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INTRODUCTION 
 

Breast cancer is the most commonly diagnosed 

malignancy and cause of cancer-related deaths in 

females [1]. According to the statistics from 2020, 

approximately 276,480 female breast cancers were 

diagnosed in the US, and 42,170 patients are expected 

to die from breast cancer [2]. Despite early diagnosis, 
abundant treatments, and a decline in the mortality rate 

of this disease over the past year, patients with 

advanced and metastatic breast cancer still experience a 

high mortality rate [3]. Therefore, an effective risk 

model for breast cancer can play a vital role in 

individualized therapy. 

 

Breast cancer is strongly correlated with changes in gene 

status, such as amplifications, downregulation, and 

mutations. Traditionally, according to immuno-

histochemistry for estrogen receptor (ER), progesterone 

receptor (PR), and human epidermal growth factor 

receptor2 (HER2), breast cancer is classified into the 

luminal A, luminal B, HER2-positive, and triple-negative 

subtypes [4]. However, with further exploration of the 

molecular mechanisms of breast cancer, more detailed 
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ABSTRACT 
 

Background: Breast cancer is an invasive disease with complex molecular mechanisms. Prognosis-related 
biomarkers are still urgently needed to predict outcomes of breast cancer patients. 
Methods: Original data were download from The Cancer Genome Atlas (TCGA) and the Gene Expression 
Omnibus (GEO). The analyses were performed using perl-5.32 and R-x64-4.1.1. 
Results: In this study, 1086 differentially expressed genes (DEGs) were identified in the TCGA cohort; 523 shared 
DEGs were identified in the TCGA and GSE10886 cohorts. Eight subtypes were estimated using non-negative 
matrix factorization clustering with significant differences seen in overall survival (OS) and progression-free 
survival (PFS) (P < 0.01). Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) 
regression analysis were performed to develop a related risk score related to the 17 DEGs; this score separated 
breast cancer into low- and high-risk groups with significant differences in survival (P < 0.01) and showed 
powerful effectiveness (TCGA all group: 1-year area under the curve [AUC] = 0.729, 3-year AUC = 0.778, 5-year 
AUC = 0.781). A nomogram prediction model was constructed using non-negative matrix factorization 
clustering, the risk score, and clinical characteristics. Our model was confirmed to be related with tumor 
microenvironment. Furthermore, DEGs in high-risk breast cancer were enriched in histidine metabolism 
(normalized enrichment score [NES] = 1.49, P < 0.05), protein export (NES = 1.58, P < 0.05), and steroid hormone 
biosynthesis signaling pathways (NES = 1.56, P < 0.05). 
Conclusions: We established a comprehensive model that can predict prognosis and guide treatment.  
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molecular types have been presented, such as luminal A, 

luminal B, HER2-enriched, basal-like, normal-like, and 

claudin-low [5]. Different subtypes have been confirmed 

to have different prognoses and drug responses. With 

advances in statistical analysis, multigene signatures are 

widely used to predict patient prognosis and drug 

response [6, 7]. Some multigene prediction models, such 

as the Oncotype DX 21-gene test, Prediction Analysis of 

Microarray 50, and 70-gene signature (MammaPrint), 

have been applied in the clinic [8–10]. The Oncotype DX 

21-gene test can evaluate the tumor recurrence and 

predict chemotherapy responses in patients with ER-

positive breast cancer. MammaPrint signature and 

PAM50 can improve prognostic prediction in breast 

cancer patients. Nonetheless, despite their high power, 

these tools only consider gene status, and thus, a model 

with comprehensive consideration of additional factors is 

urgently needed. 

 

Breast cancer outcomes are significantly related to 

factors, such as tumor size, tumor stage, lymph node 

status, age, tumor tissue receptor status, and gene status. 

To effectively evaluate prognoses of breast cancer and 

predict drug responses to guide treatment, we 

constructed a comprehensive prediction model with 

varied factors. In this study, we identified differentially 

expressed genes (DEGs) from The Cancer Genome 

Atlas (TCGA) and Gene Expression Omnibus (GEO) 

and performed non-negative matrix factorization (NMF) 

clustering and a least absolute shrinkage and selection 

operator (LASSO) regression analysis to construct a 

nomogram prediction model. We also explored the 

correlations and potential signaling pathways and 

discuss a possibly internal mechanism of breast cancer. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

Gene expression, tumor mutation burden, and clinical 

information datasets of breast cancer were obtained 

from The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/) and Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

databases in October 2021. We selected 1208 samples, 

including 1096 breast cancer samples and 112 normal 

samples from The Cancer Genome Atlas Breast 

Invasive Carcinoma (TCGA-BRCA) program. After 

searching the datasets with more than 150 human breast 

cancer samples with complete expression profile data, 

we selected the GSE10886 dataset from the GEO [9]. 

