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INTRODUCTION 
 
Multiple myeloma (MM) is a hematological B-
lymphocyte malignancy with clonal expansion of 
plasma cells in the patient's bone marrow, which can 
ultimately cause hypercalcemia, renal failure, anemia, 
bone disease and immunosuppression [1, 2]. MM 
patients are divided into 8 groups based on gene 
expression profiling (GEP) [3, 4], including CD1 and 
CD2 subgroup with spiked expression of CCND1 and 
CCND3, hyperdiploidy (HY) group, low bone disease 
(LB) group, MAF/MAFB (MF) spike group, MMSET 
spike (MS) group, myeloid-like (MY) group and 
proliferation (PR) group. PR group is considered as the 

highest-risk MM subgroup and the patients in PR group 
suffer from the worst prognosis [5]. Despite the fact that 
the great advancement of new therapies, such as 
proteasome inhibitors, has dramatically improved 
outcomes for MM patients over the past decades, almost 
all patients eventually experience inevitable MM 
relapse and die of this disease [6, 7]. 
 
It is of note that chimeric antigen receptor T (CAR-T) 
cell therapy has been already introduced for treating 
MM in clinical trials [8–11]. Recently, CAR-T cell 
therapy targeting B-cell maturation antigen (BCMA) 
has shown high-response rates, but the clinical 
application of CAR-T cell therapy is restricted mainly 
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ABSTRACT 
 
Multiple myeloma (MM) is an incurable plasma cell malignancy, while CAR-T therapy offers a new direction for 
the treatment of MM. Recently, signaling lymphocytic activation molecule family 3 (CD229), a cell surface 
immune receptor belonging to the signaling lymphocyte activating molecule family (SLAMF), is emerging as a 
CAR-T therapeutic target in MM. However, a clear role of CD229 in MM remains elusive. In this study, MM 
patients with elevated CD229 expression achieved poor prognosis by analyzing MM clinical databases. In 
addition, CD229 promoted MM cell proliferation in vitro as well as in xenograft mouse model in vivo. 
Mechanism study revealed that CD229 promoted MM cell proliferation by regulating the RAS/ERK signaling 
pathway. Further exploration employed co-immunoprecipitation coupled with mass spectrometry to identify 
RASAL3 as an important downstream protein of CD229. Additionally, we developed a co-culture method 
combined with the immunofluorescence assay to confirm that intercellular tyrosine phosphorylation mediated 
self-activation of CD229 to activate RAS/ERK signaling pathway via interacting with RASAL3. Taken together, 
these findings not only demonstrate the oncogenic role of CD229 in MM cell proliferation, but also illustrate the 
potential of CD229 as a promising therapeutic target for MM treatment. 
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due to its limited durability [12]. CD229 is a potential 
target for CAR-T cell therapy owing to its homogenous 
expression in MM cells, and MM cells depend on 
CD229 for their survival [13]. As a member of the 
signaling lymphocytic activation molecule family 
(SLAMF), CD229 acts as a cell-surface immune 
receptor and is involved in immune response mediated 
by immune cells [14, 15]. Besides, CD229 is expressed 
in hematopoietic stem cells, T cells, B lymphocytes and 
NK cells [16]. Importantly, CD229 is homogeneously 
expressed in the bulk of malignant plasma cells from 
MM patients as well as chemotherapy-resistant 
myeloma progenitors [17–19]. The extracellular domain 
of CD229 is mainly composed of 4 immunoglobulin-
like domains (two tandem repeats of IgV and IgC2). 
The cytoplasmic domain of CD229 contains two 
immunoreceptors tyrosine-based signaling motifs 
(ITSMs, T-V/I-Y-xx-V/I) and several tyrosine residues 
as SH2 domain binding sites following phosphorylation 
[20]. The intracellular motifs are critical for CD229 
signaling that regulate ERK phosphorylation in T cell 
receptor (TCR) signaling pathway [21]. In addition, 
CD229 is associated with enhanced T cell activation 
and Th2 polarization [22, 23]. Hence, the surface 
molecule CD229 is expected to be a promising target 

for anti-MM immunotherapy. However, the critical role 
of CD229 in MM remains unclear. 
 
Inspired by the current studies on the effective efficacy of 
CD229-based CAR-T therapy, we herein examined the 
expression of CD229 in a subpopulation of myeloma, and 
demonstrated the role of CD229 in promoting MM cell 
proliferation through the underlying mechanism of 
CD229-mediated RAS/ERK signaling. It is suggested 
that CD229 may be served as a novel biological target for 
treatment of MM. 
 
