
www.aging-us.com 1496 AGING 

INTRODUCTION 
 

As a major health burden in the world, liver cancer is 

expected to affect more than one million people by 

2025 [1]. The most common primary liver cancer, 

hepatocellular carcinoma (HCC), ranks fourth among 

all cancer-related deaths [1]. HCC patients in early 

stage can be cured by resection, transplantation, 

thermal ablation and TACE [2]. Early detection of 

HCC can increase the possibility of potentially 

curative treatment. Nevertheless, since early HCC 

diagnosis is challenging, the prognosis of HCC 

patients remains dismal. HCC patients with 

intermediate-stage can benefit from catheter-based 

locoregional treatment [3]. The multitargeted Tyrosine 

kinase inhibitors (TKI) sorafenib and lenvatinib were 

approved for the treatment of advanced-stage HCC [4]. 

A subset of patients treated with immune checkpoint 

inhibitors has demonstrated strong anti-tumor activity 

[5]. Identifying and validating predictive biomarkers is 

a major challenge for HCC immunotherapy. Thus, it is 
imperative to search novel molecular biomarkers to 

improve the diagnostic accuracy and guide therapies 

for HCC patients. 
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ABSTRACT 
 

Hepatocellular Carcinoma (HCC) is a type of liver cancer which is characterized by inflammation-associated tumor. 
The unique characteristics of tumor immune microenvironment in HCC contribute to hepatocarcinogenesis. It 
was also clarified that aberrant fatty acid metabolism (FAM) might accelerate tumor growth and metastasis of 
HCC. In this study, we aimed to identify fatty acid metabolism-related clusters and establish a novel prognostic 
risk model in HCC. Gene expression and corresponding clinical data were searched from the Cancer Genome 
Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) portal. From the TCGA database, by 
unsupervised clustering method, we determined three FAM clusters and two gene clusters with distinct 
clinicopathological and immune characteristics. Based on 79 prognostic genes identified from 190 differentially 
expressed genes (DEGs) among three FAM clusters, five prognostic DEGs (CCDC112, TRNP1, CFL1, CYB5D2, and 
SLC22A1) were determined to construct risk model by least absolute shrinkage and selection operator (LASSO) 
and multivariate cox regression analysis. Furthermore, the ICGC dataset was used to validate the model. In 
conclusion, the prognostic risk model constructed in this study exhibited excellent indicator performance of 
overall survival, clinical feature, and immune cell infiltration, which has the potential to be an effective 
biomarker for HCC immunotherapy. 

mailto:jkkl@smu.edu.cn
mailto:liaimin@smu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 1497 AGING 

In HCC, cancer cells undergo considerable metabolic 

reprogramming when preparing to proliferate [6]. It has 

been clear that lipid metabolic rewiring is an influential 

metabolic alteration in cancer cells. Fatty acid is an 

integral component of lipid metabolism, it participates 

in membrane synthesis, storage of energy, and 

production of signaling molecules [7]. Over the past 

few years, there has been expanding understanding of 

the role of fatty acid metabolism (FAM) in tumor 

progression [8]. Cancer cells can obtain fatty acids from 

both intracellular and extracellular sources, and changes 

in fatty acid metabolism are characteristics of 

oncogenesis and metastasis [9]. By enhancing lipid 

synthesis, storage and degradation, aberrant fatty acid 

metabolism impacts the biology of cancer cells to drive 

tumorigenesis and disease progression [8]. A recent 

study has uncovered that fatty acid level influenced by 

cancer cell fatty acid metabolism can change CD8+ T 

cell activity [10]. It also found that tumor and immune 

cells compete for fatty acids, which promotes tumor 

growth [10]. According to a study, fatty acid chain 

lengthening has been determined as a distinguishing 

feature of lung cancer [11]. Increasing evidences 

indicated that fatty acids may contribute to the cancer 

initiation and development such as gastric cancer, 

colorectal cancer and breast cancer [12–14]. 

Deregulated fats can also affect the efficacy of 

chemotherapy and radiation therapy for cancer patients 

[15, 16], as well as the effectiveness of immunotherapy. 