 

Analysis of differentially expressed genes 

 

To identify the DEGs, we used a multi-step approach 

(Figure 1). The limma and sva R packages were used 

for the differential expression analysis (log fold change 

[FC] >1, false discovery rate [FDR] < 0.05) and batch 

correction for the TCGA-BRCA [11–15] 

(Supplementary File 1). 

 

 
 

Figure 1. Work flowchart of the study. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Protein-protein interaction network and enrichment 

analysis 

 

The protein-protein interaction (PPI) network for DEGs 

was constructed using the STRING website tool 

(https://string-db.org/); the high confidence genes were 

conserved (interaction score ≥ 0.7), and hub nodes were 

visualized by R-x64-4.1.1 (Supplementary File 1). Gene 

ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses were conducted 

using the clusterprofiler R package, where P < 0.05 

[16–18] (Supplementary File 1). 

 

Non-negative matrix factorization clustering 

 

First, we intersected the TCGA-BRCA and GSE10886 

data to obtain the shared DEGs; then, we analyzed the 

DEGs using the survival and NMF R packages 

(Supplementary File 1), through which eight distinct 

subtypes were identified according to the cophenetic 

correlation coefficient for the cluster number from 2–10 

[19]. Second, the overall survival (OS) and progression-

free survival (PFS) differences among these subtypes, 

as observed by Kaplan-Meier (K-M) analysis and log-

rank test, were analyzed using the survival and 

survminer R packages [20] (Supplementary File 1). 

Third, the analysis of microenvironment cell 

populations (MCP) differences among these subtypes 

was performed using the limma, ggpubr, and 

MCPcounter R packages [21] (Supplementary File 1). 

 

Nomogram model establishment 

 

Based on the DEG data, a univariate Cox analysis was 

performed to identify the survival related genes  

(P < 0.05). A modified LASSO regression analysis 

was conducted to find the genes most relevant to the 

OS of breast cancer patients (P < 0.05) [22–24] 

(Supplementary File 1). To verify the accuracy of our 

risk score predictor, analyses of training, and test 

groups were performed using data that were randomly 

obtained from the whole group. The predictive ability 

of the risk score was evaluated by survival probability 

curve, receiver operating characteristic (ROC) curve, 

and the area under the curve (AUC) [25] 

(Supplementary File 1). The risk computing formula is 

as follows: Risk score 
1

( ) ( )
n

i
Coef i Expr i

=
=  . In 

addition, univariate and multivariate analyses were 

performed to demonstrate the independent predictive 

ability of the risk score. A nomogram prediction model 

was established using clinical characteristics, NMF 

clustering, and risk score to predict the survival of 

breast cancer patients; the nomogram-predicted 

probability of the 1-, 3-, and 5-year OS is shown by 

the calibration curve [26]. To identify the superiority 

of the nomogram, a decision curve analysis (DCA) 

was conducted [27] (Supplementary File 1). The R 

packages survival, survminer, caret, glmnet, timeROC, 

ggDCA, regplot, and rms were used for these analyses 

(Supplementary File 1). 

 

Gene set enrichment analysis 

 

Gene set enrichment analysis (GSEA) was conducted 

between low- and high-risk score subsets [28] 

(Supplementary File 1). The “c2.cp.kegg.v7.4. 

symbols.gmt” was obtained from (https://www.gsea-

msigdb.org/gsea/index.jsp). Signaling pathways with P < 

0.05 and FDR < 0.05 were considered enriched. 

 

Clinical characteristics, genes, immune cells, and 

tumor mutation burden correlation analysis 

 

The correlations between risk score and clinical 

characteristics, known breast cancer genes,  

immune cells, and tumor mutation burden (TMB) are 

shown through box plots, correlation matrix, and 

circular plot generated by ggpubr, corrplot, and 

circlize R packages, respectively [29] (Supplementary 

File 1). 

 

Relevance analysis between NMF clustering and risk 

score 

 

To further explore the relevance between our novel 

typing mode and independent predictive factors, a 

Sankey diagram was plotted using ggalluvial, ggplot2, 

and dplyr R packages [30–32] (Supplementary File 1). 

 

Immunohistochemistry 
 

Immunohistochemistry results for risk score related 

DEGs in breast cancer were obtained from The  

Human Protein Atlasdatabase (THPA, https://www. 

proteinatlas.org/). 

