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ABSTRACT 
 

Background: Colon cancer (COAD) is the third-largest common malignant tumor and the fourth major cause of 
cancer death in the world. Endoplasmic reticulum (ER) stress has a great influence on cell growth, migration, 
proliferation, invasion, angiogenesis, and chemoresistance of massive tumors. Although ER stress is known to 
play an important role in various types of cancer, the prognostic model based on ER stress-related genes 
(ERSRGs) in colon cancer has not been constructed yet. In this study, we established an ERSRGs prognostic risk 
model to assess the survival of COAD patients. 
Methods: The COAD gene expression profile and clinical information data of the training set were obtained 
from the GEO database (GSE40967) and the test set COAD gene expression profile and clinical informative data 
were downloaded from the TCGA database. The endoplasmic reticulum stress-related genes (ERSRGs) were 
obtained from Gene Set Enrichment Analysis (GSEA) website. Differentially expressed ERSRGs between normal 
samples and COAD samples were identified by R “limma” package. Based on the univariate, lasso, and 
multivariate Cox regression analysis, we developed an ERSRGs prognostic risk model to predict survival in COAD 
patients. Finally, we verified the function of WFS1 in COAD through in vitro experiments. 
Results: We built a 9-gene prognostic risk model based on the univariate, lasso, and multivariate Cox regression 
analysis. Kaplan-Meier survival analysis and Receiver operating characteristic (ROC) curve revealed that the 
prognostic risk model has good predictive performance. Subsequently, we screened 60 compounds with 
significant differences in the estimated half-maximal inhibitory concentration (IC50) between high-risk and low-
risk groups. In addition, we found that the ERSRGs prognostic risk model was related to immune cell infiltration 
and the expression of immune checkpoint molecules. Finally, we determined that knockdown of the expression 
of WFS1 inhibits the proliferation of colon cancer cells. 
Conclusions: The prognostic risk model we built may help clinicians accurately predict the survival of patients 
with COAD. Our findings provide valuable insights into the role of ERSRGs in COAD and may provide new 
targets for COAD therapy. 
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INTRODUCTION 
 

Colon cancer (COAD) is the third-largest commonly 

diagnosed tumor and the fourth major cause of cancer-

associated mortality in the world [1]. Early COAD 

patients may be successfully cured by surgery. 

However, most advanced patients of COAD have 

experienced recurrence and metastases, and their five-

year survival rate is usually no more than 10% [2]. 

Owing to the development in surgical techniques, the 

mortality rate of COAD patients has significantly 

decreased. However, COAD patients still face poor 

prognosis because of increased postoperative 

complications and drug resistance [3, 4]. 

 

ER is one of the utmost organelles in cells and that is 

the main place for protein biosynthesis and folding, 

lipid and steroid hormones production, glucose 

metabolism, and calcium release [5]. Normal cellular 

function relies heavily on ER homeostasis. ER stress 

occurs in many conditions, such as oxidative stress, 

nutritional deficiency, accumulation of mutant proteins, 

hypoxia and metabolic stress, virus, and loss of calcium 

homeostasis [6, 7]. In response to ER stress, cells will 

initiate an adaptive reaction to solve ER stress and 

restore cell homeostasis, which is called unfolded 

protein response (UPR) [8]. Growing evidence indicates 

that ER stress and UPR perform vital functions during 

the progression of multiple tumors, such as colon 

cancer, hepatocellular carcinoma, and glioma [9, 10]. In 

addition, increased UPR activity affects a number of 

intracellular metabolic pathways, which ultimately 

shape the tumor microenvironment [11]. Thus, 

treatment strategies targeting components of the UPR 

and reducing ER stress will be promising therapeutic 

approaches. To our knowledge, the prognostic model 

relied on ER Stress-Related genes (ERSRGs) for 

COAD has not been reported. 

 

Herein, we built a prognostic model relied on ERSRGs 

for COAD and validated it in an external dataset. 

Afterwards, we explored the relationship between the 

ERSRGs signature and infiltration of immune cell in 

immune microenvironment. At last, we investigated 

the role of WFS1 in COAD through in vitro 

experiments. 