RESULTS 
 
Elevated CD229 expression confers poor survival  
in MM 
 
To assess the expression of CD229 in MM, we first 
examined the expression of CD229 in normal plasma 
(NP, n = 22), monoclonal gammopathy of undetermined 
significance (MGUS, n = 44) and MM patients (MM,  
n = 351) (gene expression dataset GSE5900). The results 
showed that the CD229 mRNA level was significantly 
increased from NP, MGUS to MM patients  
during disease progression (p < 0.001) (Figure 1A). 

 

 
 

Figure 1. Increased CD229 expression is correlated with poor survival in MM. (A) CD229 mRNA levels were significantly elevated in 
MM patients. The signal level of CD229 was shown on the y-axis. Patients were designated as healthy donors with normal bone marrow 
plasma cells (NP, n = 22), monoclonal gammopathy of undetermined significance (MGUS, n = 44), or multiple myeloma (MM, n = 351), sorted 
on the x-axis. (B, C) Box plot showed CD229 expression in high-risk versus low-risk MM subgroup (B), and in 8 MM risk subgroups from TT2 
patient cohort (C). (D–F) Elevated CD229 mRNA expression was associated with poor overall survival (OS) in MM patients from GSE136337 
(D), TT2 (E) and APEX (F) patient cohorts. 



www.aging-us.com 9266 AGING 

Intriguingly, we also observed higher CD229 expression 
in high-risk MM patients than low-risk patients in the 
GSE2658 dataset (p < 0.05) (Figure 1B). In detail, 
CD229 expression in PR group, the worst subgroup in 
MM patients, was dramatically higher than those in the 
other 7 subgroups (p < 0.05) (Figure 1C). High 
expression of CD229 was significantly associated with 
poor overall survival (OS) in GSE136337 (p < 0.05) 
(Figure 1D). Furthermore, MM patients bearing elevated 
CD229 expression suffered from poor prognosis in both 
newly diagnosed MM from TT2 (Total Therapy 2) 
cohort (p < 0.01) (Figure 1E) and relapsed MM patients 
from APEX (Assessment of Proteasome inhibition for 
Extending remissions) cohort (p < 0.01) (Figure 1F). 
Collectively, these results demonstrate that CD229 
acting as an oncogene may confer a poor prognosis in 
MM patients. 
 
CD229 promotes MM cell proliferation 
 
To determine whether CD229 could function as a 
contributing factor for MM cell proliferation, CD229 
was overexpressed (OE) in MM cells through lentiviral 
transfection, as confirmed by Western blotting (WB) 

(Figure 2A and Supplementary Figure 1A, 1B). MTT 
assay showed that the proliferation of CD229-OE MM 
cells was significantly enhanced compared to wildtype 
(WT) cells (p < 0.01) (Figure 2B). Cell cycle analysis 
demonstrated that the proportion of G2/M phase in 
CD229-OE MM cells was evidently higher than that in 
WT cells (p < 0.01) (Figure 2C). Inversely, CD229 was 
knocked down (KD) by CD229-targeting siRNA, as 
validated by WB (Figure 2D and Supplementary Figure 
1C). CD229-KD MM cells displayed significantly 
lower cell growth rates than the negative control (NC) 
cells (p < 0.001) (Figure 2E). In addition, the cell cycle 
analysis showed an obviously lower proportion of 
G2/M phase in CD229-KD MM cells compared to NC 
cells (p < 0.01) (Figure 2F). Taken together, these 
findings further indicate that CD229 stimulates MM cell 
proliferation. 
 
