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SUPPLEMENTARY MATERIALS AND  
METHODS     

Culture of induced pluripotent stem cell derived 

cardiomyocytes (iPSC-CMs) and measurement of 

field electrogram 

iPS cells were obtained from the Academia Sinica. The 

cell suspension was transferred to ultra-low attachment 

flasks (BD Bioscience) and cultured in a 5% C02 

atmosphere at 37°C. T25 ultra-low attachment flasks 

were filled with 5 ml cell suspension, T75 flasks with 

15 ml. On day 1 of differentiation, half of the medium 

was removed and replaced with fresh medium 

containing 50% mTeSR, 45% DMEM (low glucose), 

5% FBS, 1 μMH1152, 100 ng/mL of bFGF and 25 μg/

mL of gentamicin. The next day, 2/3 of the medium 

were replenished with DMEM (low glucose) 

supplemented with 10% FBS, 50 ng/mL of bFGF and 

25 μg/mL of gentamicin. On day 8 of differentiation, 

the cardiac clusters were every other day with DMEM 

(low glucose) supplemented with 10% FBS and 25 μg/

mL of gentamicin. On day 14 of differentiation, the 

cardiac aggregates were cultured at 20% O2 and 7% 

CO2. Between days 9–13 cardiac clusters began to 

spontaneously beat. Flow cytometry analysis was used 

to detect the expression of cardiac specific markers 

between day 16 and 18. The beating cardiomyocytes 

were then cultured at the probe of MED64 

microelectrode system (Alpha MED Scientific Inc., 

Osaka, Japan) and spontaneous field electrogram was 

recorded as previously reported [1, 2]. 

Atrial expression of ATP-sensitive potassium 

channel (KATP) 
KATP channels are heterooctameric complexes of 4 

pore-forming Kir6 channel-forming subunits, each 

associated with one regulatory SUR subunit. Two Kir6-

encoding genes, KCNJ8 (Kir6.1) and KCNJ11 (Kir6.2), 

and two SUR genes, ABCC8 (SUR1) and ABCC9 

(SUR2) encode mammalian KATP subunits [3]. We 

detected the expression of Kir6.1, Kir6.2, SUR1 and 

SUR2 in human and rat left atria by reverse 

transcription–polymerase chain reaction (RT-PCR). The 

extraction and quantification of mRNA by means of 

RT-PCR were performed as previously reported 

[4–6]. Single-stranded cDNA was amplified with PCR. 

The PCR products were confirmed by the direct 

sequencing method. The glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) gene was used as the internal 

control for equal loading. The reaction products were 

subjected to agarose gel electrophoresis. Optic 

densitometry was performed after the gel was stained 

with ethidium bromide for semiquantitative 

measurements of the DNA amount. The SYBR green 

method was used for quantitative measurement [7]. 

Expression of mRNA was represented by its ratio to the 

mRNA of GAPDH. The primers used in the present 

study were human Kir6.1 forward primer 5′-GGT TTG 

GAG TCC ACT GTG TGT GTG A-3′ and reverse 

primer 5′-GGG CAT TCC TCT GTC ATC ATC CTC-

3′ (119 bp); human Kir6.2 forward primer 5′-TGA TGA 

GGA CCA CAG CCT ACT GGA-3′ and reverse primer 

5′-AGG ACA GGG AAT CTG GAG AGA TGC T-3′ 

(125 bp); human SUR1 forward primer 5′-CAA CTG 

CTG TGT CCA GAT-3′ and reverse primer 5′-ATA 

CGA ATG GTG ATG TTG GA-3′ (84 bp); human 

SUR2A forward primer 5′-AAG CAT TCG GTC ATT 

GTA G-3′ and reverse primer 5′-GCC ACA TAG TAG 

GTC TGA-3′ (86 bp); human SUR2B forward primer 

5′-TGTGATGAAGCGAGGAAATA-3′ and reverse 

primer 5′-TGACACTTCCATTCCTGAGAGA-3′ (434 

bp); human GAPDH forward primer 5′-GTC TCC TCT 

GAC TTC AAC AGC G-3′ and reverse primer 5′-ACC 

ACC CTG TTG CTG TAG CCA A-3′ (130 bp); rat 

Kir6.2 forward primer 5′-CGC ATG GTG ACA GAG 

GAA TG-3′ and reverse primer 5′-GTG GAG AGG 

CAC AAC TTC GC-3′ (297 bp); rat SUR2A forward 

primer 5′-TTG TTC GAA AGA GCA GCA TAC-3′ and 

reverse primer 5′-GCC CGC ATC CAT AAT AGA 

GG-3′ (155 bp); rat GAPDH forward primer 5′-TTG 

CCA TCA ACG ACC CCT TC-3′ and reverse primer 

5′-TTG TCA TGG ATG ACC TTG GC-3′ (408 bp). 

Animal model and electrophysiological studies 

Wistar rats (300–350 g) received intraperitoneal 

injection of zoletil (20 mg/kg) prior to the 

electrophysiological studies. The ECG leads were fixed 

to the four limbs of the animals. The anesthetized mice 

were endotracheally intubated with a polyethylene 

tubing through an incision of the trachea and then 

mechanically ventilated (SAR-830 Small Animal 

Ventilator, CWE Inc., Ardmore, PA, USA). The chest 

was opened through sternal incision. Following 

pericardiotomy, a concentric bipolar stimulating 

electrode (SNE-100 × 50 mm; RhodesMedical 

Instruments Inc. Summerland, CA, USA) was fixed to a 

micro-manipulator (Narishige, Japan) and attached to 

the right atrium for atrial tachypacing. For action 

potential tracing a glass microelectrode filled with 

3M KCl was attached to the left atrium. Induction of 

AF was performed by atrial tachypacing at 100 Hz 

and concomitant short-term asphyxia. All the 

electrophysiological data were recorded by the IX-214 

Data Recorder (iWorx Systems, Inc., Dover, NH, USA) 

for off-line analysis. At the endo of the study, the 

animals were euthanized by cervical dislocation. The 

experimental protocol conforms to the Guide for the 

Care and Use of Laboratory Animals (NIH Publication 
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No. 85–23, revised 1996) and was approved by the 

Institutional Animal Care and Use Committee of the 

National Taiwan University College of Medicine [7]. 

Measurement of action potential duration was 

performed according to our previously reported 

methods [8]. The activation time was defined as the 

time point with the maximal dV/dt in the phase zero of 

the action potential. The repolarization time was defined 

as the time point with zero second derivative of the 

dV/dt curve in the phase 3 and phase 4 of the action 

potential. The APD was defined as the time difference 

between the activation time and repolarization time. 
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