 

METHODS 
 

Data collection 

 

A total of 419 ER stress-associated genes are derived 

from the Gene Set Enrichment Analysis (GSEA) 
website. Gene expression profiles of GSE40967 

(training set) and its corresponding clinical 

characteristics are downloaded from the gene 

expression omnibus, containing 19 normal samples and 

566 tumor samples. Furthermore, gene expression 

profiles of 41 samples from normal colon tissue and 473 

samples from tumor specimens are derived from The 

Cancer Genome Atlas (TCGA) database (Downloaded 

2022.01.01), which is used as validation set. 

 

Removing batch effect 

 

We adjusted the test set to the training set using R 

“limma” package and R “sva” package. 

 

Identifying differentially expressed genes (DEGs) 

 

We detected DEGs between the tumor and normal 

tissues by R “limma” package. False discovery rate 

(FDR) <0.05 and |log2foldchange| >1 were set as the 

cutoff criteria. Then, heatmap was plotted with R 

heatmap package. Protein-protein interaction (PPI) 

network was built via STRING database. Cyto-hubba 

plug-in from Cytoscape software was performed to 

detect hub genes. 

 

Developing and validating a prognostic model relied 

on ERSRGs 

 

To determine which genes were associated with death, 

univariate Cox regression analyses were conducted 

using the training set. Candidates for ERSRGs 

associated with overall survival were those with  

p-value <0.05. By performing lasso regression, we 

were able to reduce the model complexity and 

multicollinearity by shrinking the coefficients. For the 

purpose of developing a survival model, we conducted 

multivariate Cox regression analyses. Applying the 

formula below, we calculated the risk scores for each 

patient: 

1

risk score ( )
n

j

j

Coef Xj
=

=   

Xj measures gene expression value of genes, and Coefj 

represents the regression coefficient. High-risk and low-

risk patients were grouped based on median scores 

calculated by the risk score formula. We compared the 

overall survival gaps between high-risk and low-risk 

groups using the Kaplan-Meier survival curves 

produced by the R package “Survminer”. 

 

Developing a nomogram and its corresponding 

calibration curve 

 

A nomogram is established based on clinical 
characteristics combined with risk score by R “rms” 

package. Calibration curves are created to determine the 

deviation between predicted and actual survival status. 
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Gene set enrichment analysis (GSEA) 

 

An analysis of GSEA is conducted in order to detect 

enriched biological pathways in low- and high-risk 

groups, respectively. (GSEA 4.2.1.). 

 

Immune cell infiltration analysis 

 

“Estimation of STromal and Immune cells in 

MAlignant Tumor tissues (ESTIMATE) algorithm” is 

used to evaluate proportion of immune and stromal cells 

of each sample. Survival curves were plotted via the 

Kaplan-Meier method to predict the prognosis of 

COAD patients in the low- and high-stromal/immune 

score groups. Moreover, “Cell-type Identification by 

Estimating Relative Subsets of RNA Transcripts 

(CIBERSORT)” are performed to calculate the relative 

proportion of 22 immune cell infiltration of COAD 

samples from the training set. Then, the results 

calculated by CIBERSORT were screened according to 

p-value <0.05. The relationship between risk scores and 

different types of immune cells of each sample was 

evaluated via R “corrplot” package. 

 

Immune checkpoints analysis 

 

Spearman correlation test is performed to determine the 

relationship between immune checkpoint molecules and 

risk scores. 

 

Prediction of drug therapy response 

 

The drug-response prediction was evaluated with the R 

pRRophetic package and 2D conformations of drugs 

were visualized by PubChem website. 

 

Cell culture 

 

HCT116 and DLD-1 cells are derived from ATCC. In 

this experiment, cells are cultured with RPMI-1640 

medium supplemented with L-glutamine and 10% fetal 

bovine serum. 

 

Western blotting 

 

WFS1 antibody (11558-1-AP) is purchased from 

Proteintech. The protein level of WFS1 in cells was 

measured through typical western blotting process. Beta-

actin served as a loading control for western samples. By 

using ECL reagent, the protein concentration of WFS1 

and beta-actin is determined. Two independent siRNAs 

are employed to decrease the WFS1 expression. The 

sequences of these two siRNAs used in this study are 
indicated as follows: si-WFS1-1: 5′-GCA GCG AGU 

CCA AGA ACU ACA-3′, si-WFS1-2: 5′-GCG UGA 

CUG ACA UCG ACA ACA-3′. 

