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INTRODUCTION 
 

Cancer caused approximately 10 million of deaths in the 

year 2020 worldwide [1]. With the development of new 

technologies and experimental methods and devices, 

numerous research advancement have been achieved in 

both basic and clinical fields in the last decade [2, 3]. 

Triple negative breast cancer (TNBC) is the most 

aggressive subtype of breast cancer with limited 

therapeutic options [4]. Recent studies revealed several 

underlying molecular mechanisms and potential drugs 

for TNBC [5, 6]. However, there is still a long way to 
go before clinical application. It is crucial to clarify the 

mechanisms underly TNBC’s aggressive phenotype and 

explore novel prognostic biomarkers and therapeutic 

targets. 

It was reported that CCR5-∆32/∆32 genotype was 

associated with reduced life expectancy despite the 

protective effect of the mutation against HIV by 

analyzing genotyping and death registry information of 

409,693 individuals of British ancestry [7]. This report 

indicated that CCR5 might have some positive roles in 

human fitness and thus caught the attention of the whole 

world immediately. 

 

Actually, the function of CCR5 remain elusive despite 

intensive study in recent years. For instance, some 

researchers claimed that CCR5 could promote breast 

cad gastric cancer progression, while others 
demonstrated that the expression of CCR5 in both 

CD4+ and CD8+ T cells was critical in boosting anti-

tumor immune response [8–11]. We and our 
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ABSTRACT 
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tumor immune response related pathways. Multi-omics data analyses identified CCR5 associated genomic and 
proteomic changes. CCR5 overexpression was associated with better overall survival in TNBC patients with TP53 
mutation. We also summarized the latest findings on ICB efficacy related genes and explored the association 
between CCR5 and those genes. These results indicated that CCR5 is a potential tumor suppressor gene and 
individualized therapeutic strategy could be established based on multi-omics background and expression 
pattern of ICB related genes. In conclusion, CCR5 is associated with better survival of TNBC patients with TP53 
mutation, which may exert its roles through tumor immune environment. 
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collaborators showed that CCR5 overexpression was 

associated with better prognosis of breast cancer, lung 

cancer, liver cancer, rectal cancer and cervical cancer 

which might owing to its association with immune cell 

infiltration [12]. In this study, we will analysis the 

expression and prognostic value of CCR5 in TNBC 

and explore the underlying molecular mechanisms 

using multi-omics data. We will also discuss the 

association between CCR5 and ICB efficacy related 

genes and offer potential therapeutic options for 

TNBC. 

 

RESULTS 
 

CCR5 expression and its association with survival 

and TIL in basal-like or triple negative breast cancer 

 

CCR5 is overexpressed in breast cancer in comparison 

to matched normal control (Supplementary Figure 1, P 

< 0.0001). Its expression level in basal-like breast 

cancer or TNBC are significantly higher than in non-

basal-like or non-TNBC samples (Figure 1A, 

expression data is obtained from bc-GenExMiner 

database, P < 0.0001). Methylation level of CCR5 

promoter region was significantly associated with 

CCR5 expression (Spearman r = 0.5912, P < 0.0001, 

Figure 1B), which meant that methylation might be one 

of the main regulators of CCR5 expression. As is shown 

in Figure 1C, Kaplan–Meier analyses indicated that 

CCR5 expression was positively correlated with overall 

survival (OS), recurrence free survival (RFS) and 

distant metastasis-free survival (DMFS) (merged TNBC 

gene expression data and corresponding clinical 

information were from KM plot, HR = 0.41, 0.39 and 

0.32; P = 0.0007, <0.0001 and <0.0001, respectively), 

which was further confirmed by analyzing TCGA 

TNBC data (OS, HR = 0.37, P = 0.0185). Tumor 

immune cell infiltration analyses using TIMER in basal-

like breast cancer samples showed that adjusted CCR5 

expression was significantly correlated with tumor 

infiltration of B cell, CD8+ T cell, CD4+ T cell, 

Neutrophil and Dendritic cell (P < 0.0001), while there 

was no correlation between CCR5 expression and 

Macrophage infiltration (P = 0.233) (Figure 1D). 

