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SUPPLEMENTARY MATERIALS 
 

Introduction 
 

Overview of DNAm clocks 

 

The DNAm clock measures were developed using 

supervised machine learning techniques to derive 

algorithms that capture DNAm patterns that predict a 

dependent variable of interest, or a surrogate of 

“biological age”. The dependent variables differ across 

the different types of clocks. 

 

First-generation clocks 

 

The first-generation clocks were trained to predict 

chronological age. 

 

Hannum et al. [1] developed an epigenetic clock (71 

CpGs) using whole blood samples from 656 individuals 

(426 Caucasian and 120 Hispanic) aged 19 to 101. The 

Hannum clock used in the current study does not 

include cell distribution data. However, for 

completeness, there is a version of the Hannum clock 

known as extrinsic epigenetic age acceleration (EEAA) 

that is a weighted average of Hannum’s estimate with 

naïve and exhausted CD8 T cells and plasma blasts and 

adjusted for chronological age [2]. 

 

Horvath [3] developed a multi-tissue epigenetic clock 

(353 CpGs) from 8,000 samples (82 different datasets) 

representing people across the lifespan. The Horvath 

clock used in the current study does not include cell 

distribution data; there is a version of the Horvath clock 

defined as the residual resulting from regressing 

Horvath’s DNAm age on chronological age and 7 blood 

cell types (naïve and exhausted CD8 T cells, plasma 

blasts, CD4 T cells, NK cells, monocytes, and 

granulocytes) and is known as intrinsic epigenetic age 

acceleration (IEAA) [4]. 

 

Second-generation clocks 

 

The second-generation clocks were optimized for 

lifespan prediction. Levine et al. [5] proposed the 

“PhenoAge” clock, which was developed in two steps. 

First, using data from the National Health and Nutrition 

Examination Survey (9,926 people ages 20 and over), 

they developed a measure of “phenotypic age” by 

selecting from 42 blood-based clinical markers those that 

predicted mortality. Based on this analysis, 9 blood-based 

clinical markers (see table below) and chronological age 

were selected and combined into a phenotypic age 

estimate and validated in a new sample to predict all-

cause mortality. In the second step, data from 465 

participants aged 21–100 years in the Invecchiare in 

Chianti (InCHIANTI) study were used to regress 

phenotypic age on CpG sites. From this, the PhenoAge 

clock (513 CpGs) was developed, which strongly relates 

to all-cause mortality and aging-related morbidity [5]. 

 

Phenotypic age Role 

Albumin Liver 

Alkaline phosphatase   Liver  

Creatinine Kidney 

Glucose, serum Metabolic 

C-reactive protein  Inflammation 

Lymphocyte percent  Immune 

Mean (red) cell volume Immune 

Red cell distribution width  Immune 

White Blood cell count  Immune 

 

Lu et al. [6] developed the “GrimAge” epigenetic clock 

in two steps. First, DNAm-based surrogates for self-

reported smoking pack-years and a selection of plasma 

proteins associated with morbidity and mortality were 

constructed from 2,356 individuals from the 

Framingham Heart Study offspring cohort (average age: 

66 years). Second, time-to-death due to all-cause 

mortality was regressed on age, sex, DNAm-based 

pack-years, and 7 DNAm-based surrogate plasma 

markers (see table below). The resulting mortality risk 

estimate was transformed into an age estimate, called 

GrimAge (1030 CpGs). 

 

DNAm based surrogates for plasma proteins Role 

Adrenomedullin Multiple functions  

Beta-2-microglublin Immune  
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Cystatin C Kidney 

GDF-15 Stress response 

Leptin  Metabolic  

Plasminogen activator inhibitor-1 (PAI-1)  Fibrinolytic   

Tissue inhibitor matrix metalloproteinase 1 (TIMP-1)  Matrix regulation  

 

Pace of aging measures 

 

Most recently, “pace of aging” measures were 

developed, which have been referred to as the third-

generation of DNAm clocks. Pace of aging measures 

differ from first- and second-generation clocks in that 

they are trained to predict longitudinal biomarker data. 

Belsky and colleagues developed the Dunedin PoAm 

(Pace of Aging from methylation; [7]) and Dunedin 

PACE (Pace of Aging Calculated from the Epigenome; 

[8]) measures. Both measures were developed using the 

Dunedin Study (52% male, 93% white), a longitudinal 

investigation of individuals born between April 1972 

and March 1973 in Dunedin, New Zealand.  