Cell viability assay 

 

HCT116 and DLD-1 cells are transfected with siRNAs 

targeting WFS1 or scrambled in 6-well plate. After 24 

hours transfection, we seeded 4000 cells per well in 96-

well cell culture plates. The OD value at 450 nm is 

measured at indicated time points via a CCK8 kit. 

 

Clone formation tests 

 

HCT116 and DLD-1 cells are transfected with siRNAs 

targeting WFS1 or scrambled in 6-well plate. After 48 

hours transfection, we seeded 500 cells per well in 6-

well cell culture plate. After 2 weeks culture, the cells 

are stained with crystal violet. 

 

EdU assay 

 

HCT116 and DLD-1 cells were seeded in 24-well plates 

at about 50% in confluency. In cells with 70% cell 

density, cells were transfected with scrambled or two 

independent siRNA targeting WFS1. After 48 hours 

culture, cells were incubated with EdU for 2 hours. 

Next, a solution of 4% paraformaldehyde was used to 

fix the cells. According to the manufacturer's 

instructions, the staining process was performed. 

Images were obtained through Nikon microscope and 

the ratio of EdU positive cells was measured via the 

ImageJ software. 

 

Consent for publication 

 

All authors consent to the publication of this study. 

 

Availability of data and material 

 

All data and R script in this study are available from the 

corresponding author upon reasonable request. Publicly 

available datasets were analyzed in this study, these can 

be found in The Cancer Genome Atlas 

(https://portal.gdc.cancer.gov/) and Gene Expression 

Omnibus (GSE40967). All authors read and approved 

the final manuscript. 

 

RESULTS 
 

Identify differentially expressed ERSRGs signature 

 

The overall workflow of this study is depicted in 

Figure 1. According to the screening criteria of | log2FC 

| >1 and adjust P < 0.05, we identified 31 DEGs 

between COAD samples and colon normal tissues in the 

training set. Within COAD samples, 21 ERSRGs were 

dramatically down-regulated and 10 up-regulated 

compared to normal colon tissue (Supplementary Figure 

1A–1C). A PPI network was obtained through 

https://portal.gdc.cancer.gov/
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uploading these 31 differentially expressed ERSRGs to 

STRING website (Supplementary Figure 1D), and 

CXCL8, CCND1, PSAT1, SLC7A5, EIF4EBP1, 

DDIT4, TRIB3, RRP9, NOLC1, and CEBPB were 

determined as hub genes with top ten scores 

(Supplementary Figure 1E). 

 

Construction of a prognostic model relied on 

ERSRGs 

 

First, 26 ERSRGs were screened out via univariate Cox 

regression analysis univariate using the cutoff of P < 

0.05, which were associated with overall survival of 

patients with COAD in the training set, including 9 

risky genes and 17 protective genes (Figure 2A). In 

order to further shrink the variables, LASSO regression 

analysis was conducted based on these 26 ERSRGs 

(Figure 2B, 2C). Finally, 9 ERSRGs were determined to 

construct the prognostic model according to the 

multivariate Cox regression, including 3 risky genes and 

6 protective genes (Figure 2D). The formula to calculate 

the risk score is indicated as follows: Risk score = 

(−0.34508 × AQP11) + (−0.5975 × BCL2) + (−0.46549 

× EDEM2) + (−0.48618 × EXOSC7) + (0.373054 × 

FLOT1) + (−0.15286 × PPP1R1B) + (−0.39254 × 

PPP1R8) + (0.134627 × TXNIP) + (0.223501 × WFS1). 