 

GSEA analysis of CCR5 using 1570 breast cancer 

samples 

 

Since CCR5 is overexpressed in TNBC/basal-like breast 

cancer and is associated with better survival and tumor 

immune cell infiltration, we wish to elucidate the 

potential roles of CCR5 in breast cancer using an 

expression profiling dataset containing 1570 breast 

cancer samples. GSEA analyses results (Figure 2) 

indicated that CCR5 expression was positively 

correlated with innate inflammation pathways such as 

NF-κB pathway (Figure 2A, NES = 2.5, P < 0.0001). It 

was also associated with TCR pathway, Th1Th2 

pathway, T cell to Natural killer pathway and immune 

checkpoint related signatures (Figure 2B–2E, NES = 

2.35, 2.17, 2.27, 2.13, respectively, all P < 0.0001). 

Moreover, CCR5 was associated with apoptosis (Figure 

2F, NES = 2.04, P < 0.0001). These results indicated 

that CCR5 might repress breast cancer progression 

through NF-κB pathway, immune cell activation and 

pro-apoptosis. 

 

The genomic landscape of CCR5 high and low 

expressed TNBC patients 

 

Next, the genomic landscape of TNBC patients with 

CCR5 high and low expression were compared and

 

 
 

Figure 1. (A) CCR5 is overexpressed in basal-like or TNBC subtypes of breast cancer compared to not basal-like or non-TNBC subtypes. (B) 

The expression of CCR5 is negatively correlated CCR5 promoter methylation levels. (C) Patients with CCR5 high expression have better 
survivals compared to CCR5 low expression group. (D) CCR5 expression is positively correlated with tumor infiltration immune cells such as 
B cell, CD8+ T cell, CD4+ T cell, Neutrophil and Dendritic cell. 
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presented in Figure 3. Figure 3A shows the comparison 

of mutation profiles between CCR5 high and low 

groups. We can see that TP53 has the highest mutation 

rate both in CCR5 high and CCR5 low TNBC patients 

(78.08% vs. 67.12%). Since the mutation rate of TP53 

in breast cancer is around 30%, the high mutation rate 

of TP53 in TNBC indicates its potential role in TNBC 

progression. The following mutated genes are TTN, 

USH2A and PIK3CA etc. (19.18% vs. 23.29%, 6.85% 

vs. 12.33% and 10.96% vs. 9.59%, respectively). Figure 

3B presents the comparison of CNA profiles between 

CCR5 high and low groups. The top three gene with 

copy number variation are MYC, EXT1 and RAD21 

(Amplification, 37.97% vs. 35.06%, 31.65% vs. 27.27% 

and 30.38% vs. 27.27%, respectively). Detailed 

mutation and CNA profiling data comparison were 

presented in Supplementary Table 1. 

 

Prognostic value of CCR5 in TP53 

wildtype/mutation TNBC patients 

 

Results in the previous section showed that TP53 was 

highly mutated in TNBC, the association between 

CCR5 expression and TP53 mutation was explored in 

this part. Using expression and mutation data of TCGA, 

we demonstrated that there was no statistical difference  

of CCR5 expression in TNBC patient with or without 

TP53 mutation (Figure 4A). Kaplan-Meier analysis 

results showed that CCR5 expression is not associated 

with overall survival of TNBC patients in TP53

 

 
 

Figure 2. GSEA results show that CCR5 is positively correlated with NF-κB pathway (A), TCR pathway (B), TH1/TH2 pathway (C), Natural 

killer cell up (D), immune checkpoint signature (E) and Apoptosis (F). 
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wildtype group (HR = 0.93, P = 0.93, Figure 4B), while 

high expression of CCR5 was associated with better 

overall survival in TNBC patients with TP53 mutation 

(HR = 0.27, Logrank p = 0.0083, Figure 4C). The above 

results indicate that CCR5 expression is not correlated 

with TP53 mutation status, however, the function of 

CCR5 in mitigating TNBC progression may rely on 

TP53 mutation. We tried to explain this interesting 

phenomenon by analysis the expression pattern of 

CCR5 and immune checkpoint markers in TNBC 

patients with or without P53 mutation (Supplementary 

Figures 2–3). The correlation between CCR5 expression 

and infiltrated immune cells were also visualized in 

Supplementary Figures 4–5. 

