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INTRODUCTION 
 

As per global statistics, gastric cancer (GC) ranked fourth 

in cancer-related deaths, causing >768,000 fatalities in 

2020 [1]. Stomach adenocarcinoma (STAD) remains the 

most common pathological type of GC, which originates 

from the normal gastric mucosal epithelium [2]. Owing to 

the nonspecific symptoms at early stages, most patients 

with GC are diagnosed at advanced stages, leading to  

the loss of optimal surgical treatment opportunity [3]. 

Traditional strategies employed in the treatment of GC 

include surgery, chemotherapy, radiotherapy, biotherapy, 

and others; however, their overall therapeutic effect is far 

from satisfactory. Besides, the different levels of 

metastases and postoperative recurrence rates remain the 

predominant contributing factors in the invalidity or 

failure of clinical treatment [4]. The 5-year overall 

survival rate of patients with localized GC can reach 

90%; however, the same rate in patients with progressive 

stages is usually <5% [5, 6]. Therefore, it is imperative 
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ABSTRACT 
 

Gastric cancer (GC) is one of the most common malignancies with unfavorable prognoses. The present study 
aimed to identify novel biomarkers or potential therapeutic targets in GC via bioinformatic analysis and in vitro 
experiments. The Gene Expression Omnibus and The Cancer Genome Atlas databases were used to screen the 
differentially expressed genes (DEGs). After protein-protein interaction network construction, both module and 
prognostic analyses were performed to identify prognosis-related genes in GC. The expression patterns and 
functions of G protein γ subunit 7 (GNG7) in GC were then visualized in multiple databases and further verified 
using in vitro experiments. A total of 897 overlapping DEGs were detected and 20 hub genes were identified via 
systematic analysis. After accessing the prognostic value of the hub genes using the online server Kaplan-Meier 
plotter, a six-gene prognostic signature was identified, which was also significantly correlated with the process of 
immune infiltration in GC. The results of open-access database analyses suggested that GNG7 is downregulated 
in GC; this downregulation was associated with tumor progression. Furthermore, the functional enrichment 
analysis unveiled that the GNG7-coexpressed genes or gene sets were closely correlated with the proliferation 
and cell cycle processes of GC cells. Finally, in vitro experiments further confirmed that GNG7 overexpression 
inhibited GC cell proliferation, colony formation, and cell cycle progression and induced apoptosis. As a tumor 
suppressor gene, GNG7 suppressed the growth of GC cells via cell cycle blockade and apoptosis induction and 
thus may be used as a potential biomarker and therapeutic target for GC. 
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for researchers to find novel biomarkers and effective 

targets for improving the early diagnosis rate and clinical 

outcomes of patients with GC. 
 

Through high-throughput sequencing and gene 

microarray technologies, bioinformatic analysis has 

recently been increasingly used to search for 

molecular markers or targets involved in tumor 

development and progression [7–10]. In the present 

study, the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo) and The Cancer 

Genome Atlas Stomach Adenocarcinoma (TCGA-

STAD, https://portal.gdc.cancer.gov/) databases were 

used to screen the common differentially expressed 

genes (DEGs) between GC tissues and normal 

controls. In addition, after protein–protein interaction 

(PPI) network and module analyses, the online  

portal Kaplan–Meier plotter (http://www.kmplot.com/ 

analysis/index.php?p=background) and Tumor Immune 

Estimation Resource (TIMER, https://cistrome. 

shinyapps.io/timer/) were utilized to access the 

prognostic value of the identified hub genes. Finally, 

the seldom reported G protein γ subunit 7 (GNG7) 

was selected to explore its expression patterns and 

potential roles in GC via several public databases and 

functional experiments in vitro. Via a comprehensive 

analysis, the prognostic implication and therapeutic 

potential of GNG7 in the progression of GC were 

discovered. This information may provide novel 

insights for future studies. 
 

MATERIALS AND METHODS 
 

Microarray data sources and preprocessing 

 

The gene expression profile of the GSE65801 dataset, 

based on the GPL14550 Agilent-028004 SurePrint G3 

Human GE 8x60K Microarray platform, was retrieved 

and downloaded from the GEO database; the dataset 

included 32 GC tissues and 32 normal gastric tissues. The 

STAD RNA-seq data, which contained 375 STAD tissues 

and 32 normal tissues, were downloaded from the TCGA 

portal. The background correction, log2 conversion, and 

quantile normalization of the raw data of the above two 

datasets were performed using the “affy” package in R 

4.2.3 [11]. Probes without gene symbols or genes without 

available data were deleted. If numerous probes were 

annotated with a single gene, their median value was 

adopted as the gene expression level. However, if many 

genes were mapped to a single probe, the corresponding 

data were removed for the lack of specificity. 

 

DEG screening 

 

The GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) 

tool was applied for screening DEGs between GC and 

normal control samples in the GSE65801 dataset, 

whereas the “limma” R package was utilized for 

screening DEGs between GC and normal control 

samples in the TCGA-STAD dataset [12]. The adjusted 

P-value < 0.05 and |log2 fold change (FC)| > 1 were set 

as the cutoff criteria. The “ggplot2” and “pheatmap” R 

packages were applied to visualize the DEGs of each 

database by drawing volcano plots and heatmaps, 

respectively. These DEGs were subsequently classified 

into the up- and downregulated groups according to 

their log2FC value, and the overlapping up- or 

downregulated DEGs between the GSE65801 and 

TCGA-STAD datasets were analyzed using the Venny 

2.1 tool (https://bioinfogp.cnb.csic.es/tools/venny/). 

Finally, the identified intersecting DEGs were further 

analyzed. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analyses of 

DEGs 

 

As a well-known bioinformatics tool, GO annotates gene 

functions in three groups: biological process, cellular 

component, and molecular function [13]. KEGG is a 

widely used reference database to unravel the potential 

signaling pathways of the interaction network from a 

provided list of genes [14]. To evaluate the biological 

roles of the identified intersected DEGs, their GO and 

KEEG pathway enrichment analyses were processed via 

the Database for Annotation Visualization and Integrated 

Discovery (DAVID; http://david.ncifcrf.gov), which  

is an open-source website that helps comprehensively 

interpret the genomic information and biological 

information of a given gene or protein collection [15]. 

Furthermore, the results of the above enrichment 

analyses were visualized via the bubble charts  

plotted from an online bioinformatics platform 

(http://www.bioinformatics.com.cn). P < 0.05 was 

considered the cutoff of statistical significance. 

 

PPI network construction, module analysis, and 

candidate hub gene selection 

 

The PPI network of the up- or downregulated 

overlapping DEGs was primarily constructed using the 

Search Tool for the Retrieval of Interacting Genes 

(STRING, http://string.embl.de/) database with the 

following cutoff standard: confidence score ≥ 0.4 and 

maximum interactors number = 0. The network was then 

visualized via the Cytoscape software (version 3.6.1) 

[16, 17]. In addition, the Molecular Complex Detection 

plug-in of Cytoscape was used to screen the most 

important module of the constructed PPI network [18]; 
the following default criteria were used for module 

analysis: degree cutoff value = 2, node score cutoff value 

= 0.2, K score = 2, and maximum depth = 100 [19]. 

http://www.ncbi.nlm.nih.gov/geo
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Then, the DAVID database was utilized to detect the 

enriched KEGG pathways of the top three modules. 

Moreover, the three methods of node connect degree 

(Degree), maximal clique centrality (MCC), and 

maximal neighborhood component (MNC) in the 

CytoHubba plug-in of Cytoscape were applied for 

candidate hub gene selection. The genes scored in the 

top 20 of each method were chosen and employed for 

intersection analysis. The intersecting genes shared 

among all three methods were identified as the candidate 

hub genes, which were further visualized via the Venn 

diagram. 

 

Validation of candidate hub gene expression in Gene 

Expression Profiling Interactive Analysis (GEPIA) 

 

GEPIA (http://gepia.cancer-pku.cn/) is a convenient 

online tool that is widely utilized in several 

customizable analyses, including differential expression 

analysis, correlation analysis, prognosis analysis, and 

others, based on the RNA-seq expression data of 9,736 

tumor and 8,587 normal samples from TCGA and 

Genotype-Tissue Expression programs [20]. In the 

present study, GEPIA (version 2) was used to analyze 

expression differences in the candidate hub genes 

between GC and normal control samples. 