RAS pathway participates in CD229-induced MM 
cell proliferation 
 
To further explore the mechanism by which CD229 
affected MM cell proliferation, we prepared RNA 
samples for transcriptomic RNA sequencing (RNA-seq) 

 

 
 

Figure 2. Elevated CD229 expression promotes MM cell proliferation. (A) WB analysis of CD229 overexpression in ARP1 and CAG 
cells using CD229 and Flag tag antibodies. (B) The proliferation capacity in WT and CD229-OE MM cells was detected by MTT. (C) Flow 
cytometry revealed that the proportion of G2/M phase was significantly increased in CD229-OE cells compared to WT cells. (D) WB analysis 
confirmed the reduction of CD229 in ARP1 and CAG cells upon transfection with the siRNA. (E) Decreased CD229 resulted in a lower cell 
proliferation rate in ARP1 and CAG cells detected by MTT. (F) Flow cytometry analysis revealed that the proportion of G2/M phase was 
significantly decreased in si-CD229 cells relative to NC cells. The data of experiments represent Mean±SD from at least three independent 
experiments. **p < 0.01, ***p < 0.001. 



www.aging-us.com 9267 AGING 

to screen differentially expressed genes between CD229-
OE cells and their corresponding WT cells. In total, we 
found that 236 genes were upregulated and 254 genes 
were downregulated in CD229-OE MM cells compared 
to WT cells (Figure 3A). As shown in Figure 3B (see 
Supplementary Table 1 for statistics of top 30 enriched 
pathways), the KEGG pathway enrichment analysis 
elucidated that multiple signaling pathways were 
significantly enriched, such as Endocytosis, B Cell 
receptor signaling pathway, Primary immunodeficiency 
and RAS signaling pathway. Among them, the RAS 
signaling pathway was most closely related to tumor 
development. Then we examined the RAS-GTP as well 
as total RAS expression. Intriguingly, the results showed 
that RAS-GTP but not total RAS was increased in 
CD229-OE MM cells (Figure 3C and Supplementary 
Figure 1D, 1E). Furthermore, we examined total ERK 
and phosphorylated ERK (p-ERK) levels in WT and 
CD229-OE MM cells. The results showed that p-ERK 
levels were increased in CD229-OE MM cells and 
decreased in CD229-KD MM cells, while no obvious 
changes were observed in the expression of total ERK 
(Figure 3D, 3E and Supplementary Figure 1F–1I). The 
above data provide the evidence that elevated expression 

of CD229 can activate RAS/ERK pathway to induce 
MM cell proliferation. 
 
Overexpression of CD229 promotes tumor 
proliferation in vivo 
 
As to confirm the oncogenic role of CD229 in vivo, the 
xenograft mouse model was constructed in the 
immunodeficient NOD/SCID mice by subcutaneous 
injection of WT and CD229-OE MM cells into the left 
and right flank of mice, respectively. Interestingly, we 
observed that the volume of the abdominal tumor 
formed by CD229-OE MM cells appeared larger than 
those formed by WT MM cells (Figure 4A–4C). 
Similarly, the tumor weight in CD229-OE group was 
significantly higher than that in WT group  
(p < 0.01) (Figure 4D). To further verify the activation 
of RAS/ERK pathway by CD229 in vivo, the CD229 
and p-ERK expressions of the excised tumor were 
detected by WB assays. The in vivo results showed that 
CD229 was stably overexpressed and p-ERK was 
activated in CD229-OE group compared to WT group 
(Figure 4E), suggesting a critical role of CD229 on 
RAS/ERK pathway. 

 

 
 

Figure 3. The potential signaling pathway of CD229 for MM biology is screened by RNA-seq. (A) The volcano plot of differentially 
expressed genes between WT and CD229-OE MM cells. X axis, log2 fold change; Y axis, −log10 P value. (B) Pathway enrichment analysis of 
RNA-seq data unveiled enrichment of RAS signaling pathway. (C) RAS-GTP and total RAS expression in WT and CD229-OE MM cells were 
detected by RAS antibody. (D, E) WB test confirmed that p-ERK was increased in CD229-OE cells (D) and decreased in si-CD229 cells (E). The 
data of experiments represent Mean±SD from at least three independent experiments. 
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CD229 interacts with RASAL3 protein to regulate 
the RAS/ERK pathway in MM 
 
To further explore how CD229 activated RAS, we 
performed Co-IP coupled with MS (Co-IP/MS) to screen 
the client proteins. Among these CD229-regulated 
proteins (see Supplementary Table 2 for Co-IP/MS data 
of the selected 561 proteins), two peptide fragments 
corresponding to a protein named RAS Protein Activator 
Like 3 (RASAL3) (Figure 5A, 5B) ranked the top of 
these client proteins. It is reported that RASAL3 contains 
the RasGAP domain for active RAS hydrolysis [24]. 
Therefore, we inferred that RASAL3 might be an 
important downstream protein of CD229. Co-IP 
experiments using FLAG antibody in CD229-OE cells 
confirmed the interaction between CD229 and RASAL3. 
Meanwhile, the IP using RASAL3 antibody could also 
precipitate CD229, further indicating that RASAL3 
interacted with CD229 (Figure 5C, 5D). Therefore, it is 
reasonable to speculate that CD229 regulates the 
RAS/ERK signaling pathway by directly interacting  
with RASAL3. 

