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INTRODUCTION 
 

According to world cancer report 2020, there will be an 
estimated 60% increase in cancer cases over the next 

two decades and they will cause about one sixth of 

deaths worldwide [1]. Although certain progresses have 

been made in cancer treatment in the past decades, the 

overall survival of cancer patients is still unsatisfactory. 

Therefore, biomarkers which can function as 

prognosticators for the survival time in cancer are 

necessarily needed. N6-methyladenosine (m6A) 

modification, an epigenetic modification found in 

eukaryotes, has been a hot topic in recent years. As the 

most abundant epigenetic modification in eukaryotes 
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ABSTRACT 
 

Background: N6-methyladenosine (m6A) is the most abundant epigenetic modification. Although the 
dysregulation of m6A regulators has been associated with cancer progression in several studies, its relationship 
with cancer prognosis and clinicopathology is still controversial. Therefore, we evaluated the prognostic and 
clinicopathological value of m6A regulators in cancers by performing a comprehensive meta-analysis. 
Methods: The PubMed, Cochrane Library, Web of Science, and Embase databases were searched up to April 
2022. Hazard ratios were used to analyze the association between m6A with prognosis. We also analyze the 
relationship between m6A and clinicopathology using odds ratios. 
Results: METTL3 overexpression predicted poor overall survival and disease-free survival in cancer patients (p < 
0.001) such as gastric cancer (p < 0.001), esophageal squamous cell carcinoma (p < 0.001), oral squamous cell 
carcinoma (p = 0.002) and so on. Additionally, METTL3 overexpression was associated with poor pT stage (p < 
0.001), pN stage (p < 0.001), TNM stage (p < 0.001), tumor size >5 cm (p < 0.001) and vascular invasion (p = 
0.024). Conversely, METTL14 overexpression was positively associated with better OS (p < 0.001), negatively 
with poor pT stage (p = 0.001), pM stage (p = 0.002), pN stage (p = 0.011) and TNM stage (p < 0.001). Moreover, 
KIAA1429 overexpression was associated with poor OS (p = 0.001). YTHDF1 overexpression was also associated 
with advanced pM stage (p < 0.001) and tumor size >5 cm (p < 0.001). However, ALKBH5 overexpression was 
negatively associated with vascular invasion (p = 0.032). 
Conclusions: High expression of METTL3 predicted poor outcome. In contrast, high expression of METTL14 was 
associated with better outcome. Thus, we suggest that among all the m6A regulators, METTL3 and METTL14 
could be potential prognostic markers in cancers. 
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[2], m6A modification is associated with RNA splicing 

[3–5], maturation [5], stabilization [6] and translation 

initiation [7]. As a result, m6A modification participates 

in several biological processes: neural development [8], 

disease occurrence [9, 10] and tumorigenesis [11–13]. 

This reversible modification can be added or removed 

by writers and erasers [14]. Writers are known as m6A 

methyltransferases, such as METTL3, METTL14, 

WTAP, KIAA1429 and RBM15/RBM15B. The two 

major erasers, FTO and ALKBH5, function as m6A 

demethylases. Furthermore, there are binding proteins 

called readers [14], represented by YTHDC, IGF2BP 

and HNRNPC, which recognize specifically modified 

RNA to exercise different subsequent reactions, 

including translation and degradation. Recently, 

emerging studies reported that the above mentioned 

m6A regulators were of great significance in 

tumorigenesis [15–17], tumor progression [18, 19] and 

metastasis [20]. For example, the writer METTL14 

could suppress UVB-induced skin tumorigenesis and 

act as a critical epitranscriptomic mechanism to 

facilitate global genome repair which is essential for 

preventing mutagenesis and skin cancer [17]. Moreover, 

Bo Tang and his colleagues revealed that the eraser 

ALKBH5 suppressed pancreatic cancer tumorigenesis 

through promoting transcription of WIF-1 mRNA and 

inhibiting Wnt signaling pathway in a m6A dependent 

manner [21]. Additionally, the reader YTHDF1 could 

promote translation of autophagy-related genes ATG2A 

and ATG14 by binding to m6A-modified ATG2A and 

ATG14 mRNA, which facilitated autophagy and 

autophagy-related human hepatocellular carcinoma 

progression [15]. YTHDF1 could also enhance 

ferroptosis by promoting the activation of autophagy 

and BECN1 mRNA stability in hepatic stellate cells 

[22]. Overall, there are high-complexity links between 

m6A and different types of programmed cell death, 

which are closely related with the initiation, progression 

and resistance of cancer [23]. Furthermore, there is 

increasing evidence suggesting that dysregulated 

expression of m6A regulators exists in major types of 

cancers and correlates with poor prognosis. However, 

these survival data were contradictory among different 

cancer types and regulators, suggesting that a meta-

analysis is required to identify prognostic markers. 

Therefore, in this study, we conducted a systematic 

review and meta-analysis to assess the prognostic and 

clinicopathological value of m6A regulators in cancer 

patients. 

 

RESULTS 
 

Study characteristics 
 

The literature selection is presented in Figure 1, and the 

characteristics of eligible studies are shown in Table 1. 