 

Chemotherapeutic and immunotherapeutic response 

prediction 
 

We predicted the drug response in breast cancer 

patients based on the Genomics of Drug Sensitivity in 

Cancer database [33]. Six common chemotherapeutic 

and immunotherapeutic drugs (paclitaxel,  

cytarabine, camptothecin, lapatinib, erlotinib, and 

gefitinib) were selected for the analysis. The R 

package pRRophetic was used to conduct the analysis 

[34] (Supplementary File 1). The inhibitory 

concentration (IC50) was assessed to determine the 
drug sensitivities. ComBat was used to adjust for 

batch effects, and the average expression was 

calculated for repeated genes. 

https://string-db.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Statistical analysis 

 

Statistical analysis was performed using R-x64-4.1.1 

and perl-5.32 (Supplementary File 1). Data are 

presented as means ± standard deviation. Differences 

with P < 0.05 and FDR < 0.05 were considered 

statistically significant. 

 

Data availability statement 

 

All data are available from online database  

included TCGA (https://portal.gdc.cancer.gov/), GEO 

(https://www.ncbi.nlm.nih.gov/geo/), THPA (https:// 

www.proteinatlas.org/), and GSEA (https://www.gsea-

msigdb.org/gsea/index.jsp). 

Ethical statement 

 

TCGA, GEO, THPA, and GSEA belong to public 

databases. Patients involved in them all had ethical 

approval. All analyses of us were based on them, 

therefore, no ethical issues existed. 

 

RESULTS 
 

Differentially expressed genes in breast cancer 
 

The expression of 1086 DEGs was founded in the 

TCGA-BRCA cohort by comparing breast cancer tissue 

(1096 tumor samples) with normal tissue (112 normal 

breast samples) (Figure 2A, 2B).  

 

 
 

Figure 2. (A, B) DEG analysis for TCGA-BRCA. (C) PPI network of the TCGA-BRCA DEGs. (D) Hub node numbers in the PPI network of the 
TCGA-BRCA DEGs. Abbreviations: DEGs: differentially expressed genes; TCGA-BRCA: The Cancer Genome Atlas Breast Invasive Carcinoma; PPI 
network: protein-protein interaction network. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Protein-protein interaction network analysis and 

enrichment analysis 

 

A PPI network was constructed for the TCGA-BRCA 

DEGs (Figure 2C). The top thirty genes ranked by 

connectivity degree are shown in Figure 2D. The results 

showed that CDK1 was the most significant gene with a 

connectivity degree of 318, followed by CCNA2 

(degree = 286), BUB1 (degree = 274), CCNB1 (degree 

= 268), and TOP2A (degree = 262). Biological process 

analysis showed that “nuclear division,” “organelle 

fission,” “chromosome segregation,” “mitotic cell cycle 

phase transition,” and “mitotic nuclear division” were 

significantly relevant to the DEGs (Figure 3A, 3B). 

Cellular component analysis demonstrated the 

significantly association between the DEGs with 

“chromosomal region,” “spindle,” “collagen-containing 

extracellular matrix,” “condensed chromosome,” and 

“chromosome, centromeric region” (Figure 3A, 3B). 

According to the molecular function analysis, the DEGs 

were enriched in “glycosaminoglycan binding,” 

“protein kinase regulator activity,” “extracellular matrix 

structural constituent,” “transmembrane receptor protein 

kinase activity,” and “growth factor binding” (Figure 

3A, 3B). In the KEGG analysis, the top five enriched 

pathways were “PI3K-Akt signaling pathway,” 

“cytokine-cytokine receptor interaction,” “cell cycle,” 

“human papillomavirus infection,” and “MAPK 

signaling pathway” (Figure 3C, 3D). 

 

Non-negative matrix factorization clustering analysis 

 

First, a univariate Cox regression analysis was performed 

using the data of the DEGs to increase the robustness of 

our cluster (P < 0.01). The NMF algorithm was then used 

to cluster the breast cancer cases based on gene 

expression, survival time, and survival status. We 

identified the optimal k value of 8 with the cophenetic 

correlation coefficients, and confirmed that the optimal 

cluster number was 8 (Figure 4A). As shown in 

 

 
 

Figure 3. (A, B) GO analysis for TCGA-BRCA DEGs. (C, D) KEGG analysis for TCGA-BRCA DEGs. Abbreviations: GO: Gene Ontology; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes; TCGA-BRCA: The Cancer Genome Atlas Breast Invasive Carcinoma. 
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Figure 4. (A) Factorization rank for 2–10 clusters. (B) Heatmap of the gene expression of eight clusters. (C, D) K-M curves for OS and PFS in 
different subtypes. (E) B lineage cell infiltration in different subtypes. (F) CD8+ T cell infiltration in different subtypes. Abbreviations: K-M: 
Kaplan-Meier; OS: overall survival; PFS: progression-free survival. 
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Figure 4B, the boundaries of the eight subtypes (C1-C8) 

are clear, which indicates that the clustering is relatively 

reliable. According to the OS and PFS curves (Figure 4C, 

4D), C4 and C5 breast cancer is associated with the best 

prognosis, and C6 breast cancer patients have the worst 

(P < 0.01). MCP counting for eight tissue-infiltrating 

immune cell types (B lineage, monocytic lineage, 

cytotoxic lymphocytes, neutrophils, myeloid dendritic 

cells, NK cells, T cells, and CD8+ T cells) and  

two stromal cell types (fibroblasts and endothelial 

cells) was performing using the R package 

MCPcounter (Supplementary File 1). We found that 

C1 had the greatest abundance of these cells, except 

neutrophils, in the microenvironment (Figures 4, 5). 