 

Survival analysis of hub genes 

 

The Kaplan–Meier plotter is a web portal designed for 

performing survival analysis based on the gene 

expression and prognostic data of 21 cancer types 

derived from GEO, European Genome-phenome 

Archive, and TCGA databases [21]. In the present 

study, the prognostic values of the hub genes for  

the overall survival of patients with GC were 

estimated using the Kaplan–Meier plotter via the log-

rank test. Besides, the median value of transcripts per 

million was adopted as the cutoff to dichotomize 

patients with GC into low- and high-expression 

groups, and log-rank P < 0.05 was considered 

statistically significant. 

 

Association between the expression of signature 

genes and infiltration levels of immune cells 

 

TIMER (https://cistrome.shinyapps.io/timer/) is an 

online database resource that enables the analysis of the 

relationships of multiple factors, such as gene 

expression, mutation, and copy number alteration, with 

immune cell infiltration in different tumor types [22]. In 

the current study, TIMER was utilized to analyze the 

associations between the expression of signature genes 

and infiltration levels of B cells, CD4+ T cells, CD8+ T 

cells, macrophages, neutrophils, and dendritic cells  

in GC. 

Correlation and diagnostic value analysis of 

signature genes 

 

To examine whether the signature genes are associated 

with each other, the “correlation analysis” module of 

GEPIA2 and “coexpression analysis” module of 

STRING were used to visualize the pairwise 

relationships among these genes. FunRich is a stand-

alone bioinformatic analysis software that principally 

provides the functional enrichment and network 

analyses of the desired genes or proteins [23]. In the 

present study, FunRich (version 3.1.3) was used to 

unravel the potential interactions between the signature 

genes and their related genes. GeneMANIA 

(http://www.genemania.org), a versatile online server, is 

capable of performing the interaction, coexpression, and 

functional enrichment analyses of the given gene lists 

based on abundant genomic data [24]. The present study 

utilized GeneMANIA to annotate the functions of the 

signature genes and their coexpression genes. To further 

appraise the diagnostic sensitivity and specificity of the 

signature genes, their receiver operating characteristic 

curves were plotted using the bioinformatics platform 

via the gene expression profiles derived from the 

TCGA-STAD dataset. Besides, the signature genes with 

the area under the curve of >0.9 were considered as 

having high diagnostic accuracy. 

 

Expression pattern and clinicopathological 

significance of GNG7 in GC 

 

Among the signature genes, the rarely reported GNG7 

was selected to explore its potential roles in GC 

progression. TIMER was primarily utilized to examine 

the expression patterns of GNG7 in 32 cancer types from 

the TCGA database. As an online datamining platform, 

Oncomine (http://www.oncomine.org) integrates data 

from 715 datasets with >80,000 samples for genome-

wide bioinformatic analysis [25]. In the present study, 

Oncomine was used to detect the expression levels of 

GNG7 in diverse cancers with P value < 1E-4 and 

|log2FC| > 2 as the threshold. The GEPIA2 database was 

further used to identify the expression levels of GNG7  

in multiple cancers. Hiplot (https://hiplot.org), an 

interactive web service, helps users analyze and 

visualize biomedical data [26]. Using the Violin-Chart 

tool in Hiplot, the differential expression of GNG7 in 

GC and normal controls was detected and validated in 

the GSE13861 (71 GC and 19 normal tissues), 

GSE13911 (38 GC and 31 normal tissues), and 

GSE19826 (12 GC and 12 normal tissues) datasets, 

which were downloaded from the GEO database. 

UALCAN (http://ualcan.path.uab.edu/index.html) is an 
open-access web-portal that helps perform the in-depth 

analysis of cancer-associated omics data from the 

TCGA, MET500, and CPTAC databases [27]. In the 

http://gepia.cancer-pku.cn/
https://cistrome.shinyapps.io/timer/
http://www.genemania.org/
http://www.oncomine.org/
https://hiplot.org/
http://ualcan.path.uab.edu/index.html
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current study, the “TCGA analysis” module of 

UALCAN was used to explore the expression of GNG7 

and its association with the clinicopathological features 

(sex, age, race, tumor grade, histological subtype, nodal 

metastasis status, tumor stage, and others) of patients 

with GC. 

 

Enrichment analysis of GNG7-coexpressed genes  

in GC 

 

LinkedOmics (http://www.LinkedOmics.org/login.php), 

a flexible online database resource, enables the analysis 

of multiple omics data across 32 cancer types from the 

TCGA database [28]. After querying the “LinkFinder” 

module of LinkedOmics using the Pearson correlation 

test, the volcano plots and heatmaps of genes 

coexpressed with GNG7 in the TCGA-STAD cohort 

were obtained. Metascape (http://metascape.org/) is an 

open-access web server that offers the gene annotation 

and analysis of a given list of genes [29]. In the current 

study, Metascape was used to analyze the enrichment 

analysis of the biological processes and pathways of 

GNG7-coexpressed genes. The biological pathways 

enriched in these genes were further interpreted using 

FunRich 3.1.3. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA is a powerful algorithm for predicting potential 

biological processes or signaling pathways correlated 

with the specific gene set by comparing the statistical 

differences of enrichment analysis between the two 

groups previously defined via the phenotypes of the 

desired genes [30]. In the current study, the samples from 

the TCGA-STAD dataset were classified into GNG7 low- 

and high-expression groups according to the median 

expression value, and GSEA (version 4.2.3) software 

(http://software.broadinstitute.org/gsea/index.jsp) was 

then used to speculate the signaling pathways associated 

with GNG7 expression in GC. c2.cp.kegg.v7.5.1. 

symbols.gmt, downloaded from the Molecular Signature 

Database (http://www.gseamsigdb.org/gsea/msigdb/), 

was used as the reference gene set, and |normalized 

enrichment score | > 1, nominal P < 0.05 and FDR < 0.25 

were used as the cutoff criteria. 

 

Cell lines and cell transfection 

 

The human gastric epithelial cell line GES-1 and GC 

cell lines (AGS, BGC823, HGC27, and SGC7901) 

were cultured in Roswell Park Memorial Institute-

1640 medium (Jinuo, Hangzhou, China) supplemented 

with 10% fetal bovine serum (Evergreen, Hangzhou, 
China) and 1% penicillin/streptomycin (Jinuo, 

Hangzhou, China). The cells were incubated at 37° C 

and 5% CO2. 

SGC7901 cells were transfected with the human 

pcDNA3.1-GNG7 or pcDNA3.1 plasmid (GenePharma, 

Suzhou, China) using Lipofectamine 2000 (Invitrogen, 

MA, USA) according to the manufacturer’s instructions. 

After 72 h, the transfected cells were collected for the 

subsequent experiments. 

 

RNA extraction and quantitative reverse 

transcription-polymerase chain reaction (qRT-PCR) 

 

The total RNA of cells was extracted using TRIzol 

(Invitrogen, MA, USA) and then used to synthesize 

cDNA via PrimeScript™ RT reagent kit (TaKaRa, Kyoto, 

Japan). The synthesized cDNA was used to perform qRT-

PCR with SYBR® Premix Ex Taq™ II (TaKaRa, Kyoto, 

Japan) in the CFX Maestro Detection System (Bio-Rad, 

CA, USA) according to the manufacturer’s instructions. 

The amplification conditions were 95° C for 30 s, 95° C 

for 5 s, and 60° C for 30 s for a total of 40 cycles.  

The primers (Tsingke, Wuhan, China) used for PCR  

were shown in Table 1. Glyceraldehyde 3-phosphate 

dehydrogenase was adopted as the internal reference. The 

relative expression levels of genes in different cells were 

analyzed using the 2−ΔΔCt method [31]. 

 

Proliferation assay 

 

The transfected cells were inoculated into 96-well plates 

and cultured in an incubator (5% CO2 and 37° C). After 

incubation for 0, 24, 48, and 72 h, the proliferation 

abilities of the treated cells were determined using the 

CCK-8 assay. At each detection time point, the cells 

were treated with 10 µL of CCK-8 regent (Biosharp, 

Beijing, China) per well and cultured for another 2 h. 

The absorbance was measured using a microplate reader 

(Bio-Rad, CA, USA) at the wavelength of 450 nm. 