A total of 3069 relevant studies were retrieved through 

an initial search. Among them, 915 duplicated records 

and 1944 unrelated records were excluded based on title 

or abstract. We subjected 210 studies to full-text 

screening, of which 159 studies were excluded because 

they did not meet the inclusion criteria. The remaining 

51 articles were further assessed for quality by the 

Newcastle-Ottawa Scale (NOS) system, and only high-

quality studies (NOS ≥ 6) were included in the meta-

analysis. Finally, we included 49 cohort studies [6, 15, 

24–70] comprising 7006 patients. All studies were 

published between 2017 and 2022. Forty-eight studies 

were conducted in Asia and one was conducted in 

Europe. Sample size ranged from 31 to 603 patients per 

study. In 49 included studies, 27 studies involved m6A 

writers, 15 studies referred to erasers and 9 studies were 

related to readers. The included studies totally reported 

20 types of cancers, including digestive system cancer (n 

= 33), respiratory system cancer (n = 6), urinary system 

cancer (n = 4), female reproductive system cancer (n = 

2) and others (n = 4). With respect to survival data, 48 

studies reported overall survival (OS), 9 studies 

presented disease-free survival (DFS), and 4 studies 

showed relapse-free survival (RFS). 

 

Expression of m6A regulators and prognosis of 

cancer patients 

 

Based on the type of m6A writers, we carried out meta-

analysis and found that high expression of METTL3 

had an unfavorable effect on OS (HR = 1.75; 95% CI: 

1.32–2.31, p < 0.001; I2 = 78.1%, p < 0.001; Figure 2, 

Table 2) and DFS (HR = 2.02; 95% CI: 1.54–2.64, p < 

0.001; I2 = 52%, p = 0.052; Figure 3, Table 2) in cancer 

patients. Similarly, high expression of KIAA1429 was 

associated with poor OS (HR = 2.35; 95% CI: 1.40–

3.93, p = 0.001; I2 = 37.2%, p = 0.207; Figure 2, 

Table 2). On the contrary, high expression of METTL14 

had a favorable effect on OS (HR = 0.55; 95% CI: 

0.43–0.69, p < 0.001; I2 = 0.0%, p = 0.392; Figure 2, 

Table 2). Furthermore, the expression of METTL16 was 

not significantly associated with OS in cancer patients 

(Figure 2, Table 2). Similarly, neither erasers nor 

readers were significantly associated with OS in cancer 

patients. (Figure 2, Table 2). We did not perform a 

meta-analysis of m6A regulators and RFS because there 

were not enough studies. 

 

Subgroup analysis for different m6A regulators and 

cancer types 

 

For further exploration, subgroup analyses were 

conducted according to cancer types. As shown in 
Table 3, high expression of METTL3 was correlated 

with poor OS (HR = 2.72; 95% CI: 1.81–4.07, p < 

0.001; I2 = 64.2%, p = 0.039) and DFS (HR = 2.58; 
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95% CI: 1.92–3.47, p < 0.001; I2 = 37.9%, p = 0.205) 

in gastric cancer. Moreover, high expression of 

METTL3 was significantly associated with poor OS in 

esophageal squamous cell carcinoma (HR = 2.20; 95% 

CI: 1.59–3.05, p < 0.001; I2 = 0.0%, p = 0.436) and 

oral squamous cell carcinoma (HR = 2.16; 95% CI: 

1.33–3.49, p = 0.002; I2 = 0.0%, p = 0.602). However, 

the expression of METTL3 or METTL14 was not 

significantly associated with OS in colorectal cancer. 

The expression of FTO was also not significantly 

associated with OS in gastric cancer and pancreatic 

cancer. Furthermore, we did not find a significant 

association between YTHDF1 and OS in 

osteosarcoma. 

 

Expression of m6A regulators and the 

clinicopathological parameters 

 

As shown in Figure 4 and Table 4, high expression of 

METTL3 was associated with advanced pT stage (OR = 

1.85; 95% CI: 1.40–2.45, p < 0.001; I2 = 47.4%, p = 

0.055), pN stage (OR = 2.37;  95% CI: 1.58–3.56, 

 

 
 

Figure 1. Flow diagram of reviewing and selecting studies. 
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Table 1. The main characteristics of included studies. 

Study 
m6A 

regulators 
Country Ethnicity Cancer types 

Follow-up 

(months) 

Sample size 

(M/F) 

TMN 

stage 

Cut-off 

value 
Outcome 

HR and 95% 

CI 

NOS 

score 
Status 

Yang 2020 (3) METTL14 China Asian Colorectal cancer NA 37 (27/10) I–IV 
score > 6 

(0–12) 
RFS Reported 6 Included 

Chen 2020 METTL14 China Asian Colorectal cancer NA 112 (74/38) I–IV > median OS Reported 7 Included 

Wang 2022 METTL14 China Asian Colorectal cancer 60 72 (44/28) I–IV NA 0S Reported 7 Included 

Deng 2019 METTL3 China Asian Colorectal cancer 72–108 181 (97/84) I–IV NA OS Reported 7 Included 

Li 2019 (1) METTL3 China Asian Colorectal carcinoma 80 

OS:432 

(257/175) 

DFS:389 

NA > median OS DFS 
OS: Reported 

DFS: Calculated 
6 Included 

Shengli 2022 METTL3 China Asian Colorectal cancer 60 111 (51/60) I–IV 
score ≥ 4 

(0–12) 
OS Calculated 7 Included 

Ma 2022 KIAA1429 China Asian Colorectal cancer 100 111 (75/36) I–IV NA OS Calculated 7 Included 

Yang 2020 (1) ALKBH5 China Asian Colon cancer 80 60 (25/35) I–IV 
score ≥ 4 

(0–12) 
OS DFS Reported 7 Included 

Ruan 2021 FTO China Asian Colorectal cancer 140 369 (209/160) I–III > median OS RFS Reported 6 Included 