Moreover, fibroblasts, endothelial cells, and 

neutrophils were significantly high in C5, while tissue-

infiltrating immune cells were significantly low in C6 

(Figure 5B, 5C, 5F). 

 

Construction of the prognostic model 

 

Based on the 523 DEGs, a univariate Cox analysis was 

first performed to increase the stability of the results. 

Subsequently, LASSO regression analysis was 

performed to identify the 17 DEGs included in the risk 

assessment model (Figure 6A, 6B). The risk score was 

calculated according to the following formula: 

(0.186995130166584) * ExprWNT7B + (−0.3670682 

69289688) * ExprBCL2A1 + (0.361699290337736) * 

ExprULBP2 + (−0.26235003273008) * ExprLEF1 + 

(0.386283757445905) * ExprGABRQ + (−0.1407101 

33664929) * ExprFXYD3 + (0.183333746976684) * 

ExprSCG2 + (−0.388494904628374) * ExprFOXJ1 + 

(−0.22258520830588) * ExprTP63 + (−0.4505641 

26981243) * ExprRYR1 + (0.646038331120338) * 

ExprFEZ1 + (−1.23444095440368) * ExprNRG1 + 

(0.186015162843612) * ExprRGS4 + (−0.7114998 

70665385) * ExprNFE2 + (0.174340252592255) * 

ExprHOXC13 + (−0.249218472277074) * ExprMMP25 

+ (−0.331805787206587) * ExprDTX1. The cut-off 

value used to divide patients into the low- and high-risk 

breast cancer was −2.025. To further verify the accuracy 

of the risk score predictor, ROC analysis was performed 

(Figure 6C–6E). The 1-, 2-, and 3-year AUC values for 

the whole TCGA cohort were 0.729, 0.778, and 0.781, 

respectively, while the 1-, 2-, and 3-year AUC values 

for the TCGA training cohort were 0.805, 0.782, and 

0.793, respectively, and the 1-, 2-, and 3-year AUC 

values for the TCGA test cohort were 0.627, 0.770, and 

0.765, respectively. According to the K-M plotter, 

survival differences between the low- and high-risk 

breast cancer groups in the whole TCGA cohort, TCGA 

training cohort, and TCGA test cohort were significant 
(P<0.01) (Figure 6F–6H). In addition, significant 

differences were also observed in the age >60, age ≤60, 

stage I-II, and stage III-IV subsets (Figure 7). 

Moreover, the univariate and multivariate Cox analyses 

of the relationship between the risk score and clinical 

characteristics demonstrated that the risk score was an 

independent predictor of breast cancer (univariate Cox 

regression: hazard ratio [HR] = 1.14, 95% confidence 

interval [CI] = 1.10 − 1.17, P < 0.01; multivariate Cox 

regression: hazard ratio = 1.13, 95% confidence interval 

= 1.09 − 1.17, P < 0.01) (Table 1). Although the risk 

score is an independent factor, compared with other 

clinical characteristics, the AUC value of the risk score 

was not the highest (Figure 8A). To further improve 

predictive ability, a nomogram model was constructed 

using the clinical characteristics, NMF clustering, and 

risk score. According to the nomogram model, each 

patient has a total score that can predict the 1-, 3-, and 

5-year survival rates (Figure 8B). The calibration 

curves showed that the nomogram-predicted 1-, 3-, 

and 5-year OS probabilities were close to the actual 

OS (Figure 8C). Moreover, the results of DCA  

showed that our nomogram was the best predictor 

(Figure 8D). 

 

Potential signaling pathways in the low- and high-

risk groups 

 

To further explore the potential signaling pathways of 

DEGs in the low- and high-risk groups, GSEA was 

performed. The GSEA results showed that the 

histidine metabolism signaling pathway (normalized 

enrichment score [NES] = 1.49, P < 0.05), protein 

export signaling pathway (NES = 1.58, P < 0.05), and 

steroid hormone biosynthesis signaling pathway (NES 

= 1.56, P < 0.05) were significantly enriched in the 

high-risk group (Figure 9A). In contrast, the 

autoimmune thyroid disease signaling pathway (NES = 

−1.88, P < 0.05), cell adhesion molecules cams 

signaling pathway (NES = −1.71, P < 0.05), 

chemokine signaling pathway (NES = −1.68, P < 

0.05), cytokine-cytokine receptor interaction signaling 

pathway (NES = −1.75, P < 0.05), and viral 

myocarditis signaling pathway (NES = −1.83, P < 

0.05) were enriched in the low-risk group (Figure 9B). 