 
Colony-formation assay 

 

The transfected cells were inoculated into a 6-well plate 

(500 cells/well) and cultured with complete medium in 

an incubator (5% CO2 and 37° C). The medium was 

replaced every 2~3 days. After incubation for 14 days, 

the formed colonies, each containing >50 cells, were 

fixed with 4% paraformaldehyde and stained with 0.1% 

crystal violet. The number of colonies in each well was 

then counted and photographed. 

 

Cell cycle and apoptosis assay 

 

After transfection, the cells were collected and  

fixed with 70% ethanol and stored in a cryogenic 

refrigerator (−20° C) overnight. Next day, the cells were 
washed twice with PBS and stained with propidium 

iodide/RNase staining buffer (BD Biosciences, CA, 

USA) for 15 min in the dark at room temperature. For 

http://www.linkedomics.org/login.php
http://metascape.org/
http://software.broadinstitute.org/gsea/index.jsp
http://www.gseamsigdb.org/gsea/msigdb/
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Table 1. The primer sequences used in qRT-PCR. 

Genes Sequence (5′→3′) 

GNG7 Forward: 5′-CAGCCACTA ACAACATAGCCCAGG-3′ 

 Reverse: 5′-TGTCCTT AAAGGGGTTCTCCGAGG-3′ 

RASGRP2 Forward: 5′-TCCACATCTACCAACAATCC-3′ 

 Reverse: 5′-CCTTCAGCTCCTTGATCTG-3′ 

AFF3 Forward: 5′-ACTCAACAGGATGATGGC-3′ 

 Reverse: 5′-TGCCTAAAGTGTTCTGGATC-3′ 

NAP1L2 Forward: 5′-CAGACCGTCCAAAAGGACTTA-3′ 

 Reverse: 5′-AGTAAGGGTTGGTACATTTCA-3′ 

ANLN Forward: 5′-CAAGATGTATCCAATGACT-3′ 

 Reverse: 5′-TGACTGAAGAATGAATGTT-3′ 

MELK Forward: 5′-GCTGCAAGGTATAATTGATGGA-3′ 

 Reverse: 5′-CAGTAACATAATGACAGATGGGC-3′ 

DEPDC1 Forward: 5′-CCGAACATAGAAGGACAA-3′ 

 Reverse: 5′-CTCTTGGTCTTGAACAGT-3′ 

GAPDH Forward: 5′-GGAGTCCACTGGCGTCTTCA-3′ 

 Reverse: 5′-GTCATGAGTCCTTCCACGATACC-3′ 

Abbreviations: qRT-PCR, RNA extraction and quantitative reverse 
transcription-polymerase chain reaction. 

 

the apoptosis assay, the cells were double-stained with 

Annexin V PE and 7-AAD using the Annexin V PE 

apoptosis detection kit I (BD Biosciences, CA, USA) 

according to the manufacturer’s instructions. 

FACSCalibur™ flow cytometer (BD Biosciences, CA, 

USA) was used to determine the cell cycle and 

apoptotic rate of the stained cells. 

 

Statistical analyses 

 

SPSS 23.0 (SPSS Inc., IL, USA) and GraphPad Prism 

8.01 (GraphPad Software Inc., CA, USA) were used for 

data analyses. Continuous data obtained from three 

separate experiments are depicted as mean ± standard 

deviation. Student’s t-test was used to compare two 

groups, whereas one-way ANOVA was applied to 

compare multiple groups. The two-tailed P-value of 

<0.05 was regarded as statistically significant. 

 

RESULTS 
 

DEG identification 

 

A total of 2,584 DEGs were identified from the 

GSE65801 dataset, including 1,356 upregulated and 

1,228 downregulated DEGs, whereas 3,594 DEGs were 

screened from the TCGA-STAD dataset, which included 

1,683 upregulated and 1,911 downregulated DEGs. The 

DEGs identified from the two datasets were visualized 

via heatmaps and volcano plots (Figure 1A–1D). Venn 

analysis revealed a total of 505 upregulated (Figure 1E) 

and 392 downregulated intersecting DEGs (Figure 1F) 

between the GSE65801 and TCGA-STAD datasets. 

 

GO and KEGG pathway analyses of DEGs 

 

For a better understanding of the up and downregulated 

intersecting DEGs, the two gene lists were mapped into 

the DAVID database for GO and KEGG pathway 

enrichment analyses. The GO enrichment analysis of 

the biological process revealed that the upregulated 

DEGs were associated with extracellular matrix 

organization, extracellular structure organization, 

nuclear division, mitotic cell cycle process, and mitotic 

cell cycle, whereas the downregulated DEGs were 

involved in the processes of digestion, chemical 

synaptic transmission, synaptic signaling, trans-

synaptic signaling, and anterograde trans-synaptic 

signaling. Cellular component enrichment analysis 

revealed that the upregulated DEGs were pre-

dominantly enriched in proteinaceous extracellular 

matrix, extracellular matrix, chromosome centromeric 

region, extracellular space, and kinetochore, whereas 

the downregulated DEGs were enriched in the 

extracellular region, extracellular region part, synapse, 

intrinsic component of the plasma membrane, and 

neuron part. Regarding the molecular function, the 

upregulated DEGs were principally associated with 

cytokine activity, extracellular matrix structural 

constituent, receptor binding, platelet-derived growth 

factor binding, and collagen binding, whereas  

the downregulated DEGs were correlated with gated 
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Figure 1. Identification of differentially expressed genes (DEGs) in GC. (A, B) DEG heatmaps of GC and normal tissues from the 

GSE65801 (A) and TCGA (B) datasets. (C, D) DEG volcano plots of GC and normal tissues from the GSE65801 (C) and TCGA (D) datasets. (E, F) 
Venn diagram showing the up- (E) and downregulated overlapping DEGs (F) between the GSE65801 and TCGA datasets. DEGs, differentially 
expressed genes; FC, fold change; GC, gastric cancer; and TCGA, The Cancer Genome Atlas. 
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channel activity, ligand-gated channel activity, ligand-

gated ion channel activity, substrate-specific channel 

activity, and channel activity (Figure 2 and Table 2). 

 

KEGG pathway enrichment analysis results revealed 

that the upregulated DEGs were predominantly 

enriched in extracellular matrix–receptor interaction, 

cytokine–cytokine receptor interaction, focal adhesion, 

PI3K-Akt signaling pathway, and cell cycle, whereas 

the downregulated DEGs were primarily associated 

with gastric acid secretion, neuroactive ligand–

receptor interaction, chemical carcinogenesis, xeno-

biotic metabolism via cytochrome P450, and nicotine 

addiction (Figure 2 and Table 3). 

 

PPI network construction, module analysis, and 

candidate hub gene selection 

 

After searching the STRING database, the PPI network 

for the upregulated intersecting DEGs was first 

established using the Cytoscape software; the network 

contained 436 nodes and 4,895 edges (Supplementary 

Figure 1). The top three modules of this network 

(Figure 2D–2F) were then selected via module analysis 

using the Molecular Complex Detection plug-in of 

Cytoscape. KEGG enrichment analysis suggested that 

these three modules were significantly enriched in cell 

cycle, extracellular matrix–receptor interaction, and 

phagosome (Table 4). The top 20-ranked genes 

identified by all three algorithms (Degree, MCC, and 

MNC) in the CytoHubba plug-in were chosen as 

candidate hub genes. The identified upregulated 

candidate hub genes were as follows: CDK1, CCNA2, 

AURKB, BUB1B, TOP2A, BIRC5, CCNB2, BUB1, 

CENPF, KIF2C, PBK, NCAPG, TPX2, and KIF15 

(Figure 2J and Table 5). The PPI network of the 

downregulated overlapping DEGs comprised 316 

nodes and 736 edges (Supplementary Figure 2), and  

the top three modules of the network (Figure 2G–2I) 

were predominantly enriched in cAMP signaling 

pathway, chemical carcinogenesis, and neuroactive 

ligand–receptor interaction (Table 3). The identified 

downregulated candidate hub genes were as follows: 

SST, GCG, CHGA, GNG7, NPY, GHRL, CASR, 

NEUROD1, and CCKBR (Figure 2K and Table 5). 