Nishizawa 2018 YTHDF1 Japan Asian Colorectal cancer NA 63 (41/22) I–IV 
score = 2+ 

or 3+ (0–3) 
OS Reported 7 Included 

Yue 2019 METTL3 China Asian Gastric cancer NA 120 (79/41) I–IV NA OS DFS Reported 7 Included 

Wang 2020 METTL3 China Asian Gastric cancer 60 83 (61/22) I–IV 
score > 7 

(0-–12) 
OS Reported 6 Included 

Yang 2020 (2) METTL3 China Asian Gastric cancer 21-84 

OS:196 

(131/65) 

DFS:156 

I–IV 
score > 145 

(0-300) 
OS DFS Reported 8 Included 

Sun 2020 METTL3 China Asian Gastric cancer NA 
OS:80 RFS:58 

(NA) 
I–IV 

score = 2+ 

or 3+ (0–3) 
OS RFS Reported 7 Included 

Wang 2021 (1) METTL16 China Asian Gastric cancer 49.1 231 (155/76) I–IV > median OS Reported 8 Included 

Liu 2021 METTL14 China Asian Gastric cancer 100 248 (183/65) I–IV 
score > 6 

(0–12) 
OS Reported 7 Included 

Li 2019 (2) 
FTO 

ALKBH5 
China Asian Gastric cancer 100 450 (308/142) I–IV 

score ≥ 6 

(0–12) 
OS Reported 6 Included 

Xu 2017 FTO China Asian Gastric cancer 60 128 (68/60) I–IV NA OS Reported 7 Included 

Yuan 2022 YTHDC2 China Asian Gastric cancer 80 120 (86/34) I–IV NA OS Reported 6 Included 

Xia 2019 METTL3 China Asian Pancreatic cancer 15-26 40 (35/5) I–III > median OS Calculated 6 Included 

Guo 2020 ALKBH5 China Asian Pancreatic cancer 60 42 (19/23) I–III median OS Calculated 7 Included 

Zeng 2021 FTO China Asian Pancreatic cancer NA 50 (27/23) I–IV > average  OS Calculated 8 Included 

Tan 2022 FTO China Asian Pancreatic cancer NA 209 (NA) I–IV 
score > 6 

(0–12) 
OS Reported 8 Included 

Li 2021 YTHDF1 China Asian 
Hepatocellular 

carcinoma 
60 120 (32/88) I–III NA OS DFS Reported 7 Included 

Ma 2017 METTL14 China Asian 
Hepatocellular 

carcinoma 
NA 220 (193/27) I–IV > median OS RFS Calculated 3 

Not 

included 

Xu 2022 (1) METTL3 China Asian 
Intrahepatic 

cholangiocarcinoma 
NA 96 (53/43) I–IV > median OS DFS 

OS: Reported 

DFS: Calculated 
6 Included 

Ye 2020 FTO China Asian Liver cancer 60 309 (NA) I–III 
score ≥ 6 

(0–12) 
OS Reported 7 Included 

Wang 2021 (2) METTL3 China Asian 

Oesophageal 

squamous cell 

carcinoma 

NA 81 (64/17) I–IV 
score > 300 

(0–400) 
OS Calculated 7 Included 

Xia 2020 METTL3 China Asian 

Esophageal 

squamous cell 

carcinoma 

108 207 (151/56) I–IV 
score > 8 

(0–12) 
OS DFS Reported 7 Included 

Nagaki 2020 
FTO 

ALKBH5 
Japan Asian 

Esophageal 

squamous cell 

carcinoma 

41.5–60  177 (153/24) NA 
score = 2+ 

or 3+ (0–3) 
OS 

ALKBH5: 

Reported FTO: 

Calculated 

6 Included 

Liu 2020 METTL3 China Asian 
Oral squamous cell 

carcinoma 
3–106 101 (68/33) I–IV 

Youden 

index 
OS Reported 7 Included 
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Xu 2021 METTL3 China Asian 
Oral squamous cell 

carcinoma 
80 94 (51/43) I–IV 

score ≥ 4 

(0–12) 
OS Calculated 7 Included 

Guo 2022 METTL3 China Asian 

Head and neck 

squamous cell 

carcinoma 

80 100 (99/1) I–IV 
score ≥ 8 

(0–12) 
OS Reported 7 Included 

Chen 2021 METTL3 China Asian Gallbladder-cancer NA 120 (57/63) I–IV > median OS DFS Reported 6 Included 

Yang 2021 FTO China Asian 
Lung 

adenocarcinoma 
120 83 (55/28) I–IV 

score ≥ 6 

(0–8) 
OS Calculated 8 Included 

Huang 2018 ALKBH5 China Asian 
Lung 

adenocarcinoma 
3–125 88 (47/41) I–IV 

HSCORE > 

100% 
OS Reported 7 Included 

Xu 2022 (2) YTHDF2 China Asian 
Lung squamous cell 

carcinoma 
60 73 (66/7) I–III > median OS Reported 7 Included 

Tsuchiya 2021 
YTHDF1 and 

YTHDF2 
Japan Asian 

Non–small-cell lung 

cancer 
NA 603 (414/189) I–IV 

YTHDF1: 

score > 

118(0-300) 

YTHDF2: 

score > 118 

(0–300) 