COAD patients in training set were classified into high- 

risk and low-risk groups according to the median risk 

scores (Figure 2E). COAD patients in the high-risk 

group had worse prognosis compared to those in the

 

 
 

Figure 1. Flow chart of experimental design in this study. 



www.aging-us.com 9247 AGING 

low-risk group (Figure 2G). The heatmap (Figure 2H) 

presented expression levels of 9 ERSRGs in different 

groups. Kaplan-Meier survival curves suggested that 

COAD patients in the low-risk group had significantly 

better prognosis than those in the high-risk group 

(Figure 2F). The area under the receiver operating 

characteristic (AUC) curve was 0.669, showing that 

prognostic model we built had a good predictive 

 

 
 

Figure 2. Construction of risk model in the GSE40967 cohort. (A) Univariate Cox regression analysis of ERSRGs associated with OS of 

COAD patients. (B) Lasso regression analysis of the ERSRGs based on univariate Cox regression analysis. (C) Cross-validation for tuning the 
parameter selection in the LASSO regression. (D) Multivariate cox regression analysis of the ERSRGs based on LASSO regression analysis. (E) 
Distribution of patients based on the risk score. (F) Kaplan-Meier curve of survival probability of patients in the high-risk group and low-risk 
group. Statistical tests were performed using the Chi-square test with statistical significance at P < 0.05. (G) Survival time and survival status 
of patients with different risk scores. (H) The heatmap of the expression of prognostic ERSRGs between high-risk group and low-risk group. 
(I) ROC curve of risk score and other indicators. 
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performance (Figure 2I). Next, we detected whether the 

expression levels of these 9 ERSRGs were associated 

with prognosis of patients with COAD. We found that 

the expressions of APQ11, EDEM2, EXOSC7, 

PPP1R8, TXNIP, and WFS1 were strongly correlated 

with the OS of COAD patients (p < 0.05) 

(Supplementary Figure 2A–2I). 

 

Validation of the prognostic model 

 

To validate the performance of the prognostic model in 

independent cohort, we downloaded the gene 

expression files of patients with COAD from TCGA as 

the test set. The risk scores of patients from test set were 

calculated using the same formula. COAD patients from 

the test set were separated into high-risk (n = 202) and 

low-risk (n = 215) groups according to the median risk 

score of the training set as the cutoff point. (Figure 3A). 

Similar with patients in training set, those with high-risk 

scores had shorter OS than those with low-risk scores 

(Figure 3B). The heatmap (Figure 3C) showed 

expression levels of 9 ERSRGs of each patient in test 

set. Kaplan-Meier survival curves suggested that COAD 

patients in the low-risk group had dramatically better 

prognosis compared with those in the high-risk group 

(Figure 3D). Our prognostic model had a good 

predictive performance, with an area under the receiver 

operating characteristic curve of 0.633 (Figure 3E). 

 

Determination of independent prognostic factors 

 

To confirm whether the risk score of the prognostic risk 

model has independent prediction ability, we evaluate 

the prognostic value of risk score and clinical features 

in the training set. Univariate Cox regression analysis 

revealed that risk score, age, stage, T, M, and N could 

be used to predict outcomes of COAD patients 

(Supplementary Figure 3A). Furthermore, multivariate 

Cox regression verified that risk score, age, T, M, and N 

could still be regarded as independent prognostic 

predictors (Supplementary Figure 3B). These data 

demonstrated that prognostic risk model, age, T, M, and 

N were independently correlated with the outcomes of 

COAD patients. 

 

Construction of the nomogram 

 

To better predict outcomes of COAD patients, we built 

a nomogram relied on risk scores combined with 

clinical characteristics to assess the 1-, 3- and 5-year 

survival probability (Supplementary Figure 4A). The 

calibration curves verified that the predicted prognosis 

from the nomogram have good consistency with the 

actual outcomes, which indicated that nomogram has 

good prediction performance (Supplementary Figure 

4B–4D). 

Gene set enrichment analysis (GSEA) 

 

For the purpose of uncovering the biological pathways 

that differentiate patients of high-risk from low-risk 

group, we conducted GSEA on the expression data from 

GSE40967 and TCGA cohorts, respectively. The result 

of KEGG enrichment analysis revealed that 

Arrhythmogenic right ventricular cardiomyopathy, 

Citrate cycle, and Dilated cardiomyopathy were 

significantly enriched in high-risk group in GSE40967 

cohort. Meanwhile, Huntington’s disease, Hypertrophic 

cardiomyopathy, Oxidative phosphorylation, Parkinson’s 

disease, and Pyruvate metabolism pathway were 

dramatically enriched in low-risk group in GSM40967 

cohort (Supplementary Figure 5A). Moreover, genes 

from high-risk group in TCGA were enriched in 

Arrhythmogenic right ventricular cardiomyopathy,  

Cell cycle, Complement and coagulation cascade. 