 

Validation of candidate hub gene expression in 

GEPIA 

 

To confirm whether the 23 candidate hub genes were 

reliable, the “Expression DIY” module of GEPIA2 was 

utilized to determine their expression levels in GC. All 

candidate hub genes identified via the PPI network of 
upregulated DEGs showed increased expression levels 

in GC tissues compared with normal tissues, whereas 

the candidate hub genes obtained from the PPI network 

of downregulated DEGs had significantly decreased 

expression levels in GC compared with normal controls, 

except for CASR, GCG, and NEUROD1 (Figure 3). 

Because the expression trends of the 14 upregulated 

genes (CDK1, CCNA2, AURKB, BUB1B, TOP2A, 

BIRC5, CCNB2, BUB1, CENPF, KIF2C, PBK, 

NCAPG, TPX2, and KIF15) and 6 downregulated genes 

(SST, CHGA, GNG7, NPY, GHRL, and CCKBR) were 

in accordance with the study data, they were selected as 

the real hub genes and further analyzed. 

 

Prognostic value analysis of hub genes 

 

To determine the prognostic value of the 20 hub genes, 

the Kaplan–Meier plotter was used to perform the 

overall survival analysis. The results revealed that the 

mRNA expression of all 14 upregulated hub genes was 

associated with the overall survival of patients with GC. 

Among the genes, patients with higher expression levels 

of AURKB, BIRC5, BUB1, and TPX2 had shorter 

overall survival compared with the control groups, 

which is consistent with our speculation that the 

increased expression of these genes would reduce the 

overall survival of patients (Figure 4). The expression 

levels of all six downregulated hub genes were also 

associated with the overall survival of patients with GC; 

however, compared with controls, only the low 

expression of GNG7 and SST was associated with the 

unfavorable overall survival of patients with GC, again 

consistent with our aforementioned speculation (Figure 

4). Therefore, a six-gene signature, including four 

upregulated genes AURKB, BIRC5, BUB1, and TPX2 

and two downregulated genes SST and GNG7, was 

identified as an indicator for GC. 

 

Association between the expression of signature 

genes and infiltration levels of immune cells 

 

As one of the important components of the tumor 

microenvironment, immune cells play important roles in 

the progression and prognosis of GC [32, 33]. For an in-

depth insight into the prognostic implication of the 

identified signature genes, the “Gene” module of 

TIMER was utilized to detect the associations between 

the expression of AURKB, BIRC5, BUB1, TPX2, 

GNG7, and SST and infiltration of immune cells in GC. 

Of note, the results revealed that BIRC5, BUB1, and 

TPX2 were positively correlated with tumor purity, 

whereas GNG7 and SST were negatively correlated 

with tumor purity (Figure 5). Regarding immune 

infiltration, AURKB expression was negatively 

correlated with B cells, CD8+ T cells, CD4+ T cells, 

macrophages, and dendritic cells (Figure 5A). BIRC5 
expression was negatively correlated with the 

infiltration of B cells, CD4+ T cells, macrophages, and 

dendritic cells (Figure 5B). BUB1 expression was 
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Figure 2. Enrichment and module analyses of differentially expressed genes (DEGs). (A) GO enrichment analysis of the 

upregulated DEGs. (B) GO enrichment analysis of the downregulated DEGs. (C) KEGG pathway enrichment analysis of the up- and 
downregulated DEGs. (D–F) Top three modules of the PPI network from the upregulated DEGs (the color intensity of circles represents the 
connectivity degree of DEGs). (G–I) Top three modules of the PPI network from the downregulated DEGs (the color intensity of circles 
represents the connectivity degree of DEGs). (J, K) Three algorithms to screen the up- (J) and downregulated candidate hub genes (K) using 
the Venn diagram. Degree, node connect degree; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; MCC, maximal clique centrality; MNC, maximal neighborhood component; and PPI, protein–protein interaction. 
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Table 2. GO analysis of DEGs in GC. 

Expression Category Term Count(%) P value FRD 

Upregulated 

GOTERM_BP_FAT GO:0030198~extracellular matrix organization 51(7.20) 3.99E-23 1.19E-19 

GOTERM_BP_FAT GO:0043062~extracellular structure organization 51(7.20) 4.57E-23 1.19E-19 

GOTERM_BP_FAT GO:0000280~nuclear division 59(8.32) 7.39E-18 1.28E-14 

GOTERM_BP_FAT GO:1903047~mitotic cell cycle process 74(10.44) 1.37E-17 1.78E-14 

GOTERM_BP_FAT GO:0000278~mitotic cell cycle 77(10.86) 3.12E-17 3.14E-14 

GOTERM_CC_FAT GO:0005578~proteinaceous extracellular matrix 47(6.63) 5.09E-17 2.47E-14 

GOTERM_CC_FAT GO:0031012~extracellular matrix 50(7.05) 1.83E-12 4.44E-10 

GOTERM_CC_FAT GO:0000775~chromosome centromeric region 28(3.95) 1.43E-11 2.30E-09 

GOTERM_CC_FAT GO:0005615~extracellular space 89(12.56) 5.00E-11 5.19E-09 

GOTERM_CC_FAT GO:0000776~kinetochore 23(3.25) 5.35E-11 5.19E-09 

GOTERM_MF_FAT GO:0005125~cytokine activity 25(3.53) 6.23E-09 5.73E-06 

GOTERM_MF_FAT GO:0005201~extracellular matrix structural constituent 15(2.12) 3.14E-08 1.44E-05 

GOTERM_MF_FAT GO:0005102~receptor binding 71(10.02) 9.23E-07 2.83E-04 

GOTERM_MF_FAT GO:0048407~platelet-derived growth factor binding 6(0.85) 5.34E-06 1.23E-03 

GOTERM_MF_FAT GO:0005518~collagen binding 11(1.55) 6.86E-06 1.26E-03 

Downregulated  

GOTERM_BP_FAT GO:0007586~digestion 23(5.87) 3.69E-12 1.49E-08 

GOTERM_BP_FAT GO:0007268~chemical synaptic transmission 38(9.69) 4.87E-09 3.93E-06 

GOTERM_BP_FAT GO:0099536~synaptic signaling 38(9.69) 4.87E-09 3.93E-06 

GOTERM_BP_FAT GO:0099537~trans-synaptic signaling 38(9.69) 4.87E-09 3.93E-06 

GOTERM_BP_FAT GO:0098916~anterograde trans-synaptic signaling 38(9.69) 4.87E-09 3.93E-06 

GOTERM_CC_FAT GO:0005576~extracellular region 144(36.74) 3.11E-07 1.10E-04 

GOTERM_CC_FAT GO:0044421~extracellular region part 123(31.38) 2.02E-06 3.11E-04 

GOTERM_CC_FAT GO:0045202~synapse 38(9.69) 3.17E-06 3.11E-04 

GOTERM_CC_FAT GO:0031226~intrinsic component of plasma membrane 66(16.84) 3.53E-06 3.11E-04 

GOTERM_CC_FAT GO:0097458~neuron part 55(14.03) 5.22E-06 3.60E-04 

GOTERM_MF_FAT GO:0022836~gated channel activity 27(6.89) 5.79E-09 2.05E-06 

GOTERM_MF_FAT GO:0022834~ligand-gated channel activity 18(4.59) 7.04E-09 2.05E-06 

GOTERM_MF_FAT GO:0015276~ligand-gated ion channel activity 18(4.59) 7.04E-09 2.05E-06 

GOTERM_MF_FAT GO:0022838~substrate-specific channel activity 30(7.65) 4.05E-08 8.21E-06 

GOTERM_MF_FAT GO:0015267~channel activity 31(7.91) 5.39E-08 8.21E-06 

Abbreviations: BP, biological process; CC, cellular component; DEGs, differentially expressed genes; FDR, false discovery rate; 
GC, gastric cancer; GO, Gene Ontology; MF, molecular function. 

 

negatively correlated with the infiltration of all host 

immune cells, except for that of neutrophils (Figure 

5C). TPX2 expression was negatively correlated with 

the infiltration of all immune cell types in GC (Figure 

5D). Finally, SST expression was positively correlated 

with the infiltration of B cells, CD4+ T cells, and 

macrophages (Figure 5E), whereas GNG7 expression 

was positively correlated with the infiltration of all 

immune cells in GC (Figure 5F). These results suggest 

that the signature genes are closely associated with 

immune infiltration in GC and that they can be used as 

effective prognostic biomarkers for patients with GC. 