 

The pace of aging measures were developed in two 

steps, with slight differences highlighted. First, mixed-

effects growth curve models were used to estimate 

longitudinal changes over time in many blood-

chemistry and organ-system-function biomarkers across 

physiological systems (18 biomarkers for Dunedin 

PoAm; 19 biomarkers for Dunedin PACE – see table 

below). Biomarkers for Dunedin PoAm were measured 

across 12 years, at ages 26, 32, and 38. Biomarkers for 

Dunedin PACE were measured across 20 years, at ages 

26, 32, 38, and 45. In other words, these measures were 

trained in a cohort of same-aged individuals. The slopes 

were composited across the 18 or 19 biomarkers to 

calculate a participant’s “pace of aging” across 12 years 

(Dunedin PoAm) or 20 years (Dunedin PACE). Second, 

elastic-net regression analyses were used to select CpGs 

that predict the longitudinal pace of aging measures, 

resulting in Dunedin PoAm (46 CpGs) and Dunedin 

PACE (173 CpGs). Additional details for developing 

Dunedin PACE, including the selection of reliable CpG 

probes, are discussed in Belsky et al. [8]. 

 

 

(Bio)marker Role Dunedin PoAm Dunedin PACE 

Glycated hemoglobin (HbA1C) Metabolic  X X 

Cardiorespiratory fitness (VO2Max) Cardiovascular  X X 

Waist-hip ratio Anthropometric  X X 

Body mass index  Anthropometric X X 

FEV1/FVC ratio Pulmonary  X X 

FEV1 Pulmonary  X X 

Mean arterial pressure  Cardiovascular  X X 

Leukocyte telomere length  Immune  X (not included) 

Creatinine clearance (eGFR) Kidney  X X 

Blood urea nitrogen Kidney  X X 

Triglycerides Metabolic  X X 

Total cholesterol  Metabolic X X 

HDL cholesterol  Metabolic X X 

Lipoprotein (a) Metabolic X X 

Apolipoprotein B100/A1 ratio  Metabolic X X 

Gum health (combined attachment loss)  Periodontal X X 

Caries-affected tooth surfaces  Periodontal  (not included) X 

White blood cell count  Immune  X X 

High-sensitivity C-reactive protein  Inflammation  X X 

Leptin  Metabolic (not included) X 
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Principal components (PC)-based clocks 

Traditional epigenetic clocks use individual CpG sites as 

inputs to the epigenetic age algorithms, but individual 

CpGs are unreliable and noisy [9]. Therefore, Higgins-

Chen et al. proposed [10] that principal components 

analysis (PCA) can be used to enhance the reliability of 

traditional epigenetic clocks by extracting shared 

systematic variation across CpG sites (principal 

components, PCs) and feeding those PCs into the elastic 

net regressions to predict chronological age or other health 

phenotype. Higgins-Chen et al. provides R code that has 

users project their own DNAm data onto the original PCA 

space, which then allows PC-based clock outcomes to be 

estimated from new data. PC-based clocks show 

agreement between technical replicates (the same sample 

measured twice) within 0 to 1.5 years and more stable 

trajectories in longitudinal studies [10]. PC-based clocks 

have been used in other published studies (e.g., [11]). 

Supplementary Results 

Normed neuropsychological test scores 

The average normed scores for several individual 

neuropsychological tests at Time 1 and Time 2 are 

displayed below for each cognitive group (Decliners, 

Maintainers). The normed scores are represented as T-

scores (M[SD] = 50 [10]), with corresponding z-scores 

and percentile information. 

At T1, both cognitive groups had average or slightly 

above average normed test scores; when averaged 

across individual tests, Decliners were at the 60th 

percentile and Maintainers the 62nd percentile. At T2, 

Decliners were at the 49th percentile whereas 

Maintainers were at the 73nd percentile. 

Decliners Time 1 (T1) Time 2 (T2) 

T-score z-score Percentile T-score z-score Percentile 

Matrix Reasoning   57.58 0.76 77.6 59.21 0.92 82.2 

Digit Span total  57.4 0.74 77.0 51.4 0.14 55.6 

Stroop Word  48.79 −0.12 45.2 43.96 −0.60 27.3 

Stroop Color  48.25 −0.18 43.1 44.46 −0.55 29 

Stroop Color-Word 51.25 0.13 55 49.96 0 49.8 

Average  52.65 0.266 59.58 49.79 −0.018 48.78 

Maintainers Time 1 (T1) Time 2 (T2) 

T-score z-score Percentile T-score z-score Percentile 

Matrix Reasoning 58.21 0.82 79.4 63.42 1.3 91.0 

Digit Span total 54.3 0.43 66.6 57.2 0.72 76.5 

Stroop Word 53.08 0.31 62.1 52.65 0.27 60.5 

Stroop Color 51.67 0.17 56.6 52.35 0.24 59.3 

Stroop Color-Word 48.88 −0.11 45.5 57.13 0.71 76.2 

Average 53.23 0.32 62.04 56.55 0.65 72.7 
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