OS RFS Reported 6 Included 

Lu 2020 METTL3 China Asian 
Nasopharyngeal 

carcinoma 

10.33–

91.67  
55 (30/25) I–IV 

score > 3 

(0–9) 
OS DFS 

OS: Reported 

DFS: Calculated 
7 Included 

Du 2022 IGF2BP3 China Asian 
Nasopharyngeal 

carcinoma 
150 70 (56/14) I–IV NA OS Reported 7 Included 

Gu 2019 METTL14 China Asian Bladder cancer NA 98 (NA) NA NA OS Calculated 3 
Not 

included 

Han 2019 METTL3 China Asian Bladder cancer 60–96 180 (141/39) I–IV 
score > 3 

(0–9) 
OS Calculated 7 Included 

Yu 2021 ALKBH5 China Asian Bladder cancer 60 161 (124/37) I–IV 
score ≥ 8 

(0–12) 
OS Calculated 7 Included 

Li 2017 METTL3 China Asian Renal cell carcinoma 100 145 (89/56) I–IV NA OS Reported 7 Included 

Zhang 2020 ALKBH5 China Asian Renal cell carcinoma 100 96 (60/36) I–IV 
score ≥ 8 

(0–12) 
OS Calculated 7 Included 

Niu 2019 FTO China Asian Breast tumor 96 53 (0/53) NA NA OS Calculated 7 Included 

Hua 2018 METTL3 China Asian Ovarian carcinoma NA 162 (0/162) I–IV > median OS Reported 8 Included 

Lin 2022 METTL3 China Asian Thyroid carcinoma 36 80 (25/55) I–IV > median OS Calculated 6 Included 

Orouji E 2020 YTHDF1 Germany European 
Merkel cell 

carcinoma 
NA 31 (NA) NA score > 8 OS Calculated 7 Included 

Li 2020 

WTAP, 

KIAA1429, 

RBM15, 

RBM15B, 

METTL3, 

METTL14, 

METTL16, 

HNRNPC, 

HNRNPA2B1, 

YTHDF1, 

YTHDF2, 

YTHDF3, 

YTHDC1, 

FTO, 

ALKBH5 

China Asian Osteosarcoma 60 120 (NA) NA score > 6 OS Reported 6 Included 

Wei 2022 YTHDF1 China Asian Osteosarcoma 60 56 (NA) I–IV > median OS Calculated 6 Included 

Abbreviations: CI: confidence interval; HR: hazard ratio; OS: overall survival; DFS: disease-free survival; RFS: relapse-free survival; NA: not available; F: 
female; M: male. 

 

Table 2. Summary of the meta-analysis of m6A regulators and prognosis in cancer patients. 

Regulators Outcome Studies HR 95% Cl P-value 
Heterogeneity 

Effects model 
I2 P-value 

METTL3 
OS 21 1.75 1.32–2.31 0 78.10% 0 Random 

DFS 7 2.02 1.54–2.64 0 52% 0.052 Random 
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METTL14 OS 4 0.55 0.43–0.69 0 0.00% 0.392 Random 

KIAA1429 OS 2 2.35 1.40–3.93 0.001 37.20% 0.207 Random 

METTL16 OS 2 1.75 0.84–3.65 0.137 82.20% 0.018 Random 

ALKBH5 OS 8 1.09 0.75–1.57 0.657 62.50% 0.009 Random 

FTO OS 10 1.01 0.72–1.41 0.966 74.70% 0 Random 

YTHDF1 OS 6 1.21 0.67–2.18 0.532 72.10% 0.003 Random 

YTHDF2 OS 3 0.9 0.52–1.57 0.715 80.10% 0.007 Random 

Abbreviations: CI: confidence interval; HR: hazard ratio; OS: overall survival; DFS: disease-free survival. 
 

 
 

Figure 2. Forest plots for the association of m6A writers (A), erasers (B) and readers (C) with OS in cancer patients. 
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Table 3. Subgroup analysis of the correlation between m6A regulators and cancer prognosis based on cancer types. 

Regulators Cancer types Outcome Studies HR 95% Cl P-value 
Heterogeneity 

Effects model 
I2 P-value 

METTL3 

oral squamous 
cell carcinoma 

OS 2 2.16 1.33–3.49 0.002 0.00% 0.602 Fix 

esophageal 
squamous cell 

carcinoma 
OS 2 2.2 1.59–3.05 0 0.00% 0.436 Fix 

gastric cancer OS 4 2.72 1.81–4.07 0 64.20% 0.039 Random 

gastric cancer DFS 2 2.58 1.92–3.47 0 37.90% 0.205 Fix 

colorectal 
cancer 

OS 3 1.59 0.48–5.26 0.448 92.9%,  0 Random 

METTL14 
colorectal 

cancer 
OS 2 0.51 0.26–1.00 0.051 53.50% 0.142 Random 

FTO 

pancreatic 
cancer 

OS 2 1.32 0.48–3.60 0.586 65.90% 0.087 Random 

gastric cancer OS 2 1.15 0.47–2.81 0.756 92.40% 0 Random 

YTHDF1 osteosarcoma OS 2 0.95 0.58–1.54 0.833 0.00% 0.337 Fix 

Abbreviations: CI: confidence interval; HR: hazard ratio; OS: overall survival; DFS: disease-free survival. 

