies are needed to enlighten the potential 

mechanisms behind these observations. 

 

Furthermore, we observed an increased male-biased 

expression with aging (shift point within middle age; 9-

12 months) of genes related to energy metabolism, 

particularly to the synthesis of adenosine triphosphate 

(ATP), in the muscle. In line with our findings, a 

previous study regarding sex-differences in gene 

expression in human skeletal muscle reported higher 

expression of genes encoding mitochondrial proteins in 

men, albeit the influence of age was not explored [42]. 

More indirectly, an age-related increase in oxidative 

damage in human skeletal muscle was observed and 

was more prominent in males than in females [43], 

which may be explained by increased ATP production 

with aging in this group. Nevertheless, despite sex-

differences in muscle energy metabolism being reported 

[reviewed in 44], and some evidence regarding age-

related sexual dimorphism in these processes existing 

[addressed in 45], these differences have not been well 

characterized and more research is needed to improve 

our understanding on this matter. 

 

Alterations in signaling and cellular response 

processes between the aging heart, liver and muscle 

 

Alterations in signaling and cellular response processes 

are also shared between tissues. For example, the liver 

and the heart both show alterations in genes involved in 

glucocorticoid signaling, with an early (9-12 months) 

increase in expression in the liver contrasting with a late 
life (18-21 months) decrease in expression in the heart. 

Moreover, the liver and the muscle share dysregulation 

of cellular responses to amino acid stimuli with the 
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increase in gene expression in the liver opposing to the 

decrease in the muscle, albeit the shift point occurring 

around the same time (9-12 months).  

 

Interestingly, only one gene is involved in both cases in 

the liver – Ntrk2 (neurotrophic tyrosine kinase, receptor, 

type 2). Ntrk2 encodes for tyrosine receptor kinase B 

(TrkB), one of the three tropomyosin kinase receptors, 

that are mainly expressed in the brain and known to 

play an essential role in the homeostasis of this tissue as 

it is involved in neuronal differentiation and survival 

and synaptic formation and plasticity, among others 

[reviewed in 46]. This gene has also been reported to be 

expressed in the murine liver, being probably involved 

in the innervation of this tissue [47]. Notably, recent 

evidence has implied the overexpression of one isoform 

of TrkB (TRKB-T1) in the pathogenesis of non-

alcoholic steatohepatits (NASH), an advance form of 

NAFLD, through the promotion of inflammatory 

signaling in hepatocytes and stress-induced cell death 

[48]. Furthermore, increased expression of Ntrk2 has 

also been suggested to contribute to the exacerbation of 

hepatocarcinogenesis in a mouse model of hepato-

cellular carcinoma [49]. Despite the lack of direct 

evidence establishing a link between the aging liver and 

TrkB signaling, our observations of increased Ntrk2 

expression across the lifespan suggest a role of this gene 

in age-related liver dysfunction, albeit further studies 

are needed. 

 

Additionally, in the heart, we observed the decreased 

expression of genes involved in both the positive 

(Ppp5c - protein phosphatase 5, catalytic subunit) [50] 

and negative (Phb - prohibitin) [51] regulation of 

glucocorticoid signaling, evincing an age-related 

dysregulation of this pathway in the heart, potentially 

impacting cardiac function, in line with previous reports 

[addressed in 52]. In the muscle, we also report an age-

related decrease in the expression of genes encoding 

some collagen proteins (Col3a1, Col5a2, Col6a1 – 

collagen type III, V and VI, alpha 1 and 2), which is in 

agreement of recent study reporting the down-regulation 

of fibrillar, fibril-associated and networking collagen 

genes in aged skeletal muscle of C57BL/6 mice [53]. 

 

Dysregulation of respiratory metabolism genes in the 

aging heart and in the muscle of aged males  

 

Interestingly, the aging heart shares dysregulation of 

respiratory metabolism genes with the muscle tissue of 

male mice. Age-related mitochondrial dysfunction in 

the heart has been widely studied and reported [for 

reviews, see 54–57], being characterized, among other 
markers, by decreased mitochondrial respiration activity 

[57], which is in agreement with our observations of 

decreased expression of genes involved in this process. 

As for the muscle, sex-differences in energy metabolism 

have already been addressed (see Sex-dimorphic 

expression of genes involved in metabolic-related 

pathways), with the conclusion that more studies are 

needed to better understand the mechanisms behind 

sexual dimorphism in mitochondrial respiration 

dysregulation, and potential implications for the aging 

process. 
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