 

Correlation and diagnostic value analysis of 

signature genes 

 

Correlation analysis using GEPIA2 revealed that among 

the six signature genes, the upregulated genes 

(AURKB, BIRC5, BUB1, and TPX2) were largely 

negatively correlated with the downregulated genes 

(SST and GNG7) in GC (Figure 6A). Besides, the 

upregulated genes were positively correlated with each 

other, which was further confirmed via the coexpression 

heatmap obtained from the STRING database (Figure 

6A, 6B). The interaction network of the signature genes 

and their related genes constructed using FunRich 

software revealed that these six genes might actively 

interact with each other (Figure 6C). Moreover, the PPI 

network of the signature genes and their coexpression 

genes constructed using the GeneMANIA database 

unveiled that these genes were predominantly enriched 

in the chromosomal centromeric region, chromosomal 

region, and chromosome segregation (Figure 6D). With 

respect to diagnostic value analysis, the study data 

showed that the area under the curve values of AURKB, 

BIRC5, BUB1, TPX2, SST, and GNG7 were 0.838, 
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Table 3. KEGG pathway analysis of DEGs in GC. 

Expression Term Count(%) Genes P value FRD 

Upregulated 

hsa04512:ECM-receptor 

interaction 
19(2.68) 

COL27A1, ITGA2, FN1, LAMC2, HMMR, THBS2, 

COL1A1, COMP, COL3A1, COL1A2, COL5A1, 

IBSP, COL4A1, COL5A3, COL5A2, ITGA11, SPP1, 

COL6A3, ITGB8 

4.73E-11 9.23E-09 

hsa04060:Cytokine-cytokine 

receptor interaction 
26(3.67) 

CXCL9, TNFRSF6B, CSF2, CCL3L3, IL24, CXCL1, 

TNFRSF11B, CCL7, CCL3, CCR8, TNFSF11, CCL18, 

CCL15, IL11, TNFRSF12A, TNFRSF9, LIF, OSM, 

INHBA, OSMR, CXCL10, IFNG, IL2RA, TNFSF4, 

TNFSF9, TNFRSF25 

4.13E-08 4.03E-06 

hsa04510:Focal adhesion 21(2.96) 

PDGFRB, COL27A1, ITGA2, FN1, LAMC2, THBS2, 

PGF, VAV2, COL1A1, COMP, COL3A1, COL1A2, 

COL5A1, IBSP, COL4A1, COL5A3, COL5A2, 

ITGA11, SPP1, COL6A3, ITGB8 

2.57E-06 1.46E-04 

hsa04151:PI3K-Akt signaling 

pathway 
28(3.95) 

LAMC2, THBS2, COMP, IBSP, MYB, SPP1, ITGB8, 

PDGFRB, ANGPT2, COL27A1, ITGA2, F2R, OSM, 

FN1, OSMR, PGF, COL1A1, COL3A1, EFNA3, 

COL1A2, COL5A1, COL4A1, COL5A3, IL2RA, 

COL5A2, ITGA11, COL6A3, PIK3AP1 

3.00E-06 1.46E-04 

hsa04110:Cell cycle 14(1.98) 

CDKN2A, BUB1B, PKMYT1, CDC25B, CCNA2, 

CCNB2, RBL1, CDC45, PTTG1, E2F1, CDK1, E2F3, 

BUB1, MAD2L1 

7.08E-05 2.76E-03 

Downregulated 

hsa04971:Gastric acid secretion 13(3.32) 

CAMK2B, CHRM3, KCNE2, KCNK10, KCNJ15, 

KCNJ16, ATP4B, ATP4A, SLC9A4, CCKBR, CA2, 

SST, KCNK2 

9.59E-08 1.61E-05 

hsa04080:Neuroactive ligand-

receptor interaction 
21(5.36) 

GABRB3, CHRM2, CHRM3, GRIA2, GABRA1, 

CHRM1, THRB, HTR1E, P2RY14, CHRNA7, 

PTGER3, SCTR, GRIK1, SSTR1, GABRG2, CCKAR, 

CCKBR, ADRB3, P2RX2, GRIA3, GRIA4 

6.17E-06 5.19E-04 

hsa05204:Chemical 

carcinogenesis 
11(2.81) 

CBR1, ALDH3A1, GSTM2, GSTA4, ADH1C, 

GSTA3, CHRNA7, GSTA2, ADH7, CYP2C18, 

SULT2A1 

1.50E-05 8.40E-04 

hsa00980:Metabolism of 

xenobiotics by cytochrome P450 
10(2.55) 

CBR1, ALDH3A1, GSTM2, GSTA4, ADH1C, 

GSTA3, GSTA2, AKR1C1, ADH7, SULT2A1 
5.06E-05 2.13E-03 

hsa05033:Nicotine addiction 7(1.79) 
GABRB3, GABRA1, GRIA2, CHRNA7, GABRG2, 

GRIA3, GRIA4 
2.97E-04 9.99E-03 

Abbreviations: Akt, protein kinase B; DEGs, differentially expressed genes; ECM, extracellular matrix; FDR, false discovery 
rate; GC, gastric cancer; KEGG, Kyoto Encyclopedia of Genes and Genomes; PI3K, phosphatidylinositol 3-kinase. 

 

0.855, 0.929, 0.939, 0.779, and 0.950, respectively 

(Figure 6E), indicating the relatively strong ability of 

the six signature genes to distinguish patients with GC 

from healthy subjects. 

 

GNG7 is downregulated in GC and correlated with 

tumor progression 

 

To the best of our best knowledge, GNG7 has seldom 

been reported with GC in literature, but compared with 

the other signature genes, the present study results 

revealed that GNG7 had a higher diagnostic power for 

patients with GC. Therefore, GNG7 was selected as the 

target for subsequent analysis. The expression pattern of 

GNG7 in multiple human tumors was first analyzed 

using the TIMER database. The results revealed that 

compared with normal tissues, the expression level of 

GNG7 was significantly lower in several malignancies, 

including STAD, colon adenocarcinoma, rectum 

adenocarcinoma, and others (P < 0.01; Figure 7A). 

Consistent with this, data from the Oncomine and 

GEPIA tools also revealed that GNG7 was 

downregulated in diverse human cancers, including GC 

(Figure 7B, 7C). Furthermore, the mRNA expression 

level of GNG7 was remarkably decreased in GC 

compared with that in normal controls in the GSE13861 

(P < 0.001; Figure 7D), GSE13911 (P < 0.01; Figure 

7E) and GSE19826 (P < 0.05; Figure 7F) datasets and 

in the UALCAN database (P < 0.001; Figure 7G).  

 

To assess the clinicopathological significance of GNG7 

in GC, the UALCAN database was searched, which 

revealed that the expression of GNG7 was correlated 

with the race, age, histological subtype, tumor grade, 

individual cancer stage, and TP53 mutation status  

of patients with GC (P < 0.05, Figure 8). However, 
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Table 4. KEGG pathway analysis of top 3 modules. 

Expression Module Term Count(%) Genes P value FRD 

Upregulated 

Module 1 

hsa04110: Cell cycle 9(11.25) 

CCNA2, CCNB2, CDC45, PTTG1, 

CDK1, BUB1B, PKMYT1, BUB1, 

MAD2L1 

2.04E-08 6.74E-07 

hsa04914: Progesterone-mediat- 

ed oocyte maturation 
6(7.5) 

CCNA2, CCNB2, CDK1, PKMYT1, 

BUB1, MAD2L1 
2.25E-05 3.72E-04 

hsa04114: Oocyte meiosis 6(7.5) 
CCNB2, PTTG1, CDK1, PKMYT1, 

BUB1, MAD2L1 
7.30E-05 8.04E-04 

hsa04115: p53 signaling pathway 4(5) CCNB2, RRM2, CDK1, GTSE1 2.43E-03 2.01E-02 

hsa03430: Mismatch repair 2(2.5) RFC3, EXO1 8.97E-02 0.59 

Module 2 

hsa04512: ECM-receptor interaction 9(22.5) 

COL1A1, COMP, COL3A1, COL1A2, 

COL5A1, COL4A1, COL5A2, 

COL6A3, THBS2 

1.19E-09 7.76E-08 

hsa04974: Protein digestion and 

absorption 
8(20) 

COL1A1, COL3A1, COL1A2, 

COL5A1, COL4A1, COL12A1, 

COL5A2, COL6A3 

4.19E-08 1.36E-06 

hsa04510: Focal adhesion 10(25) 