 

p < 0.001; I2 = 63.7%, p = 0.001), TNM stage (OR = 

2.61; 95% CI: 2.03–3.36, p < 0.001; I2 = 12.7%, p = 

0.323), tumor size >5 cm (OR = 2.33; 95% CI: 1.51–

3.61, p < 0.001; I2 = 0.0%, p = 0.886) and vascular 

invasion (OR = 1.47; 95% CI: 1.05–2.05, p = 0.024; I2 = 

0.0%, p = 0.508). Conversely, high expression of  

 

 
 

Figure 3. Forest plots for the association of m6A regulators with DFS in cancer patients. 
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Table 4. The correlations between m6A regulators with clinicopathological characteristics in cancer patients. 

m6A 
regulator 

Clinicopathological 
feature 

Studies 
(n) 

Patients 
(n) 

References OR (95% CI) 
P 

value 

Heterogeneity 
Effects 
model I² 

(%) 

P 

value 

METTL3 

Depth of invasion 
(T3–T4 vs. T1–T2) 

9 1057 

Hua 2018; Lu 2020; Wang 
2020; Xia 2020; Xu 2021; 
Yang 2020 (2); Xia 2019; 

Chen 2021; Guo 2022 

1.85 (1.40–2.45) 0.000 47.4 0.055 Fix 

Lymph Node 
Metastasis 

13 1421 

Liu 2020; Chen 2021; Guo 
2022; Sun 2020; Lin 2022; 
Xia 2020; Xu 2022 (1); Xia 
2019; Hua 2018; Lu 2020; 

Wang 2020; Yang 2020 (2); 
Xu 2021 

2.37 (1.58–3.56) 0.000 63.7 0.001 Random 

TNM Stage  
(T3–T4 vs. T1–T2) 

11 1303 

Xia 2019; Sun 2020; Xia 
2020; Chen 2021; Lin 2022; 
Yang 2020 (2); Xu 2022 (1); 
Shengli 2022; Wang 2020; 

Deng 2019; Liu 2020 

2.61 (2.03–3.36) 0.000 12.7 0.323 Fix 

Tumor size  
(>5 cm vs ≤ 5 cm) 

3 375 
Wang 2020; Xu 2022 (1); 

Yang 2020 (2) 
2.33 (1.51–3.61) 0.000 0.0 0.886 Fix 

Vascular invasion 4 781 
Sun 2020; Li 2019 (1); Xu 

2022 (1); Yue 2019 
1.47 (1.05–2.05) 0.024 0.0 0.508 Fix 

Distant metastasis 9 1091 

Chen 2021; Shengli 2022; Xu 
2022 (1); Deng 2019; Sun 
2020; Hua 2018; Lu 2020; 
Wang 2020; Yang 2020 (2) 

1.93 (0.99–3.78) 0.054 67.5 0.002 Random 

Clinical stage  
III–IV vs. II–II 

4 688 
Guo 2022; Li 2019 (1); Liu 

2020; Lu 2020 
1.05 (0.28–3.91) 0.936 89.7 0.000 Random 

Differentiation (Poor 
vs. Moderate/Well) 

4 997 
Li 2019 (1); Xia 2020; Yang 

2020 (2); Hua 2018 
1.22 (0.65–2.30) 0.529 73.3 0.011 Random 

Nerve invasion 3 724 
Xu 2022 (1); Yue 2019;  

Li 2019 (1) 
1.26 (0.92–1.74) 0.150 0.0 0.666 Fix 

METTL14 

Depth of invasion 
(T3–T4 vs. T1–T2) 

2 285 Liu 2021; Yang 2020 (3) 0.27 (0.13–0.58) 0.001 0.0 0.739 Fix 

Lymph Node 
Metastasis 

3 357 
Wang 2022; Yang 2020 (3); 

Liu 2021 
0.26 (0.09–0.73) 0.011 60.6 0.079 Random 

Distant metastasis 2 285 Liu 2021; Yang 2020 (3) 0.12 (0.03–0.46) 0.002 0.0 0.497 Fix 

TNM Stage  
(T3–T4 vs. T1–T2) 

4 466 
Chen 2020; Liu 2021; Wang 

2022; Yang 2020 (3) 
0.21 (0.13–0.34)  0.000 0.0 0.575 Fix 

Tumor size  
(>5 cm vs. ≤5 cm) 

2 285 Liu 2021; Yang 2020 (3) 0.32 (0.05–2.14) 0.241 79.6 0.027 Random 

ALKBH5 

Vascular invasion 2 102 Guo 2020; Yang 2020 (1) 0.39 (0.17–0.92) 0.032 6.3 0.301 Fix 

Clinical stage  
(III–IV vs. I– II) 

2 148 Yang 2020 (1); Huang 2018 0.98 (0.07–13.96) 0.988 91.9 0.000 Random 

Depth of invasion 
(T3–T4 vs. T1–T2) 

4 775 
Nagaki 2020; Huang 2018; Li 

2019 (2); Yang 2020 (1) 
0.84 (0.45–1.54) 0.564 56.7 0.074 Random 

Differentiation (Poor 
vs. Moderate/Well) 

4 729 
Guo 2020; Li 2019 (2); Yang 

2020 (1); Nagaki 2020 
0.81 (0.41–1.59) 0.532 54.8 0.085 Random 

Distant metastasis 2 510 Li 2019 (2); Yang 2020 (1) 0.37 (0.02–5.60) 0.475 71.7 0.060 Random 

Lymph Node 
Metastasis 

5 936 
Li 2019 (2); Yu 2021; Nagaki 

2020; Huang 2018; Yang 
2020 (1) 

0.94 (0.51–1.75) 0.851 65.4 0.021 Random 

TNM Stage  
(T3–T4 vs. T1–T2) 

3 715 
Huang 2018; Nagaki 2020; Li 

2019 (2) 
1.03 (0.52–2.06) 0.925 69.3 0.039 Random 

FTO 

Depth of invasion 
(T3-T4 vs. T1–T2) 

2 578 Xu 2017; Li 2019 (2) 0.89 (0.62–1.28) 0.533 0 0.623 Fix 

Differentiation (Poor 
vs. Moderate/Well) 