 

Factors correlated with the risk score 

 

We researched the correlations between the risk score 

and clinical characteristics and found that age (Figure 

9C), M stage (Figure 9D), N stage (Figure 9E), T 

stage (Figure 9F), and clinical stage (Figure 10A) 

were significantly associated with the risk score. We 

then selected 12 known breast cancer-related genes 

and analyzed their correlations with the risk score. As 

shown in Figure 10B, significant negative correlations 
existed between the risk score and TP53, KIT, MCL1, 

MAP3K1, JAK1, PDCD1, CTLA4, and CD274. 

Infiltrating T cells, CD8 + T cells, cytotoxic 



www.aging-us.com 852 AGING 

 
 

Figure 5. (A) Cytotoxic lymphocyte infiltration in different subtypes. (B) Endothelial cell infiltration in different subtypes. (C) Fibroblast 

infiltration in different subtypes. (D) Monocytic lineage cell infiltration in different subtypes. (E) Myeloid dendritic cell infiltration in different 
subtypes. (F) Neutrophil infiltration in different subtypes. (G) NK cell infiltration in different subtypes. (H) T cell infiltration in different subtypes. 
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Figure 6. (A, B) The LASSO regression analysis identified 17 DEGs mostly related to prognosis. (C–E) The 1-, 3-, and 5-year ROC 

analyses in the whole TCGA-BRCA cohort, TCGA-BRCA training cohort, and TCGA-BRCA test cohort. (F–H) K-M curves of OS for low- 
and high-risk breast cancers in the whole TCGA-BRCA cohort, the TCGA-BRCA training cohort, and TCGA-BRCA test cohort. 
Abbreviations: LASSO: least absolute shrinkage and selection operator; DEGs: differentially expressed genes; K-M: Kaplan-Meier; 
TCGA-BRCA: The Cancer Genome Atlas Breast Invasive Carcinoma; ROC: receiver operating  characteristic. 
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lymphocytes, B lineage cells, NK cells, monocytic 

lineage cells, and myeloid dendritic cells were 

significantly negatively correlated with the risk score, 

while the fibroblasts were significantly positive 

correlated to the risk score (Figure 10C). In addition, we 

did not find a significant correlation between the risk 

score and TMB (Figure 10D). 

 

Correlation between NMF clustering and the risk 

score  

 

To connect the NMF clustering and risk score, we 

generated a Sankey diagram (Figure 10E). The plot 

showed that more dead patients had high-risk scores, 

which further demonstrated the reliability of the risk 

score. Furthermore, the C2 and C6 subtypes mainly 

contained high-risk scores breast cancer and had  

the worse prognoses according to the survival curves, 

while the C4 and C5 subtypes included more low-risk 

breast cancer had better prognoses. These results 

demonstrated the accuracy of both the novel typing 

mode and the predictive factor. 

 

Validation of the risk score-relevant genes in breast 

cancer tissue 

 

Immunohistochemistry demonstrated the expression of 

DTX1, FEZ1, FOXJ1, FXYD3, HOXC13, LEF1, 

 

 
 

Figure 7. (A, B) K-M curves of OS for breast cancer patients age >60 and age ≤60 in the low- and high-risk groups. (C, D) K-M curves of OS 

for stage I-II and stage III-IV breast cancer in the low- and high-risk groups. Abbreviations: K-M: Kaplan-Meier; OS: overall survival. 
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Table 1. Univariate and multivariate Cox analyses. 

Univariate Cox analysis 

id HR HR.95L HR.95H p-value 

Age 1.034397 1.01977 1.049234 3.25E−06 

Stage 2.109207 1.668588 2.666178 4.32E−10 

T 1.570708 1.265938 1.94885 4.09E−05 

M 6.027352 3.314181 10.96167 3.94E−09 

N 1.67166 1.393874 2.004807 3.00E−08 

Risk score 1.136899 1.103803 1.170987 1.71E−17 

Multivariate Cox analysis 

id HR HR.95L HR.95H p-value 

Age 1.031857 1.016637 1.047306 3.53E−05 

Stage 1.450661 0.855984 2.458478 0.166909 

T 1.068995 0.787655 1.450826 0.668532 

M 1.383885 0.596304 3.211683 0.449431 

N 1.305108 0.977835 1.741916 0.070638 

Risk score 1.12811 1.091573 1.16587 7.18E−13 

HR, hazard ratio; HR.95L, hazard ratio 95% CI low; HR.95H, hazard ratio 95% CI high. 

 

MMP25, NFE2, NRG1, SCG2, TP63, and ULBP2 

(Figure 11). 