PDGFRB, COL1A1, COMP, COL3A1, 

COL1A2, COL5A1, COL4A1, 

COL5A2, COL6A3, THBS2 

6.86E-08 1.49E-06 

hsa05146: Amoebiasis 8(20) 
COL1A1, COL3A1, CSF2, COL1A2, 

IFNG, COL5A1, COL4A1, COL5A2 
1.53E-07 2.49E-06 

hsa04060: Cytokine-cytokine 

receptor interaction 
10(25) 

IL11, CXCL10, CXCL9, CSF2, IFNG, 

OSM, CCL3, CCR8, TNFSF11, CXCL1 
2.84E-07 3.69E-06 

Module 3 hsa04145: Phagosome 2(14.29) MSR1, OLR1 8.44E-02 0.59 

Downregulated 

Module 1 

hsa04024: cAMP signaling pathway 5(50) 
CHRM2, HTR1E, NPY, PTGER3, 

SSTR1 
4.26E-05 9.37E-04 

hsa04080: Neuroactive ligand-

receptor interaction 
5(50) 

CHRM2, HTR1E, P2RY14, PTGER3, 

SSTR1 
1.58E-04 1.74E-03 

hsa04923: Regulation of lipolysis in 

adipocytes 
2(20) NPY, PTGER3 6.33E-02 0.46 

Module 2 

hsa05204: Chemical carcinogenesis 8(88.89) 
ALDH3A1, GSTM2, GSTA4, ADH1C, 

GSTA3, GSTA2, ADH7, CYP2C18 
1.75E-13 2.62E-12 

hsa00982: Drug metabolism-

cytochrome P450 
7(77.78) 

ALDH3A1, GSTM2, GSTA4, ADH1C, 

GSTA3, GSTA2, ADH7 
2.05E-11 1.54E-10 

hsa00980: Metabolism of 

xenobiotics by cytochrome P450 
7(77.78) 

ALDH3A1, GSTM2, GSTA4, ADH1C, 

GSTA3, GSTA2, ADH7 
3.47E-11 1.74E-10 

hsa00480: Glutathione metabolism 5(55.56) 
GSTM2, GGT6, GSTA4, GSTA3, 

GSTA2 
1.84E-07 6.88E-07 

hsa00350: Tyrosine metabolism 3(33.33) ALDH3A1, ADH1C, ADH7 6.91E-04 2.07E-03 

Module 3 

hsa04080: Neuroactive ligand-

receptor interaction 
5(29.41) 

CHRM3, CCKAR, CHRM1, CCKBR, 

GABRG2 
2.76E-04 4.42E-03 

hsa04020: Calcium signaling 

pathway 
4(23.53) CHRM3, CCKAR, CHRM1, CCKBR 1.30E-03 1.04E-02 

hsa04911: Insulin secretion 3(17.65) CHRM3, CCKAR, ABCC8 5.13E-03 2.74E-02 

hsa04950: Maturity onset diabetes 

of the young 
2(11.76) NEUROD1, NKX2-2 3.35E-02 0.13 

hsa04971: Gastric acid secretion 2(11.76) CHRM3, CCKBR 9.16E-02 0.29 

Abbreviations: cAMP, cyclic adenosine monophosphate; ECM, extracellular matrix; KEGG, Kyoto Encyclopedia of Genes and 
Genomes. 

 

the expression was not correlated with other 

clinicopathological parameters, including patient sex, 

nodal metastasis status, and Helicobacter pylori 
infection status (P > 0.05, Figure 8). Taken together, the 

results suggest that GNG7 is downregulated in GC and 

correlated with tumor progression. 

Enrichment analysis of GNG7-coexpressed genes 

and gene sets 

 
To further explore the functional roles of GNG7 in GC, 

the LinkedOmics database was utilized to identify the 

genes coexpressed with GNG7. As illustrated in the 



www.aging-us.com 1456 AGING 

Table 5. Up- and down-regulated candidate hub genes identified in PPI networks by different 
ranked methods in CytoHubba. 

Up-regulated Down-regulated 

Degree MCC MNC Degree MCC MNC 

CDK1 NCAPG CDK1 SST SST SST 

CCNA2 KIF23 CCNA2 GRIA2 NPY GCG 

AURKB BIRC5 AURKB GCG CCL28 GRIA2 

BUB1B AURKB BUB1B CHGA GNG7 CHGA 

TOP2A KIF15 BIRC5 SYT4 CASR NPY 

BIRC5 BUB1B CCNB2 GNG7 SSTR1 GABRA1 

CCNB2 CCNB2 TOP2A GABRG2 CHRM2 SYT4 

BUB1 MELK BUB1 NPY HTR1E GHRL 

UBE2C TOP2A UBE2C GABRA1 PTGER3 GABRG2 

CDC45 CCNA2 CDC45 GHRL P2RY14 GNG7 

RRM2 ASPM RRM2 OPCML GCG OPCML 

CENPF KIF2C CENPF CASR GHRL CPLX2 

KIF2C CENPF KIF2C CPLX2 CCKBR CCKBR 

PBK PBK PBK NEUROD1 CCKAR CASR 

NCAPG TPX2 NCAPG AQP4 CHGA NEUROD1 

TPX2 CDK1 TPX2 CCKBR PCSK2 NEFL 

DLGAP5 BUB1 DLGAP5 CHRM2 NKX2-2 SSTR1 

CENPE KIF20A CENPE CHRM1 NKX6-2 CCL28 

MKI67 HMMR MKI67 NEFL NEUROD1 PCSK2 

KIF15 CEP55 KIF15 NCAM1 CHRM1 NKX2-2 

Abbreviations: MCC, maximal clique centrality; MNC, maximal neighborhood component; PPI, protein-
protein interaction. Gene symbols with bold and italic were the top 20 intersection genes by three 
ranked methods. 

 

volcano plot (Figure 9A), 8,229 genes (red dots) were 

positively correlated with GNG7, whereas 4,758 genes 

(green dots) were negatively correlated with GNG7. The 

top 50 genes that were positively or negatively 

correlated with GNG7 were visualized in heatmaps 

(Figure 9B, 9C). Enrichment analysis using the 

Metascape database revealed that the above 100 genes 

coexpressed with GNG7 were principally involved with 

mitotic sister chromatid segregation, microtubule 

cytoskeleton organization, the retinoblastoma gene in 

cancer, establishment of chromosome localization, and 

cell cycle (Figure 9D). Biological pathway analysis 

using Funrich software unveiled that the genes 

coexpressed with GNG7 were significantly enriched in 

cell cycle, DNA replication, M phase, mitotic M–M/G1 

phase, and aurora B signaling (Figure 9E). Moreover, 

the results of GSEA further confirmed that the gene sets 

associated with the low expression of GNG7 in GC were 

enriched in cell cycle, DNA replication, base excision 

repair, nucleotide excision repair, and homologous 
recombination KEGG pathways (P < 0.01, Figure 10). 

Taken together, GNG7 may play important roles in the 

proliferation and cell cycle processes of GC cells. 

GNG7 inhibits cell growth by inducing cell cycle 

arrest and apoptosis in GC 

 

The qRT-PCR assay revealed that the mRNA 

expression level of GNG7 was remarkably lower in four 

GC cell lines than in the normal gastric epithelial cell 

line GES-1 (P < 0.01; Figure 11A). To explore the 

potential roles of GNG7 in the malignant progression of 

GC, GNG7low SGC7901 cells were selected for 

transfection with pcDNA-GNG7 plasmids for 

functional experiments. The GNG7 overexpression 

efficiency was quantified using qRT-PCR, and the 

results validated its upregulation in GNG7-

overexpressing SGC7901 cells (P < 0.001; Figure 11B). 