Tyrosine phosphorylation-mediated CD229 self-
activation regulates the downstream RAS/ERK 
pathway via interacting with RASAL3 
 
It has been reported that CD229 signal transduction 
requires phosphorylation of the immune receptor tyrosine 
signal motif (ITSM) [20, 25]. We next suppressed 
CD229 activity using Dasatinib, a tyrosine kinase 
inhibitor on protein tyrosine phosphorylation [26, 27]. 
Co-IP experiments verified that phosphorylation of 
CD229 and expression of RASAL3 were blunted after 
Dasatinib treatment in CD229-OE MM cells, indicating 
the impaired interaction between CD229 and RASAL3 
(Figure 6A). To further confirm the activation mode of 
CD229 in MM cells, we co-cultured PKH26-labeled WT 
MM cells with CD229-OE MM cells using transwell 
chambers (Figure 6B). Downstream p-ERK expression 
was detected by immunofluorescence assay, and higher 
p-ERK levels were observed in the directly mixed  
MM cells than the cocultured cells from transwell 
chambers (Figure 6C, 6D). These findings suggest that 
tyrosine phosphorylation-mediated CD229 self-activation 

 

 
 

Figure 4. Overexpression of CD229 promotes MM cell proliferation in MM xenograft model. (A) Photographic images of 
xenograft mice were captured on Day 23. (B) Photographic images of xenografts from SCID/NOD mice. (C) Tumor volume growth curve of 
NOD/SCID mice. (D) Tumor weight in CD229-OE group was significantly higher than those of WT group. (E) WB assay showed that both CD229 
and p-ERK expression were higher in CD229-OE group than WT group derived from xenograft tumors. The data of experiments represent 
Mean±SD from at least three independent experiments. **p < 0.01. 
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Figure 5. CD229 regulates the RAS signaling pathway by interacting with RASAL3 in MM. (A, B) The specific peptides from CD229 
were identified by MS analysis. (C, D) Co-IP assay confirmed the interaction between CD229 and RASAL3. The data of experiments represent 
Mean±SD from at least three independent experiments. 
 

 
 

Figure 6. CD229 binds to RASAL3 in a phosphorylated manner after self-activation. (A) Co-IP assay detected that the 
phosphorylation of CD229 and the expression of RASAL3 were decreased after Dasatinib treatment in CD229-OE MM cells. (B) Schematic 
diagram of the two co-culture experiments. (C, D) Representative confocal images for PKH26 and p-ERK revealed that higher p-ERK levels 
were observed in the directly mixed co-culture of WT MM cells than the co-cultured cells. The data of experiments represent Mean±SD from 
at least three independent experiments. ***p < 0.001. 
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activates the downstream RAS/ERK pathway by 
interacting with RASAL3 (Figure 7). 
 
DISCUSSION 
 
MM remains a life-threatening and incurable plasma 
cell malignancy, while CAR-T therapy has emerged 
as an effective method and the curative effect from 
CAR-T clinical trials demonstrate a better efficacy 
with impressive overall response rates. Rational 
utilizing of targets is a prerequisite of CAR-T cell 
therapy. Recently, the cell surface receptor CD229 is 
developed as a novel and alternative CAR-T 
therapeutic target for MM. While the presence of 
CD229 on both B and T lymphocytes occurred, the 

CAR-T cells targeting CD229 were highly active 
against memory B cells and MM-propagating cells but 
exhibited no fratricide during CD229 CAR-T cell 
production. It may partially due to that the protein 
expression of CD229 is down-regulated in activated T 
cells compared to normal T cells, the CD229 CAR-T 
cells target normal CD229high T cells during activation 
while spare functional CD229neg/low T cells without 
abolishing the cytotoxicity of T cells [13, 28]. In 
addition, MM cells generally express high CD229 
with relative specificity [29]. Our group is dedicated 
to the discovery of novel therapeutic targets in MM. 
As previously reported, we found that targeting 
platelet-activating factor (PAF) remodeling might  
be a promising strategy to enhance MM CAR-T 

 

 
 

Figure 7. Graphic working model illustrates that tyrosine phosphorylation-mediated CD229 self-activation regulates the 
downstream RAS/ERK pathway by interacting with RASAL3. 
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therapy [30]. In present study, our findings further 
disclose that CD229 regulates MM cell proliferation 
through the RAS/ERK pathway and CD229 can be 
considered as a promising target in diagnosis and 
treatment of MM. 
 