 

Differences in drug response between the low- and 

high-risk breast cancer groups 

 

As shown in Figure 12, the high-risk breast cancer 

cohort showed a significantly higher response to 

paclitaxel, cytarabine, camptothecin, erlotinib, and 

gefitinib, while the low-risk cohort showed a 

significantly better response to lapatinib. 

 

DISCUSSION 
 

Breast cancer is a heterogeneous disease with a high 

incidence rate and poor prognosis [35]. As the 

molecular mechanism of breast cancer is complex, 

continuous studies aim to identify better molecular 

typing of breast cancer. Wang et al. [7] developed a 

five-gene (EDN2, CLEC3B, SV2C, WT1, and MUC2) 

prognostic signature using LASSO Cox regression 

analysis. Gao et al. [6] developed a pyroptosis-related 

lncRNA-associated (AC121761.2, AC027307.2, 

LINC01871, U73166.1, AL513477.2, AC005034.5 

and AL451085.2) predictive model using LASSO Cox 

regression analysis. However, these risk models only 

considered the molecular status. Indeed, breast cancer 

is a complicated disease that requires additional 

considerations. Our nomogram is a comprehensive 

prognostic prediction tool that includes clinical 
characteristics, NMF clustering-based typing, and the 

risk score. Many multigene analysis-based models 

have been published in the last decade [36–38]. NMF 

clustering is a novel typing method that is rarely used 

in breast cancer and with which we can achieve a more 

detailed typing to predict more accurate prognoses for 

breast cancer patients. 

 

Based on the shared DEG expression and survival data 

of breast cancer patients, eight novel subtypes were 

identified. According to the K-M survival plots, C4 

and C5 breast cancer had a better OS and PFS, 

whereas C6 had an obviously poor prognosis. Notably, 

C4 and C5 breast cancer had high neutrophil 

infiltration, while C6 breast cancer had lower levels of 

neutrophil infiltration. As one of the most important 

immune cell types, neutrophils play a vital role in 

cancer progression, such as by directly eliminating 

cancer cells, releasing factors that affect the tumor 

microenvironment (TME), and producing reactive 

oxygen and nitrogen species [39]. These anti-tumor 

effects might account for the better prognosis of C4 

and C5 breast cancer. Moreover, we found that C4 and 

C5 breast cancer had a low number of monocytes and 

that C6 breast cancer had highest monocyte 

infiltration. Mononuclear cells are precursors of 

tumor-associated macrophages (TAMs) which 

comprise the most abundant proportion of tumor-

infiltrating immune cells [40]. Substantial evidence 

showed that TAMs are highly associated with poor 

prognosis in cancer [41, 42]. The potential mechanism 

of TAMs is complicated and includes tumor 

promotion, an increase in cancer resistance, and 
promotion of cancer cell migration [43–46]. 

Undoubtedly, mononuclear cells are important in the 

breast cancer microenvironment, as they have the 
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Figure 8. (A) Calculation of the AUC for risk score, age, stage, T, M, and N. (B) Nomogram-predicted model for breast cancer. (C) Calibration 
plots for 1-, 3-, and 5-year survival probabilities. (D) DCA of the nomogram, risk score, age, stage, T stage, M stage, and N stage. 
Abbreviations: AUC: area under the curve; DCA: decision curve analysis. 
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Figure 9. (A, B) GSEA in low- and high-risk breast cancer. (C–F) Correlation analyses of the risk score with age, M stage, N stage, and T stage. 

Abbreviations: GSEA: gene set enrichment analysis. 
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Figure 10. Correlation analysis of (A) Risk score and tumor stage. (B) Risk score and breast cancer-associated genes. (C) Risk score and 
immune cell infiltration. (D) TMB. (E) NMF clustering and risk score. Abbreviations: TMB: tumor mutation burden; NMF: non-negative matrix 
factorization. 
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Figure 11. Immunohistochemistry for (A) DTX1 (https://www.proteinatlas.org/ENSG00000135144-DTX1/pathology/breast+cancer#imid_ 
18106719). (B) FEZ1 (https://www.proteinatlas.org/ENSG00000149557-FEZ1/pathology/breast+cancer#imid_20550866). (C) FXYD3 (https:// 
www.proteinatlas.org/ENSG00000089356-FXYD3/pathology/breast+cancer#imid_3109719). (D) FOXJ1 (https://www.proteinatlas.org/ 
ENSG00000129654-FOXJ1/pathology/breast+cancer#imid_18961115). (E) HOXC13 (https://www.proteinatlas.org/ENSG00000123364-
HOXC13/pathology/breast+cancer#imid_15073368). (F) LEF1 (https://www.proteinatlas.org/ENSG00000138795-LEF1/pathology/breast+ 
cancer#imid_913343). (G) MMP25 (https://www.proteinatlas.org/ENSG00000008516-MMP25/pathology/breast+cancer#imid_9651206). (H) 
NFE2 (https://www.proteinatlas.org/ENSG00000123405-NFE2/pathology/breast+cancer#imid_927392). (I) NRG1 (https://www.proteinatlas. 
org/ENSG00000157168-NRG1/pathology/breast+cancer#imid_3118350). (J) SCG2 (https://www.proteinatlas.org/ENSG00000171951-SCG2/ 
pathology/breast+cancer#imid_20497272). (K) TP63 (https://www.proteinatlas.org/ENSG00000073282-TP63/pathology/breast+cancer#imid_ 
143251). (L) ULBP2 (https://www.proteinatlas.org/ENSG00000131015-ULBP2/pathology/breast+cancer#imid_5232353). 
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Figure 12. Durg-response analysis of (A) Paclitaxel. (B) Camptothecin. (C) Cytarabine. (D) Lapatinib. (E) Erlotinib. (F) Gefitinib. 
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potential to predict prognosis and become a 