Moreover, its overexpression observably elevated or 

depressed the top genes that were positively or 

negatively correlated with GNG7 (P < 0.05; 

Supplementary Figure 3). The CCK-8 and colony 

formation assays revealed that the overexpression of 

GNG7 markedly inhibited the cell proliferation and 
colony formation abilities of SGC7901 cells (P < 0.01; 

Figure 11C, 11D). The cell cycle assay showed that the 

overexpression of GNG7 could notably decrease the 
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Figure 3. Validation of the expression levels of 23 candidate hub genes between GC and normal controls using the GEPIA2 
database. |Log2FC|: 1 and P-value: 0.01 were set as the cutoff. FC, fold change; GC, gastric cancer; GEPIA, Gene Expression Profiling 

Interactive Analysis. N, normal; STAD, stomach adenocarcinoma; and T, tumor. 
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Figure 4. Overall survival analysis of the 20 hub genes in GC. Overall survival of patients with GC with low and high levels of CDK1 (A), 
CCNA2 (B), AURKB (C), BUB1B (D), TOP2A (E), BIRC5 (F), CCNB2 (G), BUB1 (H), CENPF (I), KIF2C (J), PBK (K), NCAPG (L), TPX2 (M), KIF15 (N), 
SST (O), CHGA (P), GNG7 (Q), NPY (R), GHRL (S), and CCKBR (T) are displayed using Kaplan–Meier curves. Log-rank P < 0.05 was regarded as 
statistically significant. GC, gastric cancer; HR, hazard ratio. 
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proportion of SGC7901 cells in the G1 phase and 

increase the proportion in the S phase (P < 0.01; 

Figure 11E). However, the proportion of cells in the 

G2 phase was not significantly different (P > 0.01; 

Figure 11E). The results of the apoptosis assay showed 

that the percentage of apoptotic cells in GNG7-

overexpressing SGC7901 cells was significantly 

increased compared with that in the control cells 

 

 
 

Figure 5. Correlations between the expression levels of signature genes in GC and immune infiltration using TIMER.  
(A) AURKB, (B) BIRC5, (C) BUB1, (D) TPX2, (E) SST, and (F) GNG7. P < 0.05 was regarded as statistically significant. GC, gastric cancer; TIMER, 
Tumor Immune Estimation Resource; TPM, transcripts per million. 
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Figure 6. Correlation and diagnostic value analyses of the signature genes in GC. (A) Correlation heatmap of the six signature genes 
in GC presented using the GEPIA2 database. (B) Coexpression heatmap of the six signature genes in GC visualized via the STRING database. 
(C) Interaction network of the six signature genes and their related genes created using the FunRich software. (D) PPI network of the six 
signature genes and their coexpression genes obtained via GeneMANIA. (E) ROC curves of the six signature genes in the TCGA-STAD cohort 
constructed using the bioinformatics platform (http://www.bioinformatics.com.cn). AUC, area under curve; GC, gastric cancer; GEPIA, Gene 
Expression Profiling Interactive Analysis; PPI, protein–protein interaction; ROC, receiver operating characteristic; STAD, stomach 
adenocarcinoma; STRING, Search Tool for the Retrieval of Interacting Genes; and TCGA, The Cancer Genome Atlas. 

http://www.bioinformatics.com.cn/
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Figure 7. Expression patterns of GNG7 in GC analyzed using bioinformatics tools. (A) The expression of GNG7 in multiple human 

cancers was visualized using the TIMER database. (B) Expression of GNG7 in different human cancers was revealed using the Oncomine 
database. P < 1E-4 and |log2FC| > 2 were utilized as the statistic threshold. (C) Expression of GNG7 in multiple human cancers was analyzed 
via the GEPIA web tool. (D–F) Expression levels of GNG7 in GC and normal samples were derived from the GSE13861, GSE13911, and 
GSE19826 datasets. (G) Expression of GNG7 in STAD was detected using the UALCAN database. AML, acute myelogenous leukemia; FC, fold 
change; GC, gastric cancer; GEPIA, Gene Expression Profiling Interactive Analysis; STAD, stomach adenocarcinoma; and TIMER, Tumor 
Immune Estimation Resource. *P < 0.05, **P < 0.01, and ***P < 0.001 versus control. 
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Figure 8. Relationships between GNG7 expression and clinicopathological parameters. Associations between the expression of 
GNG7 and sex (A), age (B), race (C), tumor grade (D), histological subtypes (E), nodal metastasis status (F), cancer stage (G), Helicobacter 
pylori infection status (H), and TP53 mutation status (I) of patients with STAD (UALCAN). STAD, stomach adenocarcinoma. *P < 0.05,  
**P < 0.01, and ***P < 0.001 versus control. (The asterisks above the error bar represent the comparison to the normal sample group, 
whereas the asterisks above the secondary line represent the comparison between groups indicated by the line). 
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Figure 9. Enrichment analysis of GNG7-coexpressed genes in GC. (A) Volcano plot showing the correlations between GNG7 and genes 
differentially expressed in TCGA-STAD using Pearson’s test. (B, C) Heatmaps showing the top 50 genes positively and negatively correlated 
with GNG7 in TCGA-STAD. (D) Biological process enrichment analysis of GNG7-coexpressed genes in STAD performed using the Metascape 
database. (E) Biological pathway enrichment analysis of GNG7-coexpressed genes in STAD performed using the FunRich software. GC, gastric 
cancer; STAD, stomach adenocarcinoma. 
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(P < 0.001; Figure 11F). The evidence indicated that 

GNG7 inhibits the growth of GC cells by enhancing 

cell cycle arrest and inducing cell apoptosis. 

 

DISCUSSION 
 

GC is one of the most prevalent and deadliest 

malignancies and the main cause of tumor-associated 

death worldwide [1]. Although tremendous advances 

have been made in the prevention and management of 

GC in recent decades, the prognosis and quality of life 

of patients diagnosed with GC remain dismal [5, 6]. The 

diagnostic abilities of traditional tumor markers such as 

CEA, CA 125, CA19-9 and CA 72-4 for GC are largely 

limited owing to their inadequate sensitivity or 

specificity [34, 35]. Furthermore, there is still a lack of 

ideal biological indicators to predict the progression and 

prognosis of GC and to be used as effective therapeutic 

targets in clinical practice [36]. Thus, the identification 

of novel biomarkers that play essential roles in the 

progression of GC, indicate treatment response, and act 

as targets for improving the prognosis of patients with 

GC is desperately needed. 

 

In the present study, a total of 407 GC tissues and 64 

normal tissues from the GSE65801 and TCGA-STAD 

datasets were included, which revealed 897 overlapping 

DEGs, including 392 downregulated and 505 upregulated 

DEGs. GO analysis showed that the upregulated  

DEGs were primarily enriched in extracellular  

matrix organization, extracellular structure organization, 

proteinaceous extracellular matrix, extracellular matrix, 

cytokine activity, and extracellular matrix structural 

constituent, whereas the downregulated DEGs were 

involved in digestion, chemical synaptic transmission, 

extracellular region, extracellular region part, gated 

channel activity, and ligand-gated channel activity.  

In addition, KEGG pathway analysis revealed that  

the upregulated DEGs were predominantly enriched in 

extracellular matrix–receptor interaction, cytokine–

cytokine receptor interaction, and focal adhesion, 

whereas the downregulated DEGs were associated with 

 

 
 

Figure 10. Gene set enrichment analysis (GSEA). KEGG pathway enrichment analysis of gene sets with lowly expressed GNG7 
performed using TCGA-STAD data (A–E). FDR, false discovery rate; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; NES, normalized enrichment score; and STAD, stomach adenocarcinoma. 
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Figure 11. Overexpression of GNG7 inhibited the proliferation and clone-formation abilities and induced cell cycle arrest and 
apoptosis in GC cells. (A) GNG7 mRNA levels in GC cell lines (AGS, BGC823, HGC27 and SGC7901) compared to the normal epithelial cell 

line GES-1. (B) GNG7 mRNA levels in control and GNG7-overexpressing SGC7901 cells. (C, D) Proliferation and colony formation abilities of 
control and GNG7-overexpressing SGC7901 cells. (E) Cell cycle distribution in control and GNG7-overexpressing SGC7901 cells. (F) Cell 
apoptosis rate in control and GNG7-overexpressing SGC7901 cells. GC, gastric cancer. **P < 0.01 and ***P < 0.001 versus control or blank 
group; ##P < 0.01 and ###P < 0.001 versus pcDNA3.1 group. 
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gastric acid secretion, neuroactive ligand–receptor 

interaction, and chemical carcinogenesis. Following the 

PPI network and module analyses, the KEGG pathways 

enriched in the top modules of the constructed PPI 

networks were interpreted using the DAVID database. 

The results showed that the top three modules of the PPI 

network from the upregulated DEGs were enriched in 

cell cycle, extracellular matrix–receptor interaction, and 

phagosome, whereas the top three modules of the PPI 

network of the downregulated DEGs were correlated 

with cAMP signaling pathway, chemical carcinogenesis, 

and neuroactive ligand–receptor interaction. 