However, Homologous recombination, Hypertrophic 

cardiomyopathy, Purine metabolism, Pyrimidine 

metabolism, and RNA degradation pathway were 

abundant among low-risk group in TCGA 

(Supplementary Figure 5B). 

 

Identifying the differences of infiltration of immune 

cells 

 

Next, we performed tumor microenvironment 

analysis using ESTIMATE algorithm and evaluated 

the proportion of immune cell infiltrated in tumor 

tissue using CIBERSORT. Stromal scores of patients 

in the high-risk group were significantly higher than 

those in the low-risk group in the training set 

(Supplementary Figure 6A). Accordingly, COAD 

patients in the high-stromal score group had worse 

prognosis compared to those in low-stromal score 

group (Supplementary Figure 6B). In addition, the 

infiltration of B cells memory, Plasma cells, T cells 

CD4 memory activated, and Neutrophils had 

statistical difference between high-risk and low-risk 

groups, respectively (Supplementary Figure 6C). 

Scatter plots (Supplementary Figure 6D–6H) showed 

that risk scores were positively associated with 

infiltration levels of B cells memory, Neutrophils, 

and Mast cells activated (R > 0, P < 0.05), and 

negatively associated with infiltration levels of 

Plasma cells, and T cells CD4 memory activated in 

the immune microenvironment (R < 0, P < 0.05). 

 

Identifying the different expression level of immune 

checkpoint genes 

 

The expressions level of CD27, CD48, HHLA2, 
ICOSLG, IDO1, NRP1, TNFRSF14, TNFRSF18, 

TNFRSF9, TNFSF14, TNFSF4, and TNFSF9 had 

statistical difference between high-risk and low-risk 
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groups, especially for NRP1, TNFRSF14, and TNFSF4 

(P < 0.001) (Supplementary Figure 7A). The Spearman 

correlation analysis indicated CD27 was markedly 

positively associated with CD48, IDO1, and TNFRSF9. 

Furthermore, CD48 was dramatically positively 

associated with DO1 and TNFRSF9. In addition, 

TNFRSF9 was positively correlated with IDO1. 

TNFSF4 was positively associated with NRP1 

(Supplementary Figure 7B). 

 

Response of patients with COAD to candidate drugs 

 

We estimated the response of COAD patients in these 

two groups to candidate drugs. IC50 values of 60 

 

 
 

Figure 3. Verification of risk signature in the TCGA cohort. (A) The distribution of patients based on the risk score. (B) Survival time 
and survival status of patients with different risk scores. (C) The heatmap of the expression of prognostic ERSRGs in the high-group and low-
risk group (D) Kaplan-Meier curve of survival probability of patients in the high-risk group and low-risk group. Statistical tests were 
performed using the Chi-square test with statistical significance at P < 0.05. (E) ROC curve of risk score and other indicators. 
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compounds were significantly different in high-risk and 

the low-risk patients (Supplementary Table 1). We 

visualized the top eight drugs with the greatest 

difference in P values. AZD.0530, Bryostatin.1, 

CHIR.99021, Imatinib, LFM.A13, and CCT007093 

were more sensitive to high-risk compared with low-

risk patients (Supplementary Figure 8A–8F). However, 

PF.4708671 and EHT.1864 showed the opposite trend 

(Supplementary Figure 8G, 8H). 

Knockdown of WFS1 molecule inhibits HCT116 and 

DLD-1 cells growth 

 

We investigated the WFS1 expression in COAD and 

normal colon tissues in TCGA. Expression levels of 

WFS1 in COAD were dramatically higher than those in 

normal colon tissues (Figure 4A). Accordingly, patients 

with lower WFS1 expression had a longer OS 

(Figure 4B). These findings indicate that WFS1 has the

 

 
 

Figure 4. Knockdown of WFS1 inhibits COAD cell proliferation. (A) Box plots showed that WFS1 expression was significantly higher in 

COAD than in normal samples. (B) Survival curves showed that patients in the low WFS1 expression group had a better prognosis than those 
in the high WFS1 expression group. (C) Western blot analysis of WFS1 expression in HCT116 and DLD-1 cell lines. actin is internal control. (D) 
Cell viability of HCT116 or DLD-1 cells transfected with control or WFS1siRNAs was measured by CCK8 assay. (E) Clone formation assay of 
HCT116 or DLD-1 cells transfected with control or WFS1siRNAs. (F) EdU staining for cell proliferation transfected with control or WFS1siRNAs. 
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potential to be a promising target for the therapy of 

colon cancer. 