therapeutic target. 

 

To construct a stable predictive model, we then 

conducted LASSO Cox regression analysis with DEGs 

to divide the breast cancer cases into low- and high-

risk subsets. Finally, 17 DEGs were included in the 

risk score calculation. Next, we reviewed previous 

studies of these 17 DEGs (Table 2). Although the 

functions of some of these 17 DEGs were unclear and 

even controversial, and not all of them were reported 

to be related to breast cancer, we plan to perform 

additional research on these DEGs. To explore the 

potential signaling pathways among these 17 DEGs in 

the low- and high-risk groups, we performed the 

GSEA, from which we found that high-risk breast 

cancer was associated with histidine metabolism, 

protein export, and steroid hormone biosynthesis. 

Matboli et al. [47] demonstrated that histidine-rich 

glycoprotein expression was higher in basal-like breast 

cancer than in the normal-like subtype, while other 

evidence demonstrated that the basal-like breast cancer 

subtype had a worse prognosis [48]. Furthermore, 

Saha et al. [49] reported that steroid hormone receptors 

can drive cell cycle regulation and breast cancer 

progression, thereby controlling tumor proliferation. 

These enriched pathways suggested that the disease 

included in the high-risk group was more invasive and 

was associated with poorer survival than that in the 

low-risk group. 

 

After further analysis, we found that the risk score 

was significantly correlated with clinical 

characteristics. Patients ≤60 years of age with stage I-

II, M0, and N0-1 breast cancer had significantly lower 

risk score than those >60 years with stage III-IV, M1, 

and N2-3 breast cancer. Moreover, we found that T4 

breast cancer had the highest risk score, followed by 

T2-3 and T1. Notably, no significant differences were 

identified between stages I and II, stages III and IV, 

T2 and T3, N0 and N1, or N2 and N3. We performed 

a correlation analysis for the risk score and several 

known breast cancer-associated genes, after which we 

found that TP53, KIT, MCL1, MAP3K1, JAK1, 

PDCD1, CTLA4, and CD274 were significantly 

negatively correlated with the risk score. The risk 

score was also negatively correlated with T cells, 

CD8+ T cells, cytotoxic lymphocytes, B lineage cells, 

NK cells, monocytic lineage cells, and myeloid 

dendritic cells, and was positively correlated with 

fibroblasts. From this analysis, we believed that the 

risk score was strongly associated with the TME. In 

breast cancer, many immune-related pathways are 
abnormally regulated, thereby influencing the 

microenvironment, such as through immune cell 

infiltration [50]. Based on current literature, some 

believe that the TME is a potential treatment target in 

breast cancer [51, 52]. To further demonstrate this 

conclusion, a drug sensitivity analysis was performed 

through which we identified significantly higher 

responses to agents, with the exception of lapatinib, in 

high-risk breast cancer. This special phenomenon was 

similar to what was observed in triple-negative breast 

cancer, which exhibited good chemotherapeutic 

sensitivity but poor prognosis [53–55]. Obviously, the 

risk score was strongly associated with the TME and 

was shown to predict chemotherapeutic and immuno-

therapeutic responses in breast cancer. However, no 

significant correlation was found between the risk 

score and breast cancer TMB, which requires 

additional research. 

 

Based on these analyses, we believe that the risk score 

is valuable, but nevertheless, as a clinical predictive 

model, it should be better. Therefore, to further refine 

our model, we considered the risk score, clinical 

characteristics, and NMF clustering and constructed a 

nomogram. By summing the scores of these terms, we 

can predict the 1-, 3-, 5-year survival for every breast 

cancer patient, which might be a more precise and 

stable method. However, our analysis still has some 

limitations. First, our analysis only uses data from 

online databases, more real-word data are needed to 

further confirm our findings. Second, the detection of 

17 DEGs would cost more than a model with fewer 

genes. However, our final prediction model has been 

confirmed to be effective, and since there are several 

other clinical prediction tools that require detection of 

more than 17 genes, our model is acceptable. Since 

breast cancer has varied subtypes, more detailed 

prediction models for the different subtypes should  

be constructed. We believe that these prediction 

models will be more powerful and cost-effective. 