 

Through in-depth analysis using three methods in the 

CytoHubba plug-in of Cytoscape, a total of 23 DEGs 

were identified as candidate hub genes, of which 20 

(CDK1, CCNA2, AURKB, BUB1B, TOP2A, BIRC5, 

CCNB2, BUB1, CENPF, KIF2C, PBK, NCAPG,  

TPX2, KIF15, SST, CHGA, GNG7, NPY, GHRL, and 

CCKBR) were selected as hub genes for their expression 

patterns in GEPIA2, which is in accordance with our 

previous analysis of the identified DEGs and candidate 

hub genes. Because the associations between the 

expression levels of six hub genes (AURKB, BIRC5, 

BUB1, TPX2, GNG7, and SST) and overall survival of 

patients with GC were consistent with our speculation, 

they were chosen as prognostic signature genes.  

The involvement of the signature genes in the process  

of immune infiltration in GC was also confirmed.  

The correlation and coexpression analyses revealed  

that these signature genes were correlated and that  

they interacted with each other. Furthermore, all 

signature genes had good diagnostic efficiency in 

distinguishing GC specimens from normal specimens; 

among the genes, GNG7 displayed the highest 

diagnostic capability. 

 

For a comprehensive understanding of the roles of the 

identified signature genes in the development and 

progression of GC, the relevant literature was reviewed. 

AURKB, also called AIM1 or AIK2, is an important 

member of the Aurora kinase family that participates in 

regulating the transition from the G2 phase to M phase 

during mitosis [37, 38]. Wang et al. found that AURKB 

was upregulated in GC and that the knockdown of 

AURKB inhibited the proliferation, invasion, migration, 

and cell cycle progression of GC cells in addition to 

inducing apoptosis [39]. Nie et al. revealed that AURKB 

could facilitate GC progression by activating CCND1, 

resulting in the poor overall survival of patients with GC 

[40]. BIRC5, also known as survivin, belongs to the 

inhibitor of apoptosis protein family; the proteins of this 

family play crucial roles in the processes of cell division 
and apoptosis suppression [41, 42]. Studies have shown 

an increased expression level of BIRC5 in GC, which 

was correlated with the depth of tumor invasion, distant 

metastasis, and TNM stage of GC [43–45]. As a member 

of the mitotic checkpoint family, BUB1 was upregulated 

in GC and correlated with the tumor histological subtype 

[46]. In addition, the increased expression level of BUB1 

was further shown to be closely associated with tumor 

cell proliferation [47, 48]. TPX2 is a microtubule-related 

protein that is important in spindle formation and cell 

cycle progression [49, 50]. Tomii et al. unveiled that the 

elevated expression of TPX2 was correlated with lymph 

node metastasis, remote metastasis, and TNM stage of 

GC [51]. Meanwhile, Liang et al. demonstrated that the 

knockdown of TPX2 inhibited the proliferation, 

migration, and invasion of GC cells in addition to 

inducing cell cycle arrest and apoptosis [52]. SST, a 

cyclic polypeptide, is not only involved in the 

maintenance of internal environment homeostasis but 

also acts as a tumor suppressor in multiple cancers [53]. 

Chen et al. revealed that the knockdown of SST 

promoted the migration and invasion abilities of GC 

cells [54]; however, Wang et al. observed the opposite 

following SST overexpression in GC cells [55]. The G 

proteins are heterotrimers, comprising α, β, and γ 

subunits, which play important roles in transmembrane 

signal transduction [56, 57]. The G protein γ subunit has 

12 members, and owns the ability to stabilize and 

localize G proteins to the cell membrane and mediate the 

signaling involved in cell growth [56, 58–61]. As a 

member of the G protein γ family, GNG7 was firstly 

cloned from bovine brain by Cali et al. in the year of 

1992 [62]. Human GNG7 locates on chromosome 

19p13.3, and predominantly expresses in some regions 

of brain such as striatum, hippocampus and neocortex 

[63–65]. In addition, GNG7 is reported to combine with 

Gαolf/Gβ2 and form a heterotrimeric complex, which 

participates in the neuro-protective response mediated by 

the A2A adenosine or D1 dopamine receptor (D1R) [66–

68]. Moreover, through ribozyme technology, studies 

also confirm the role of GNG7 in mediating the signal 

transduction between the β-adrenergic receptor and 

adenylyl cyclase via D1R in human embryonic kidney 

cells [69, 70]. Remarkably, GNG7 has been repeatedly 

shown to function as a tumor suppressor in many human 

cancers, including head and neck squamous cell 

carcinoma, esophageal cancer, breast cancer, pancreatic 

cancer, intrahepatic cholangiocarcinoma, clear cell renal 

cell carcinoma, and Hodgkin lymphoma [71–80]. 

However, the role of GNG7 in the malignant progression 

of GC remains undocumented. 

 

According to bioinformatic analysis, GNG7 was 

significantly downregulated in GC. This finding was 

further validated via qRT-PCR. The results from the 

UALCAN database revealed that the expression of 
GNG7 was correlated with the race, age, histological 

subtypes, tumor grade, individual cancer stages, and 

TP53 mutation status of patients with GC. Of note, the 
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enrichment analysis of GNG7-coexpressed genes and 

gene sets using data derived from the TCGA-STAD 

cohort attested that GNG7 was exceedingly implicated 

in the proliferation and cell cycle processes of GC cells. 

Many researchers have evaluated the effect of GNG7 in 

other cancer types. Liu et al. found that GNG7 over-

expression shortened the G0/G1 phase and delayed the 

G2/M phase of cervical cancer cells [56]. Xu et al. 

showed that the knockdown of GNG7 promoted cell 

proliferation by shortening the G0/G1 phase and 

delaying the G2/M phase of cell cycle in clear cell renal 

cell carcinoma [78]. Shibata et al. revealed that GNG7 

inhibited esophageal cancer cell growth by arresting the 

cell cycle at the G0/G1 phase [79]. Moreover, Mei et al. 

confirmed that GNG7 overexpression inhibited cell 

proliferation and induced apoptosis in breast cancer 

cells, whereas GNG7 knockdown showed reverse 

effects [75]. Consistent with these findings, the present 

study results revealed that compared with control cells, 

the proliferation and colony-formation abilities were 

decreased and the apoptotic levels were increased in 

GNG7-overexpressing SGC7901 cells. Furthermore, 

GNG7 overexpression shortened the G1 phase and 

delayed the S phase of SGC7901 cells without affecting 

the G2 phase, suggesting that GNG7 blocks cell cycle 

progression by inhibiting the progression of stage S to 

stage G2. Considering these findings, it could be 

concluded that GNG7 suppresses GC cell growth by 

arresting the cell cycle at the S phase and promoting 

cancer cell apoptosis. 

 

CONCLUSIONS 
 

Taken together, a six-gene signature with a good ability 

to diagnose GC and predict the prognosis of patients 

with GC was identified using integrated bioinformatic 

analysis. The study revealed that GNG7 was 

downregulated in GC and inhibited cancer cell growth 

by blocking cell cycle progression and inducing 

apoptosis. Thus, GNG7 can be recommended as a novel 

biomarker and potential therapeutic target for patients 

with GC. 
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Supplementary Figure 1. PPI network of the 505 upregulated intersecting differentially expressed genes (DEGs). The red, 
yellow, and green circles represent the top three modules, respectively. DEGs, differentially expressed genes; PPI, protein–protein 
interaction. 
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Supplementary Figure 2. PPI network of the 392 downregulated intersecting differentially expressed genes (DEGs). The red, 
yellow, and green circles represent the top three modules, respectively. DEGs, differentially expressed genes; PPI, protein–protein 
interaction. 
 

 
 

Supplementary Figure 3. Overexpression of GNG7 regulated the expression of its coexpression genes in GC. Expression levels 
of the top three positively (A) or negatively (B) correlated genes in control and GNG7-overexpressing SGC7901 cells determined by qRT-PCR. 
GC, gastric cancer; qRT-PCR, RNA extraction and quantitative reverse transcription-polymerase chain reaction. **P < 0.01 and ***P < 0.001 
versus control or blank group; #P < 0.05, ##P < 0.01 and ###P < 0.001 versus pcDNA3.1 group. 