4 997 
Ruan 2021; Xu 2017; Li 2019 

(2); Zeng 2021 
0.77 (0.34–1.77) 0.537 78.3 0.003 Random 

Distant metastasis 3 902 Xu 2017; Li 2019 (2); Ye 2020 1.19 (0.72–1.95) 0.502 0 0.515 Fix 

Lymph Node 
Metastasis 

3 628 
Xu 2017; Li 2019 (2); Zeng 

2021 
0.76 (0.22–2.67) 0.671 83.5 0.002 Random 
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Nerve invasion 2 419 Ruan 2021; Zeng 2021 0.71 (0.42–1.22) 0.218 0 0.687 Fix 

TNM Stage  
(T3–T4 vs. T1–T2) 

4 997 
Ruan 2021; Zeng 2021; Xu 

2017; Li 2019 (2) 
0.98 (0.42–2.29) 0.969 82.8 0.001 Random 

YTHDF1 

Distant metastasis 2 113 Nishizawa 2018; Wei 2022 8.59 (2.58–28.60) 0.000 0.0 0.863 Fix 

Tumor size  
(>5 cm vs ≤5 cm) 

2 170 Li 2021; Wei 2022 4.75 (2.47–9.14) 0.000 0.0 1.000 Fix 

Lymph Node 
Metastasis 

3 716 
Wei 2022; Nishizawa 2018; 

Tsuchiya 2021 
1.73 (0.38–7.80) 0.476 84.1 0.002 Random 

TNM Stage  
(T3–T4 vs. T1–T2) 

3 716 
Wei 2022; Nishizawa 2018; 

Tsuchiya 2021 
1.83 (0.42–7.94) 0.418 88.4 0.000 Random 

Vascular invasion 2 183 Li 2021; Nishizawa 2018 1.55 (0.21–11.37) 0.665 85.7 0.008 Random 

YTHDF2 

Lymph Node 
Metastasis 

2 676 Tsuchiya 2021; Xu 2022 (2) 1.59 (0.20–12.53) 0.660 92.9 0.000 Random 

TNM Stage  
(T3–T4 vs. T1–T2) 

2 676 Tsuchiya 2021; Xu 2022 (2) 1.85 (0.30–11.54) 0.512 90.0 0.002 Random 

Abbreviations: CI: confidence interval; OR: odds ratio. 

 

METTL14 correlated negatively with pT stage (OR = 

0.27; 95% CI: 0.13–0.58, p = 0.001; I2 = 0.0%, p = 

0.739), pM stage (OR = 0.12; 95% CI: 0.03–0.46, p = 

0.002; I2 = 0.0%, p = 0.497), pN stage (OR = 0.26; 95% 

CI: 0.09–0.73, p = 0.011; I2 = 60.6%, p = 0.079) and 

TNM stage (OR = 0.21; 95% CI: 0.13–0.34, p < 0.001; 

I2 = 0.0%, p = 0.575). Meanwhile, there was a statistical 

association between overexpression of ALKBH5 and 

negative vascular invasion (OR=0.39; 95%CI: 0.17-

0.92, p = 0.032; I2 = 6.3%, p = 0.301, Figure 5). 

Furthermore, overexpression of YTHDF1 was 

associated with advanced pM stage (OR = 8.59; 95% 

CI: 2.58–28.60, p < 0.001; I2 = 0.0%, p = 0.863, Figure 

5) and tumor size >5 cm (OR = 4.75; 95% CI: 2.47–

9.14, p < 0.001; I2 = 0.0%, p = 1.000, Figure 5). 

Sensitivity analysis 

 

We omitted individual studies successively to estimate 

the impact of each study in our meta-analysis. No 

individual study modified the pooled HR of included 

studies reporting OS or DFS significantly, which proved 

that the results were stable (Figure 6). 

 

Publication bias 

 

Funnel plots were generated to detect publication bias 

(Figure 7). The studies were distributed uniformly 

around the axis, indicating no obvious publication bias. 

Meanwhile, no obvious publication bias was found 

according to Begg’s test and Egger’s test (Table 5). 

 

 
 

Figure 4. Forest plots for the association of METTL3 (A) and METTL14 (B) with clinicopathological parameters in cancer patients. 
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DISCUSSION 
 

m6A modification, a reversible epigenetic modification 

regulated by three types of proteins (writers, erasers and 

readers), plays a complicated role in cancer initiation 

and development [14, 71, 72]. Recent studies have 

explored how m6A regulators influenced the prognosis 

of cancer patients. However, results were frequently 

inconsistent among different cancer types. Therefore, a 

comprehensive study to summarize the results from 

current publications is necessary. To report prognostic 

value of m6A regulators in cancer patients, we analyzed 

the survival time and clinicopathological features of 

7006 patients from 49 studies who expressed different 

levels of m6A regulators. Results showed that 

expression level of m6A writers was related to cancer 

prognosis. In addition, different m6A writers had 

opposite associations with the prognosis and clinico-

pathological features in cancer patients. According to 

the results, there was a possible trend for poor OS and 

DFS in patients with the high expression of METTL3. 