 

Proteomic analysis of CCR5 high and low expressed 

TNBC patients 

 

Reverse phase protein array (RPPA) data of TNBC, 

which containing 226 antibodies, was downloaded from 

TCGA. Differentially changed proteins were computed 

and top changed proteins were presented in Figure 5  

 

 
 

Figure 3. Comparison of mutation (A) and CNV (B) landscapes between CCR5 high expression and low expression groups. 
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Figure 4. (A) There is no statistical difference of CCR5 expression between TP53 wildtype and TP53 mutation groups in TNBC samples. (B) 

CCR5 expression is not associated with OS in TNBC patients with wildtype TP53. (C) Patients with high CCR5 expression have better survival 
in TP53 mutation TNBC samples. 

 

 

 
 

Figure 5. Differentially expressed proteins between CCR5 high expression and low expression groups. 
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(For detailed information, please see Supplementary 

Table 1). LCK, SYK, IRF1, CASP7_cleaved D198, 

BCL2L11, BCL2 and JAK2 were higher in TNBC 

patients with high CCR5 expression, while IGFBP2, 

RAB25, FN1, Acetyl-α-tubulin-Lys40, YAP1_pS127, 

RB1_pS807_S811 were lower in CCR5 high TNBC 

patients. There are no statistical differences of YAP1 

and RB1 between CCR5 high and CCR5 low TNBC 

patients. These proteomic changes might partly account 

for CCR5 associated good prognosis. 

 

Clustering analysis of CCR5 and immune 

checkpoint related signatures in TNBC samples 

 

Previously, we demonstrated that CCR5 expression was 

correlated with tumor immune cell infiltration. Since 

TILs were often associated with the efficacy of 

immunotherapy, the prognostic of CCR5 in 

immunotherapy would be very interesting. Here, we 

performed ROC curve analyses using gene expression 

data of melanoma treated with immune checkpoint 

inhibitor (GSE91061, pre-treatment and on-treatment) 

to show the predictive power of CCR5 in predicting 

disease control rate (DCR). The AUC of pre-treatment 

CCR5 value (pre), on-treatment CCR5 value (on) and 

‘on-treatment minus pre-treatment CCR5 value (on-

pre)’ were 0.5509, 0.7338 and 0.7546, respectively 

(Supplementary Figure 6). The prognostic power of on-

pre was the highest (sensitivity = 75%, specificity = 

77.78%). These results showed that CCR5 elevation 

after immune checkpoint blockade (ICB) was a 

significant prognostic marker, which might also have 

therapeutic implications. Since CCR5 is associated with 

ICB efficacy, heat map and cluster analysis were 

performed using TNBC data from TCGA through MeV 

to show the expression pattern of CCR5 and immune 

checkpoint related genes. Figure 6 shows that these 

genes are clustered into three main groups: Lactate 

dehydrogenase (LDH); ICOSLG, IL23A, TNFRSF4, 

TNFRSF18, TNFSF9 and IL12A; CCR5 and other ICB 

efficacy related genes including PDCD1 (PD1), CD274 

(PDL1), JAK2 and LAG3. Specifically, CCR5 

expression pattern is more similar to PTPRC, 

TNFRSF9, ICOS and CTLA4. The above results 

indicate that CCR5 is a prognostic marker for ICB 

treatment and could serve as a potential therapeutic 

target. Cox regression for survival analysis using CCR5 

and immune checkpoint related genes was performed. 

Risk groups were divided using best cutoff point of risk 

score. Figure 7 indicated that patients in low risk group 

had better OS than high risk group. 