 

In order to evaluate the potential role of WFS1 in 

COAD, we inhibited the expression of WFS1 with two 

independent siRNAs in HCT116 and DLD-1 cell lines. 

These two siRNAs significantly decrease the protein 

expression of WFS1 (Figure 4C). WFS1 depletion 

markedly inhibited cell viability and clone formation 

capability of COAD cells (P < 0.05, Figure 4D–4F). In 

summary, these results indicate that WFS1 has a 

potential carcinogenic effect in COAD. 

 

DISCUSSION 
 

According to the statistics from World Health 

Organization, amount of newly diagnosed COAD 

patients worldwide in 2020 was 1,148,515, accounting 

for 6.0% of the global new cancer patients. The global 

colon cancer deaths totaled 576,858 in 2020, accounting 

for 5.8% of the global cancer deaths [12]. At present, 

the treatment of colon cancer patients mainly includes 

surgical resection, chemotherapy, and radiotherapy. 

However, the specific clinical symptoms of early colon 

cancer patients are not obvious. Patients with COAD 

are more likely to be diagnosed in the late stage. Most 

of the COAD patients have a tendency to recurrence 

after surgery. Thus, novel biomarkers are highly needed 

to estimate outcomes of COAD patients. 

 

Protein processing, modification, and folding in ER are 

closely regulated processes that determine cell 

function, destiny, and survival [10]. Adjustment of 

tumor growth and anti-tumor immunity by UPR is a 

prospective opportunity for cancer therapy [13]. A 

large number of studies indicated that ER stress with 

certain intensity promotes the tumor progression, 

migration, therapeutic resistance, and angiogenesis 

[14]. Numerous studies have shown that growth 

inhibition of COAD cells by many compounds is 

associated with the induction of endoplasmic reticulum 

responses [15–20]. 

 

In this study, we identified nine ERSRGs (AQP11, 

BCL2, EDEM2, EXOSC7, FLOT1, PPP1R1B, 

PPP1R8, TXNIP, WFS1) associated with OS and 

constructed a prognostic model. Survival probability of 

COAD patients in the high-risk group was significantly 

lower than those in the low-risk group. In addition, 

multivariate regression proved that risk score can served 

as an independent prognostic factor. Subsequently, a 

nomogram relied on clinical characteristics and risk 

score was established to quantitatively predict survival 

rates of COAD patients. Furthermore, the GSEA 

analysis found that ERSRGs were associated with 

several metabolism and cancer related pathways. These 

results suggest that these nine ERSRGs may be new 

targets for COAD treatment. 

 

The level of immune cell infiltrated in tumor 

significantly determined the prognosis of COAD 

patients [21]. Previous study showed that T cells, B 

cells and natural killer (NK) cells in TME were highly 

correlated with prognosis in COAD patients [22]. 

COAD antigen is able to induce antitumor response 

which is mediated by CD4+ T cells [23]. In patients with 

solid tumors, neutrophils expansion in TME is usually 

correlated with unfavorable prognosis [24]. Our study 

supports these findings. Moreover, immunosuppressive 

molecules such as CD27, CD48, HHLA2, ICOSLG, 

IDO1, TNFRSF14, TNFRSF18, and TNFRSF9 in the 

low-risk group were markedly higher compared to those 

in the high-risk group, demonstrating that patients with 

low expression level of immunosuppressive molecule 

were more likely to benefit from immune checkpoint 

blockade (ICB) therapy. 

 

Next, we identified that IC50 values of 60 compounds 

were different in the high-risk and the low-risk patients. 