Similarly, previous bioinformatic analysis from 

databases like TCGA, GEO and HPA, supported that 

high expression of METTL3 was correlated with 

unfavorable prognosis in various cancers, including 

gastric cancer [73], colorectal cancer [74], liver cancer 

[75], prostate cancer [76] and glioma [77]. In most of 

these databases, RNA-seq was used to detect the level 

of METTL3. Moreover, a previous meta-analysis 

including 9 studies showed that high METTL3 

expression was associated with poor prognosis in cancer 

patients, and the expression of METTL3 in included 9 

studies were all detected by qRT-PCR. While in the 

studies included in our analysis, METTL3 was detected 

only by IHC staining. Combining our studies with the 

results from databases, we can conclude that METTL3 

is related to cancer prognosis at protein level, which 

strongly suggests that it could be a prognostic predictor. 

Additionally, this tendency was more prominent in 

gastric cancer. Previous studies indicated that in human 

gastric cancer cells, high expression of METTL3 

stimulates the expression of GLUT4 and ENO2 via the 

METTL3/HDGF axis, thereby promoting tumor 

angiogenesis and glycolysis [6]. Moreover, Ben Yue et 

al. unveiled that METTL3 stabilized ZMYM1 mRNA in 

gastric cancer cells, which facilitated EMT and 

metastasis by repressing E-cadherin promoter [26]. 

These might account, at least to some extent, for the 

poor survival of patients with gastric cancer. 

Furthermore, aberrant expression of METTL3 was 

involved in the dysfunction of cellular signaling 

pathways, such as MAPK [74], JAK/STAT [78], 

PI3K/AKT [79, 80] and Wnt/β-catenin [81] cascades, 

which are involved in tumor progression, metastasis, 

migration and stemness. We also found that high 

expression of METTL3 was associated with advanced 

 

 
 

Figure 5. Forest plots for the association of ALKBH5 (A), FTO (B), YTHDF1 (C) and YTHDF2 (D) with clinicopathological parameters in cancer 

patients. 
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TNM stage and pT stage, pN stage, tumor size >5 cm 

and vascular invasion respectively. Therefore, based on 

these current results, we believe that METTL3 plays an 

important role in multiple stages of cancer progression 

and ultimately affects prognosis. Interestingly, in 

contrast to METTL3, METTL14, another m6A 

methylation writer, might be a positive prognosticator. 

Previous studies have shown that METTL14 might have 

various functions that have not been fully identified yet, 

thus its role in cancer remained controversial [82]. In 

this study, our result confirmed that high level of 

METTL14 was associated with better OS. Different 

studies have reported that METTL14 suppressed 

progression and metastasis in several cancers, such as 

colorectal cancer [83] and hepatocellular carcinoma 

[84]. Besides, Panneerdoss et al. found that in 

METTL14-silenced breast cancer cells, RhoA and 

PI3K-AKT signaling pathways were highly enriched,  

 

 
 

Figure 6. Sensitivity analysis of METTL3 (A), METTL14 (B), ALKBH5 (C), FTO (D), and YTHDF1 (E) for OS. Sensitivity analysis of METTL3 (F) for 

DFS. 
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Table 5. Publication bias test of included studies in our meta-analysis. 

Regulators Outcome Begg’s test (P value) Egger’s test (P value) 

METTL3 OS 0.415 0.319 

METTL4 OS 0.308 0.229 

ALKBH5 OS 0.174 0.290 

FTO OS 0.592 0.571 

YTHDF1 OS 0.260 0.117 

METTL3 DFS 0.230 0.083 

Abbreviations: OS: overall survival; DFS: disease-free survival. 
 

 
 

Figure 7. Funnel plot of METTL3 (A), METTL14 (B), ALKBH5 (C), FTO (D) and YTHDF1 (E) for OS. Funnel plot of METTL3 (F) for DFS. 
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which are well-known to be mediators of cancer 

progression and angiogenesis [85]. Moreover, our study 

showed that high expression of METTL14 was 

inversely associated with poor TNM stage, pT stage, pN 

stage and pM stage. Combining the results of other 

studies and ours, we inferred that METTL14 plays  

a role in cancer suppression and could be a 

favorable index of cancer progression and prognosis. 

Moreover, METTL3 and METTL14 show completely 

contrary effects on cancer progression, indicating that 

METTL3 and METTL14 may have some biological 

functions that are independent of m6A modification, 

which deserves further study. 

 

Besides, from the analysis results of clinicopathological 

features, high expression of YTHDF1 was associated 

with advanced pM stage and tumor size >5 cm, while 

high expression of ALKBH5 was negatively associated 

with vascular invasion. Consistently, a recent study 

reported that YTHDF1 regulates CRC tumorigenesis 

and metastasis by promoting ARHGEF2 translation and 

RhoA signaling in colorectal cancer [20]. High 

YTHDF1 level is significantly associated with 

metastatic gene signature in colorectal cancer, while 

YTHDF1-knockout mice inhibited tumor growth in vivo 

[20]. Therefore, targeting the YTHDF1-m 6 A-

ARHGEF2 axis may be a promising therapeutic 

strategy to inhibit tumor growth, invasion, and 

metastasis. In addition, ALKBH5, as the second m6A 

demethylated enzyme discovered after FTO, was 

reported to promote tumor stem formation in gliomas 

and promote tumor progression in breast cancer, colon 

cancer and hepatocellular carcinoma [85, 86]. 

Conversely, ALKBH5 could inhibit tumor growth in 

bladder cancer and pancreatic cancer. These findings 

suggest the complexity of the action of ALKBH5 in 

cancers. However, no significant relationship was found 

between high expressions of m6A erasers or readers and 

poor prognosis. Limitation of sample size and a certain 

degree of heterogeneity may partly account for this. 

Additionally, the mechanisms of m6A modification and 

cancers are complicated [87]. Therefore, more studies 

are needed to provide further mechanistic insights. 