 

Association analyses of CCR5 and ICB efficacy 

related genes in TNBC samples 

 

Next, we discussed the latest findings on molecular 

basis of ICB resistance and analyzed the association 

between CCR5 and those genes. We demonstrate that in 

TNBC patients CCR5 is positively correlated with IFN-

γ, IL12B and key non-canonical NF-kB pathway genes,  

 

 
 

Figure 6. Heat map of CCR5 and immune checkpoint related genes. Green represents low expression level and red represents high 

expression level. The two upper rows represent survival and survival status, respectively. 
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namely CD40, ABCB11, NFKB2, RELB and 

MAP3K14 (Figure 8A and Figure 8C–8H). Besides, 

CCR5 is also positively correlated with T cell co-

stimulator CD28 and immune checkpoint receptor 

LAG3 (Figure 8I–8J). While the correlation between 

CCR5 and IL12A does not have statistical significance 

(Figure 8B). FGL1 is overexpressed in breast cancer in 

comparison to matched normal control (Supplementary 

Figure 7A, P = 0.0039), but there is no statistical 

difference between basal-like and non-basal-like group 

of breast cancer (Supplementary Figure 7B). The 

correlation between CCR5 and FGL1 does not have 

statistical significance (Supplementary Figure 7C). 

SIGLEC15 and YTHDF1 are overexpressed in breast 

cancer and especially non-basal-like subtype 

(Supplementary Figures 8A–8B and 9A–9B). There is 

no correlation between the expression of CCR5 and 

SIGLEC15, YTHDF1 (Supplementary Figures 8C and 

9C, P = 0.347 and 0.422, respectively). The above 

results indicate that in TNBC patients with CCR5 

overexpression, T Cell-DCs crosstalk involving IFN-γ 

and IL12 is activated, which means these patients would 

show better therapeutic efficacy to anti-PD1 

immunotherapy. Since the expression of SIGLEC and 

YTHDF1 are higher in not basal-like breast cancer 

subtype, these genes might be more promising 

therapeutic targets for non-basal-like subtype or breast 

cancer patients with low CCR5 expression. 
 

DISCUSSION 
 

Great success has been achieved in cancer management 

in recent years. For instance, use implanted 3D-Printed 

vertebral bodies with robotic stereotactic radiotherapy 

 

 
 

Figure 7. Kaplan-Meier analyses indicate that patients in low risk group have better OS than those in high risk group (blue 
represents low risk group and yellow represents high risk group, Logrank p < 0.0001). 
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for spinal tumor treatment [13]; encapsulate irinotecan 

(CPT-11) into micelle-based nanoparticles for a better 

efficacy in cancer therapy [14]; immunotherapy using 

immune checkpoint inhibitors has been applied in 

several solid tumors including TNBC [15, 16]; 

development of allele-specific K-RasG12C inhibitors 

for the treatment of oncogenic KRAS mutant in 

different cancer types [17]. However, the current 

situation is far from satisfied. It is still crucial to clarify 

the molecular mechanisms underly cancer progression 

and explore novel prognostic biomarkers and 

therapeutic targets. 

 

Despite intensive studies on CCR5 in recent years, the 

roles of CCR5 in cancer remain elusive. Previously, we 

and our collaborators demonstrated that CCR5 is 

associated with better overall survival of several cancer 

types including breast cancer [12]. However, the 

expression pattern and prognostic value of CCR5 in 

different breast cancer subtypes and underlying 

mechanistic insights still needs to be clarified. 

In this study, we showed that CCR5 is overexpressed in 

TNBC compared to non-TNBC or normal control and is 

associated with better prognosis of TNBC. CCR5 

expression is positively correlated with tumor immune 

cell infiltration and tumor immune response related 

pathways. Multi-omics data of TNBC were compared 

based on CCR5 expression levels and CCR5 associated 

genomic and proteomic changes were identified. CCR5 

overexpression was associated with better OS in TNBC 

patients with TP53 mutation. We also summarized the 

latest findings on ICB efficacy related genes and 

explored the association between CCR5 and those 

genes. These results indicate that CCR5 is a potential 

tumor repressor gene and individualized therapeutic 

strategy could be established based on multi-omics 

background and expression pattern of ICB related 

genes. Finally, several drugs that could potentially 

upregulated CCR5 expression were suggested. 