First, we verified that the elevated expression of CD229 
was linked to poor prognosis in MM patients, especially 
in the highest risk PR subgroup with the highest degree 
of malignant proliferation. Our study validated that 
CD229 expression was significantly associated with the 
malignant proliferation of MM cell lines in vitro and  
in vivo xenograft mouse model. However, elevated 
CD229 expression inhibited cell proliferation, migration 
and induced apoptosis in hepatocellular carcinoma [31]. 
It is probably due to the fact that the critical role of 
CD229 on cell proliferation may depend on a tumor-
specific background, which is important for the evolution 
of CAR-T. 
 
In present study, the specific mechanism of CD229 in 
promoting MM cell proliferation was screened and 
validated by transcriptome sequencing and Co-IP/ 
MS analysis. Among the top-ranked pathways, the 
enrichment correlation of endocytosis and the lysosome 
signaling pathway might reflect the role of CD229  
as a membrane protein. Furthermore, the primary 
immunodeficiency signaling pathway was in accordance 
with the participation of CD229 in the systemic lupus 
erythematosus (SLE), an autoimmune disease [32]. More 
importantly, the RAS signaling pathway, recognized as 
the star cancer-related pathway, was aberrantly activated 
in the vast majority of cancers [33] and could lead to the 
malignant proliferation of cancer cells [34]. In line with 
previous studies, we further validated the interaction 
between CD229 and RAS-GTP, the active form of RAS 
and core indicator in RAS/ERK pathway activation [35]. 
We also examined the positive regulation of ERK 
phosphorylation in CD229-OE MM cells. However, 
Martin M et al. found that the interaction between TCR 
and CD229 resulted in partial inhibition of ERK 
phosphorylation after simultaneous activation of CD229 
and CD3 in T lymphocytes [21], which was contradictory 
to our results. Since different cell receptors exist in 
different cells, and there is no TCR in MM cells, we infer 
that CD229 functions differently among multiple cell 
types [21]. Consistent with our results, Ishibashi M et al. 
reported that the ERK phosphorylation was decreased 
after knocking out CD229 in MM cells [36]. ERK is an 
important indicator of the action of RAS signaling 
pathway on cell proliferation [37]. In detail, for the two 
bands of (phosphorylated) ERK1 and ERK2 detected in 
Figures 3D, 3E, 4E, there was a slight difference in 
ERK1/ERK2 ratio between MM cell lines and in vivo 
tumor tissues, supporting their universal expression and 
critical regulatory role in cellular proliferation. 

Furthermore, RASAL3 was screened and validated as an 
intermediate protein between CD229 and RAS through 
Co-IP/MS experiment. As the most recently identified 
Ras GTPase activating protein, RASAL3 can accelerate 
RAS-GTP hydrolysis to form RAS-GDP, thereby 
functioning as a brake on RAS signaling pathway [38]. 
These results indicate that CD229 activates RAS/ 
ERK signaling pathway by interacting with RASAL3. 
 
CD229, as a cell surface receptor, is activated by 
receptor-ligand interaction [39, 40]. It is recognized that 
the intracellular action of CD229 depends on the 
tyrosine phosphorylation of its ITSM structural domain 
[41, 42]. Therefore, our study developed a co-culture 
method combined with the immunofluorescence assay to 
confirm the relationship between CD229 activation and 
downstream indicator p-ERK. We found that CD229 
was self-activated followed by activating downstream 
pathway. Moreover, the inhibition of phosphorylation of 
CD229 by applying tyrosine kinase inhibitor Dasatinib 
reduced the interaction between CD229 and RASAL3. 
Therefore, it was proposed that CD229 was dependent 
on tyrosine phosphorylation-mediated self-activation to 
interact with RASAL3, thereby activating RAS/ERK 
signaling pathway and promoting MM cell proliferation. 
It is noteworthy that Dasatinib is currently a clinical 
agent for chronic myeloid leukemia [43] as well as 
relapsed MM [44]. It has been reported that Dasatinib 
can overcome multi-drug resistance (MDR) by inhibiting 
Src, increasing Bim expression and decreasing MDR1 
expression in human multi-drug-resistant myeloma cells 
[45]. Similarly, Dasatinib can prevent MDR in RANKL-
expressing MM cells [46]. Combined with the inhibitory 
effect of Dasatinib on CD229 activation, it is prompted 
that Dasatinib may be a choice in treating high-risk MM, 
and targeted inhibition of CD229 activation will play an 
adjunctive role in the treatment of MM. 
 