 

To the best of our knowledge, this is the first study to 

conduct a meta-analysis of the association between 

m6A regulators and the prognosis and clinicopathology 

in cancer patients systematically. Nonetheless, there are 

still several limitations in our meta-analysis. First, 

several original data were not available, therefore we 

had to extract data from the Kaplan-Meier survival 

curves and this might increase the inaccuracy in our 

study. Secondly, the ethnicity of included patients was 
mostly Asian, which may increase the population 

selection bias. Thirdly, IHC was adopted to detect the 

expression of m6A regulators in all studies, but the IHC 

protocols, antibodies and cut-off values were not 

consistent across the included studies, which may have 

led to significant heterogeneity between included 

studies. Therefore, future research should standardize 

the cut-off values for the expression of m6A regulators, 

detection antibodies used and IHC staining protocols to 

better compare the results of different studies. In 

summary, our meta-analysis provides evidence that the 

expression level of m6A writers is related to cancer 

progression and prognosis. Different m6A writer 

proteins play different roles in patients’ outcome: high 

expression level of METTL3 is significantly associated 

with poor prognosis, while high expression of 

METTL14 leads to better survival rate. Both m6A 

regulators possess a great potential to become 

practicable prognosticators in various cancers. 
Meanwhile, future studies with more complete and 

representative datasets are required for further 

exploration. 

 

METHODS 
 

Literature search 
 

Relevant articles published up to April 2022 were 

obtained from PubMed, Embase, Web of Science and 

the Cochrane library. There were no restrictions on 

language or date of publication. “N (6)-

methyladenosine” and “cancers” were the two main key 

words we used. The comprehensive search strategy for 

each database is provided in Supplementary Table 1. 

All references were managed using EndNote X9. Three 

reviewers independently analyzed search results. Any 

disagreements between reviewers were resolved by 

discussion. 

 

Inclusion and exclusion criteria 
 

The process of selecting eligible studies was conducted 

by three reviewers independently. Articles were included 

when they met the following inclusion criteria: (1) the 

text evaluated the relation between m6A regulators 

expression and cancer prognosis; (2) HR and 95% CI 

were reported or could be calculated from the text; (3) 

original research; (4) the expression of m6A regulators 

in tissues was detected by immunohistochemistry; (5) 

patients were confirmed cancers definitively. The 

exclusion criteria were: (1) reviews, letters, meeting 

abstracts; (2) nonhuman studies; (3) sample cases were 

from databases; (4) duplicate data; (5) studies did not 

provide necessary and complete data. 

 

Data extraction and quality assessment 
 

The following information were extracted from eligible 

studies independently by three researchers: author, 
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published year, country, m6A regulators, cancer types, 

cancer stage, sample size, gender, cut-off value of m6A 

regulators and survival data including OS, DFS and 

RFS. The HR with its 95% CI were extracted from the 

text directly or calculated from Kaplan-Meier survival 

curve using Engauge Digitizer. The quality of the 

included studies was evaluated using the Newcastle 

Ottawa Scale (NOS) criteria. NOS scores range from 0 

to 9. It would be considered as high-quality study if 

score was more than 5; otherwise, it would be 

considered as low-quality study. Only studies with NOS 

≥ 6 were finally selected for inclusion in meta-analysis. 

Disagreements were resolved by discussion. 

 

Statistical analysis 

 

The pooled HR and 95% CI were used to evaluate the 

relation between m6A regulators and cancer prognosis 

(OS, DFS and RFS). The pooled odds ratio (OR) and 

95%CI were used to evaluate the relationship between 

m6A regulators and clinicopathological parameters. 

HRs or ORs >1 represented a poor prognosis in cancer. 

Heterogeneity among the studies was evaluated by 

Coltrane’s Q statistic and the I2 statistic. If a p < 0.1 or 

I2 > 50%, we applied a random-effect model. 

Otherwise, a fixed-effect model was applied. Subgroup 

analysis was conducted according to cancer types. In 

the sensitivity analysis, we omitted individual studies 

successively to estimate the impact of each study in our 

meta-analysis. Begg’s test and Egger’s test were used to 

evaluate publication bias. A two-tailed p value < 0.05 

was considered statistically significant in all statistical 

tests. All data analyses were performed using 

StataSE15.1 (Stata Corporation, College Station, TX, 

USA). 

 

Abbreviations 
 

METTL3: Methyltransferase Like 3; METTL14: 

Methyltransferase Like 14; METTL16: 

Methyltransferase Like 16; RBM15: RNA-binding 

protein 15; RBM15B: Putative RNA-binding protein 

15B; HNRNPC: Heterogeneous nuclear 

ribonucleoproteins; HNRNPA2B1: Heterogeneous 

nuclear ribonucleoproteins A2/B1; YTHDF1: YTH 

domain-containing family protein 1; YTHDF2: YTH 

domain-containing family protein 2; YTHDF3: YTH 

domain-containing family protein 3; YTHDC1: YTH 

domain-containing protein 1; FTO: Alpha-

ketoglutarate-dependent dioxygenase FTO; ALKBH5: 

RNA demethylase ALKBH5; OS: overall survival; 

DFS: disease-free survival; RFS: recurrence-free 

survival; HR: hazard ratio; OR: odds ratio; M/F: 

male/female; NA: not available; cut-off value: the value 

that can be diagnosed as positive/high expression of a 

m6A regulator; IHC: immunohistochemistry; IF: 

immunofluorescence; qRT-PCR: quantitative reverse 

transcription polymerase chain reaction; P: prospective; 

CI: confidence interval. 
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