 

Previously, Pestell et al. reported that CCR5 antagonists 

maraviroc could reduce invasion and 

 

 
 

Figure 8. (A, C–J) CCR5 is positively correlated with good prognostic markers of anti-immune checkpoint therapies such as IFNG, IL12B, 

CD40, ABCB11, NFκB2, RELB, MAP3K14, CD28 and LAG3. (B) The correlation between the expression of CCR5 and IL12A does not have 
statistical significance (p = 0.0624). 
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metastasis of basal breast cancer cells in vitro and in 
vivo. And they suggested that CCR5 antagonists could 

be used as a therapeutic option for mitigating the risk of 

metastasis in patients with the basal breast cancer 

subtype [8]. Our results indicated that CCR5 is 

associated with longer OS of TNBC patients with TP53 

mutation and is positively correlated with tumor 

immune response. These results seem to be inconsistent 

with Pestell’s results, which could be explained by 

drawbacks of their experiment design that merely using 

cancer cell lines and immunodeficient (NOD/SCID) 

mice model. Moreover, our study is supported by 

another group from The Scripps Research Institute, 

which showed that CCR5 expression in both CD4+ and 

CD8+ T cells was necessary to activate cancer immune 

response that might have implications for cancer 

treatment in patients with CCR5 deficiency. 

 

We also summarized the latest findings on the 

molecular basis of ICB efficacy and discussed the 

association between CCR5 and those signatures. It is 

reported that effective anti-PD1 therapy requires the 

crosstalk between T cells and intratumoral dendritic 

cells (DCs) [18]. Specifically, anti-PD1 mAb could 

activate T cells and induce IFN-γ production, which 

further induced IL-12 production by DCs. Effective 

anti-PD1 therapy requires IL-12 produced by DCs to 

license effector T cell responses in cancer patients. 

Agonizing non-canonical NF-κB pathway can induce 

IL-12 production through DCs activation and enhance 

anti-PD1 therapy. Moreover, IL-12 and T cell co-

stimulator CD28 are required to achieve maximal 

IFN-γ response. Lieping Chen et al. reported in Cell 

[19] that FGL1 was a major immune inhibitory ligand 

of LAG-3 and blockade of the FGL1-LAG-3 

interaction could enhance anti-tumor immunity, 

suggesting that FGL1-LAG-3 pathway was an 

important immune evasion mechanism and a potential 

target for immunotherapy. Three months later, 

Lieping Chen group identified SIGLEC15 as a critical 

immune suppressor and its expression was mutually 

exclusive to PDL1, which implicated its potential 

therapeutic value in cancer patients especially for 

those who failed to response to anti-PDL1 therapy 

[20]. Chuan He et al. reported a novel immune 

evasion mechanism in Nature that the N6-

methyadenosine (m6A) marked transcripts encoding 

lysosomal proteases were recognized and bounded by 

YTHDF1 in DCs, which promoted translation of 

lysosomal proteases for excessive neoantigen 

degradation, thereby mitigating neoantigen-specific 

tumor immunity. Furthermore, the efficacy of anti-

PDL1 therapy was enhanced in Ythdf1−/− mice, 
suggesting YTHDF1 as a promising target for 

immunotherapy [21]. Here, we show that CCR5 is 

positively correlated IFN-γ, IL12B and key non-

canonical NF-kB pathway genes such as CD40, 

ABCB11, NFKB2, RELB and MAP3K14. It is also 

associated with CD28 and LAG3, while there are no 

correlation between CCR5 and IL12A, FGL1, 

SIGLEC15 and YTHDF1. These results suggest that 

CCR5 may increase the efficacy of anti-PD1 therapy 

through activating T cell-DCs crosstalk. 

 

Furthermore, we find several drugs that can upregulated 

CCR5 expression by exploring CTD database. For 

instance, Cisplatin, cyclophosphamide, Oxaliplatin, 

Topotecan and Clofibrate can promote CCR5 

expression, which implicates their potential application 

in managing TNBC patients with low CCR5 expression 

(Supplementary Figure 10). 

 

In summary, CCR5 is overexpressed in TNBC and is 

associated with better prognosis of TNBC with TP53 

mutation. Potential mechanisms may include activation 

of certain tumor suppressors while repressing some 

oncogenic pathways such as YAP1. Activation of 

effector T cell may also account for CCR5 related 

tumor immune response. All these data suggest that 

CCR5 is a prognostic marker and potential therapeutic 

target for TNBC with TP53 mutation. Further wet lab 

experiments and clinical trials are warranted. 

 

MATERIALS AND METHODS 
 

Ethics statement 

 

All the data used in this study were downloaded from 

publicly available sources. The Research Ethics 

Committee of Zhejiang Provincial people’s Hospital 

and National Cancer Center/National Clinical 

Research Center for Cancer/Cancer Hospital waived 

the requirement for ethical approval. 