Finally, although the HR of a single risk score was  

not very high, significant differences in OS and PFS as 

well as in AUC values were observed between  

the low- and high-risk score groups. To further 

improve the power of prediction model, we 

constructed a model using NMF clustering, the risk 

score, and clinical characteristics. Fortunately, our 

final nomogram model is shown to be better than any 

single factor. 

 

In this study, we developed a novel predictive model 

using NMF clustering, clinical characteristics of breast 

cancer, and risk score based on 17 DEGs. The model 

was verified by randomly dividing the TCGA cohort 

into training and test cohorts, and separately analyzing 

the survival differences between low- and high-risk 
groups in these cohorts. Differences were observed in 

immune cell infiltration, clinical correlation, potential 

signaling pathways, and drug sensitivity. 
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Table 2. Differentially expressed genes in the risk score calculation formula. 

Gene Protein name 
Gene bank 

accession number 
Function 

WNT7B [56, 57] Wnt7b protein AY400071 

WNT7B is involved in tumor growth promotion, 

immunosuppression, angiogenesis, and cancer cell 

dissemination. 

LEF1 [58] 
Lymphoid enhancer binding 

factor 1 
AY129650 

LEF1 regulates glutathione metabolism, increases 

chemotherapy resistance, and promotes breast 

cancer brain metastasis. 

BCL2A1 [59, 60] BCL2 related protein A1 DQ081729 

BCL2A1 represses hypoxia-induced cell death and 

mitochondria-mediated apoptosis and promotes 

tumor growth and metastasis. 

ULBP2 [61, 62] UL16 binding protein 2 AY358665 

ULBP2 increases NK cell cytotoxicity resistance 

and promotes cervical cancer proliferation, 

invasion, and migration. 

GABRQ [63, 64] 
Gamma-aminobutyric acid 

type A receptor subunit theta 
KJ899212 

GABRQ promotes hepatocellular cancer cell 

proliferation. 

FXYD3 [65] 
FXYD domain containing ion 

transport regulator 3 
KJ891826 FXYD3 promotes breast cancer cell proliferation. 

SCG2 [66] Secretogranin II KJ897788 SCG2 enhances endothelial angiogenesis. 

FOXJ1 [67–70] Forkhead box J1 KJ891181 

FOXJ1 promotes bladder cancer, prostate cancer, 

hepatocellular cancer, and gastric cancer growth, 

and metastasis. 

TP63 [71] Tumor protein p63 KR711025 

TP63 increases expression of epidermal growth 

factor receptor in breast cancer and increases the 

response of breast cancer to cisplatin. 

RYR1 [72] Ryanodine receptor 1 AH006668 
RYR1 plays a vital role as a calcium channel in 

excitation-contraction coupling in muscle. 

FEZ1 [73–76] 
Fasciculation and elongation 

protein zeta 1 
AF123653 

FEZ1 suppresses prostate, esophageal, gastric, 

bladder, and breast cancer progression, and 

mediates promoter methylation-mediated 

transcriptional downregulation and mitosis 

inhibition. 

NRG1 [77] Neuregulin 1 CR450288 
Heregulin isoforms encoded by NRG1 promote 

tumor growth and induce metastasis. 

NFE2 [78] Nuclear factor, erythroid 2 CR450284 

NFE2 promotes breast cancer cell growth in the 

bone microenvironment, which leads to bone 

metastasis; enhances expression of Wnt-related 

molecules. 

HOXC13 [79] Homeobox C13 AF263466 

HOXC13 facilitates cervical cancer cell 

proliferation, migration, invasion and glycolysis 

through the β-catenin/c-Myc signaling pathway.   

MMP25 [80] Matrix metallopeptidase 25 HF584190 

High expression of MMP25 in head and neck 

cancer is associated with a worse prognosis; 

MMP25 is related to apoptosis, the KRS signaling 

pathway, the PI3K/AKT/mTOR signaling 

pathway, and the JAK/STAT signaling pathway. 

DTX1 [81, 82] Deltex E3 ubiquitin ligase 1 KT584324 

DTX1 is a regulator of the Notch signaling 

pathway and acts as an E3 ubiquitin ligase that can 

repress Notch gene expression and inhibit early-

stage non-small cell lung carcinoma growth. 
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Kaplan-Meier; LASSO: Least absolute shrinkage and 
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PR: Progesterone receptor; ROC: Receiver operating 
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Please browse Full Text version to see the data of Supplementary File 1. 

 

Supplementary File 1. Codes for workflow. 