Patients from high-risk group were more sensitive to 

AZD.0530, Bryostatin.1, CHIR.99021, Imatinib, 

LFM.A13, and CCT007093 than those in low-risk 

group, while low-risk patients were more likely to 

benefit from PF.4708671, and EHT.1864. In the 

previous studies, Bryostatin-1 is a macrolide derived 

from marine invertebrates that could suppress the 

terminal differentiation of colon cancer cells by 

downregulating PKC-mediated proteoglycan metabolic 

pathway [25]. Imatinib, a 2-phenylaminopyrimidine 

derivative, inhibits the proliferation of COAD cells 

[26]. LFM-A13 is the active metabolite of leflunomide 

that suppresses COAD cell growth [27]. However, the 

mechanism of the compounds inhibiting the progression 

of COAD requires further research. 

 

Consistent with previous research, these prognostic 

ERSRGs play diverse roles in different cancers. 

Consistent with previous studies, BCL2 is upregulated 

in breast, prostate, colorectal, lung, stomach, ovarian 

cancer, and other solid tumors [28]. The inhibition of 

BCL2 expression by hsa-miR-139-5p in colorectal 

cancer cells increased chemosensitivity [29]. Chuyong 

Lin et al. confirmed that FLOT1 promotes breast cancer 

cell proliferation and tumorigenesis [30]. Ferreira et al. 

indicated that PPP1R8 is crucial for the maintenance of 

the male germline and spermatogenesis [31]. Chow, Pak 

Hin et al. suggested that increasing levels of AQP11 

were associated with better survival rates in colorectal 

and breast cancers [32]. Some studies demonstrated that 
PPP1R1B was overexpressed in diverse human cancers, 

including colon, breast, and gastric cancer. And 

PPP1R1B may also regulate pro-oncogenic signal 
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transduction pathways to promote chemoresistance and 

increase gastric and breast cancer cell viability [33, 34]. 

It is reported that TXNIP is a tumor suppressor, which 

has been verified in various cancers, including breast, 

lung, and thyroid cancer. What’s more, it can also 

inhibit tumor cell growth and induce apoptosis and cell 

cycle arrest [35]. WFS1 autosomal recessive deletion 

mutation can lead to Wolfram syndrome. Yamada found 

that WFS1 deficiency increased ER stress, impaired the 

cell cycle, and ultimately promoted pancreatic β cell 

apoptosis [36]. The role of EDEM2 in cancer remains 

unclear. Interestingly, Weilong Zhang et al. found that 

EXOSC7 is a risky gene in patients with mantle cell 

lymphoma, which is inconsistent with our findings [37]. 

This may be due to different genetic backgrounds of 

different types of cancer, or to different selection of data 

sets. Moreover, by knocking down the prognostic 

differential gene WFS1 in HCT116 and DLD-1 cell 

lines with two siRNAs, we found that WFS1 had a 

potential carcinogenic effect in COAD. 

 

CONCLUSIONS 
 

Based on 9 ERSRGs (AQP11, BCL2, EDEM2, 

EXOSC7, FLOT1, PPP1R1B, PPP1R8, TXNIP, 

WFS1), we successfully constructed a prognostic risk 

model that precisely estimate the prognosis of COAD 

patients. Our findings may offer novel targets for the 

therapy of COAD patients. 
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Tumor-infiltrating lymphocytes; FC: Fold change; 

CCK8: Cell Counting Kit-8; DMEM: Dulbecco's 

Modified Eagle Medium. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The differentially expressed ERSRGs between colon cancer and normal samples. (A) Heat map 
showing expression levels of genes between COAD samples and normal samples. Volcano plot (B), and boxplot (C) describe differentially 
expressed genes between COAD samples and normal samples, red dots represent significantly up-regulated genes, blue dots represent 
significantly down-regulated genes, and grey dots represent genes with no difference. (D) Construction of protein-protein interaction (PPI) 
network of differentially expressed genes using the STRING database. (E) The hub genes map was drawn using the MCC algorithm in 
Cytoscape software. 
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Supplementary Figure 2. Kaplan-Meier survival curves of prognostic ERSRGs in GSE40967 dataset, including (A) AQP11, (B) BCL2, (C) 
EDEM2, (D) EXOSC7, (E) FLOT1, (F) PPP1R1B, (G) PPP1RB, (H) TXNIP, (I) WFS1. Statistical tests were performed using the Chi-square test 
with statistical significance at P < 0.05. 