 

Data source 

 

Gene expression data for non-basal-like/basal-like or 

non-TNBC/TNBC comparison were obtained from bc-

GenExMiner database. Gene expression data of CCR5 

and other immune related genes in TNBC were 

downloaded from The Cancer Genome Atlas (TCGA: 

http://cancergenome.nih.gov/). Mutation, Methylation, 

Protein expression and copy number alteration data of 

TNBC were also obtained from TCGA. Data for 

survival analyses were downloaded from KMplot [22] 

and TCGA. All other expression data were obtained 

from Gene Expression Omnibus (GEO) [23]. 

Specifically, GSE70947 [24] was used for comparing 

expression levels between breast cancer and paired 
normal control; GSE47561 [25] (N = 1570) was used 

for Gene Set Enrichment Analysis (GSEA) [26]; 

GSE96061 [27] was used for ROC (Receiver operating 

http://cancergenome.nih.gov/
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characteristic) curve analysis. Chemical-gene 

interaction data was downloaded from The Comparative 

Toxicogenomics Database (CTD base) [28]. The 

abundance data of infiltrated immune cells in TCGA 

TNBC data was obtained from xCell [29]. 

 

Bioinformatics and statistical analyses 

 

Heat map and clustering analysis were performed using 

MeV software (http://mev.tm4.org). GSEA was 

performed to show the functional enrichment of CCR5 

in breast cancer. Immune infiltration analysis was using 

TIMER [30]. R 4.0.0 (R Foundation for Statistical 

Computing (http://www.r-project.org/)) or GraphPad 

Prism 5.01 (GraphPad Software, Inc. 

(http://www.graphpad.com)) were utilized to perform 

all other statistical analyses. Cox regression and related 

survival analysis were performed using ‘survival’ and 

‘survminer’ packages [31, 32]. Correlation analysis and 

visualization were performed using ‘corrplot’ package 

[33]. Standard statistical tests including paired t-test, 

fisher exact test and independent samples t-test were 

employed in the data analyses. Adjust P value was 

corrected for multiple comparisons using the Benjamini 

and Hochberg's false discovery rate [34]. Significance 

was defined as a P value < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. CCR5 is overexpressed in breast cancer compared to matched normal control. 
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Supplementary Figure 2. The correlation between CCR5 expression and immune checkpoint markers in TNBC patients with 
P53 mutation. 
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Supplementary Figure 3. The correlation between CCR5 expression and immune checkpoint markers in TNBC patients with 
wildtype P53. 
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Supplementary Figure 4. The correlation between CCR5 expression and the abundance of tumor infiltrated immune cells in 
TNBC patients with P53 mutation. 
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Supplementary Figure 5. The correlation between CCR5 expression and the abundance of tumor infiltrated immune cells in 
TNBC patients with wildtype P53. 
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Supplementary Figure 6. ROC curves of CCR5 in pre-treatment, on-treatment and on-treatment minus pre-treatment. AUC 
are 0.5509, 0.7338 and 0.7546, respectively. 

 

 

 
 

Supplementary Figure 7. (A) FGL1 is overexpressed in breast cancer compared to matched normal control. (B) There is no statistical 

difference of FGL1 expression between basal-like subtype and not basal-like subtypes. (C) There is no correlation between the expression of 
CCR5 and FGL1. 
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Supplementary Figure 8. (A) SIGLEC15 is overexpressed in breast cancer compared to matched normal control. (B) SIGLEC15 expression 

is significantly lower in basal-like subtype compared to not basal-like subtypes. (C) There is no correlation between the expression of CCR5 
and SIGLEC15. 

 

 

 
 

Supplementary Figure 9. (A) YTHDF1 is overexpressed in breast cancer compared to matched normal control. (B) YTHDF1 expression is 

significantly lower in basal-like subtype compared to not basal-like subtypes. (C) There is no correlation between the expression of CCR5 
and SIGLEC15. 
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Supplementary Figure 10. Potential drugs that could up-regulate CCR5 expression. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differentially protein changes between CCR5 high and low groups. 