In conclusion, the present study reveals that elevated 
CD229 expression confers poor survival in MM patients 
and promotes cell proliferation both in vitro and in vivo. 
Mechanistically, CD229 interacts with RASAL3 upon 
tyrosine phosphorylation-mediated self-activation, thus 
activating the RAS/ERK signaling pathway. Our study 
not only demonstrates the oncogenic role of CD229 in 
MM cell proliferation, but also illustrates the new 
theoretical basis on CD229 as a promising therapeutic 
target for the treatment of MM. 
 
MATERIALS AND METHODS 
 
Gene expression profiling 
 
CD229 mRNA was determined using the gene 
expression profiling (GEP) cohorts, which were mined 
from the GEO database as previously described  
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[47, 48]. The series matrix files were downloaded from 
the GEO database and imported into Excel to analyze 
the gene expression profiles. The optimal cutoff values 
were obtained by analyzing survival rates, survival 
status and gene expression in X-tile software. Finally, 
the association analysis between differentially 
expressed genes and patient survival was performed 
using the Kaplan-Meier method. GraphPad Prism 8 
software was used to plot the survival curves, and the 
log-rank (Mantel-Cox) test method was used to test 
whether there was a significant difference between  
the high and low expression groups. The data were 
from GSE5900, GSE136337, Total Therapy 2 (TT2, 
GSE2658) and the evaluation of proteasome inhibition 
for extending remission (APEX, GSE9782) cohorts. 
 
Antibodies and reagents 
 
The primary antibodies used in this study were  
at the dilutions of 1:1000 as follows: CD229 
(ab103172, Abcam, UK); RASAL3 (ARP79758_P050, 
Aviva Systems Biology, USA); Flag (14793S,  
Cell Signaling Technology, USA); ERK (4695S, Cell 
Signaling Technology, USA); p-ERK (4370S, Cell 
Signaling Technology, USA); GAPDH (5174S,  
Cell Signaling Technology, USA). The second 
antibodies Goat anti-Rabbit IgG (H+L) HRP (FMS-
Rb01, Fcmacs) and Goat anti-Mouse IgG (H+L) HRP 
(S0002, Affinity) were in 5000 diluted concentrations. 
Puromycin was obtained from Merck KGaA 
(Darmstadt, Germany). Diphenyltetrazolium Bromide 
(MTT) was purchased from Solarbio (Shanghai, 
China). PKH26 was purchased from Sigma-Aldrich 
(Lot#SLBP9768V, SIGMA, USA). 
 
Cell lines and cell culture 
 
Human MM cell lines ARP1, CAG and peripheral 
blood mononuclear cells (PBMCs) were cultured in 
RPMI-1640 (Biological Industries, Israel). HEK293 
cells were cultured in DMEM (Biological Industries, 
Israel). Culture medium was added with fetal bovine 
serum (10%, Biological Industries, Israel), penicillin 
(100 U/mL, HyClone, USA) and streptomycin (100 
µg/mL, HyClone, USA), which was changed every 2 
days. All cells were cultured in 100 mm dishes at 37° C 
in the 5% CO2 incubator. 
 
Plasmids and cell transfection 
 
Plasmids containing human CD229 cDNA were provided 
by TranSheepBio (Shanghai, China) and CD229 siRNA 
were synthesized by GenePharma (Shanghai, China). The 
CD229 cDNA was cloned into the lentiviral vector, 
CD513B-1, and linked with FLAG tags. Lentiviruses 
containing cDNA were obtained by co-transfection of 

CD229 expression vector with packaging vectors (PLP1, 
PLP2 and PLP-VSVG) using Liposomal Transfection 
Reagent (Cat#40802, YEASEN, Shanghai) [49]. The 
virus supernatant was collected after 48 h and stored at -
80° C for subsequent experiments. MM cells were 
transfected with lentivirus and screened by puromycin. 
WB test was used to verify the transduction efficiency. 
 