 

 
 

Supplementary Figure 3. Univariate and multivariate Cox regression analysis of risk score and clinical characteristics in the 
GEO cohort. (A) Univariate Cox regression results. (B) Multivariate Cox regression results. 
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Supplementary Figure 4. Nomogram of predicting overall survival in COAD patients in the GEO cohort. (A) Nomogram based 

on risk score and Clinical features. (B–D) Calibration curves of predicting patient survival probabilities in 1-, 3-, and 5- years. 
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Supplementary Figure 5. GSEA analysis of training and test sets. (A) GSEA analysis of ERSRGs the between high- risk and low-risk 

groups in the training set. (B) GSEA analysis of ERSRGs between high- risk and low-risk groups in the test set. 
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Supplementary Figure 6. Evaluation of immune cell infiltration in the high-risk group and low-risk group. (A) Violin plot of 
stromal score between high-risk group and low-risk group. (B) Kaplan-Meier survival analysis of stromal score. (C) Boxplot of infiltrated 
immune cells between high-risk and low-risk groups. (D–H) Correlation between risk score and immune cell infiltration. 
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Supplementary Figure 7. Correlation of immune checkpoints and risk score. (A) The expression of immune checkpoint molecules 
between the high-risk and low-risk groups. (B) Spearman correlation analysis of immune checkpoints and risk score. Red represents positive 
correlation and blue represents negative correlation. 
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Supplementary Figure 8. The eight compounds with the most significant differences in susceptibility between the high-risk 
and low-risk groups as well as their 2D conformations. The IC50 values and corresponding 2D conformations of (A) AZD.0530, (B) 

Bryostatin.1, (C) CHIR.99021, (D) Imatinib, (E) LFM.A13, (F) CCT007093, (G) EHT.1864, and (H) PF.4708671. 
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Supplementary Table 
 

Supplementary Table 1. The 60 compounds with the differences in sensitivity between high- risk and low-risk groups. 

Drug name P-value 

A.443654 2.10E-11 

A.770041 8.50E-08 

ABT.888 3.40E-06 

AP.24534 4.10E-07 

AS601245 4.70E-08 

ATRA 2.50E-06 

AZD.0530 2.22E-16 

AZD6482 1.50E-05 

Bexarotene 9.80E-06 

BIBW2992 2.20E-05 

Bicalutamide 7.60E-06 

BMS.754807 2.20E-09 

Bryostatin.1 2.22E-16 

BX.795 7.40E-05 

CCT007093 1.10E-13 

CCT018159 2.90E-07 

CHIR.99021 2.22E-16 

Cytarabine 2.60E-05 

Dasatinib 3.90E-11 

DMOG 6.50E-10 

EHT.1864 2.22E-16 

Epothilone.B 5.50E-07 

FTI.277 1.70E-12 

GDC0941 1.20E-05 

GNF.2 1.50E-06 

GSK.650394 1.10E-05 

GSK269962A 6.40E-07 

GW843682X 9.40E-12 

Imatinib 2.22E-16 

JW.7.52.1 1.00E-07 

LFM.A13 2.22E-16 

Metformin 1.40E-07 

Midostaurin 4.90E-08 

NVP.TAE684 7.80E-05 

OSI.906 2.50E-13 

PAC.1 7.60E-06 

Paclitaxel 8.30E-07 

Parthenolide 2.30E-12 

Pazopanib 2.60E-05 

PF.562271 7.80E-05 

PF.4708671 2.22E-16 
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PHA.665752 5.70E-08 

PLX4720 1.40E-08 

QS11 6.30E-07 

Rapamycin 6.20E-09 

RDEA119 1.80E-05 

RO.3306 2.90E-06 

S.Trityl.L.cysteine 2.30E-09 

Salubrinal 1.10E-07 

SB.216763 9.20E-09 

SB590885 7.20E-05 

SL.0101.1 2.70E-06 

Sorafenib 1.50E-13 

Tipifarnib 8.40E-07 

Vinblastine 1.20E-05 

Vorinostat 3.40E-08 

VX.680 2.40E-10 

VX.702 6.60E-08 

WH.4.023 1.60E-08 

WZ.1.84 3.40E-09 

 