The cells were resuspended with electroporation 
solution. Subsequently, siRNA was added into the 
solution to a final concentration of 100 nmol/L and then 
the solution was transferred into the electroporation 
cuvettes plus. Two pulses for 1.0 s at 960 microF of 
capacitance, 200 V of voltage were the most favorable 
electrical parameters for efficiency. 
 
Cell proliferation and viability assay 
 
Cells were cultured in 96-well plates at a density of 
2,000 cells/well. The Thiazolyl Blue Tetrazolium 
Bromide (MTT) method was performed to test the 
proliferation rate and cell viability for 24, 48 and 72 h, 
respectively. Absorbance was read at 570 nm using the 
microplate reader. 
 
Flow cytometric analysis of cell cycle 
 
The cell cycle was detected by flow cytometry  
(Merck Millipore, Darmstadt, Germany) as previously 
described [50]. 
 
WB and co-immunoprecipitation (Co-IP) 
 
Protein levels were determined by WB analysis under 
the protocol as previously described (50). According to 
the manufacturer’s instructions, the Pierce Direct 
Magnetic IP/Co-IP kit (88828, Thermo Scientific) was 
utilized for Co-IP assays. As CD229 cDNA is linked 
with FLAG tag, the FLAG antibody was used instead of 
the CD229 antibody for IP. And the IgG antibody 
sharing the same immunogen with the IP antibody was 
chosen as a negative control. 
 
RAS activity assay 
 
RAS activity was detected according to the instructions 
of the Active Ras Pull-Down and Detection Kit (16117, 
Thermo Scientific). 
 
Myeloma xenografts in NOD/SCID mice 
 
MM xenograft model was established in 6~8-week-old 
SCID/NOD mice. Briefly, 1 × 106 CAG CD229-OE 
cells were injected subcutaneously into the left abdomen 
of mice and the same amount of CAG WT cells were 
subcutaneously injected into the right abdominal cavity 
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of mice. The diameter of the tumor was measured using 
a vernier caliper every 1~2 days. When the xenograft 
tumor diameter was up to 15 mm, the mice were 
sacrificed, and then the tumors were collected, weighed 
and photographed. 
 
Mass spectrometry (MS) analysis 
 
SDS-PAGE was used to separate proteins from CD229-
OE cells. Gel bands at the expected size were excised 
and digested with sequence-grade trypsin (Promega, 
USA). The proteins were first quantified, and followed 
by reductive alkylation to open the three-dimensional 
structure of the proteins. The peptides were extracted by 
enzymatic digestion and analyzed by MS (Q-Exactive, 
Thermo). Finally, the peptides were analyzed according 
to National Center for Biotechnology Information 
nonredundant protein database [48]. 
 
Immunofluorescent staining and confocal microscopy 
 
Immunofluorescence staining experiments were 
performed as previously described [51]. Images were 
captured using a confocal microscope (TCS SP8; Leica, 
Germany). 
 
Statistical analysis 
 
All data were expressed as the mean ± standard 
deviation. Two-tailed Student’s t-test (2 groups) or one-
way ANOVA for multiple comparisons were used to 
determine the significance between experimental groups. 
The Kaplan–Meier method and Log-rank test were used 
to determine the survival rate of MM patients. *p < 0.05 
was considered statistically significant. 
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Supplementary Figure 

 
 

 
 

 
 

Supplementary Figure 1. The quantitative analyses of WB assays for the indicated protein. (A, B) Confirmation of CD229 
expression in CD229-OE MM cells, related to Figure 2A. (C) Confirmation of CD229 expression in CD229-OE MM cells, related to Figure 2D.  
(D) Relative expression of RAS-GTP in WT and CD229-OE MM cells, related to Figure 3C. (E) Relative expression of Total-RAS in WT and 
CD229-OE MM cells, related to Figure 3C. (F, G) Relative expressions of p-ERK and ERK in CD229-OE MM cells, related to Figure 3D, 
respectively. (H, I) Relative expressions of p-ERK and ERK in siCD229 MM cells, related to Figure 3E, respectively. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 2. 
 
 
Supplementary Table 1. Statistics of top 30 enriched pathways. 

 
Supplementary Table 2. Co-IP/MS data of the selected 561 proteins co-immunoprecipitated with CD229. 

 