Treatments that target deregulated fatty acids and the 

inhibition of immune checkpoints in cancer may 

augment each other’s effects [17]. HCC prevention and 

treatment may benefit greatly from an understanding of 

fatty acid metabolism heterogeneity, nonetheless, few 

studies that investigate possible mechanism and 

prognostic value of fatty acid metabolism-related genes 

(FAMs) have been conducted in HCC. 
 

In this study, we explored the fatty acid metabolism-

related clusters and assessed the composition of tumor 

microenvironment (TME) in HCC. First, based on 

expression of 49 FAMs, we identified 3 FAM clusters 

with distinct biological pathways and immune 

characteristics. Then 2 gene clusters were determined 

according to 190 DEGs retrieved from 3 FAM clusters. 

Afterward, based on the prognostic value of 190 DEGs, 

we established a prognostic model. Finally, the 

reliability of the model and the immune landscape of 

HCC samples were determined. 

 

MATERIALS AND METHODS 
 

Data source  
 

On TCGA website (https://portal.gdc.cancer.gov/), gene 

expression information (fragments per kilobase million, 

FPKM) and clinical characteristics of 371 HCC patients 

were obtained. From ICGC database (https://icgc.org/), 

we acquired information of another 231 HCC patients, 

including RNA-seq data and clinical features [18]. 

Based on previous descriptions, we have transformed 

the LIHC (liver hepatocellular carcinoma) FPKM 

values into TPM (transcripts per kilobase million) 

values [19]. Through the GeneCards database, using 

“fatty acid metabolism” as a keyword, the fatty acid 

metabolism-related genes (FAMs) was searched and 

screened. Then, with a relevance score ≥ 50, 49 FAMs 

were retrieved for the next analyses and provided in 

Supplementary Table 1. In order to assess mutation 

states of FAM-related genes in HCC samples, mutation 

data was processed by “maftools” R package [20]. 

 

Consensus clustering for FAMs 

 

As a result of consensus unsupervised clustering 

analysis, HCC patients were categorized into different 

clusters by the R package “ConsensusClusterPlus” based 

on the FAMs expression [21]. Using the R packages 

“survival” and “survminer”, we tested whether there are 

any differences in survival time between distinct clusters 

using Kaplan-Meier curves. A heatmap plot of the 

clinical and pathological characteristics was created 

using R’s “pheatmap” package. From the MSigDB 

(molecular signatures database) (https://www.gsea-

msigdb.org/gsea/msigdb) we extracted the hallmark gene 

sets (c2.cp.kegg.v7.5.1) and performed gene set variation 

analysis (GSVA) to determine different biological 

processes between distinct clusters.  

 

Immune landscape analysis 

 

From previous literature, we gathered the gene sets for 

immune cells [22], and collected cancer-related gene 

signatures using the MSigDB. The level of immune cell 

infiltration and cancer-related gene signatures in the 

HCC tumor microenvironment were evaluated using 

single-sample gene set enrichment analysis (ssGSEA) 

[23]. As well, we compared expression levels of several 

immune checkpoints and HLA genes between different 

clusters. 

 

Analysis of DEGs  

 

With an adjusted p-value of 0.001, we identified DEGs 

among different FAM clusters by the “limma” package  

in R. By using the “clusterprofiler” R package, we 

performed functional enrichment analyses on the DEGs 

to determine their potential functions and pathways. 

Furthermore, by using a method of unsupervised 
clustering based prognostic DEGs expression, HCC 

samples were classified into different clusters (FAM gene 

cluster D and FAM gene cluster E) for deeper analysis. 

https://portal.gdc.cancer.gov/
https://icgc.org/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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Generation of the FAM-related prognostic model 

 

Prognostic analysis of DEGs was conducted using 

univariate cox regression. Afterward, a prognostic 

model was established by lasso regression analysis and 

multivariate cox analysis. The risk score was calculated 

based on the follow formula: risk score = Σ (Expi × 

coefi). Expi means expression of each gene, and coefi 

represents the risk coefficient. HCC samples were 

categorized by the median risk score into high and low 

risk groups. Kaplan-Meier curves (K-M curves) were 

generated using the “survival” and “survminer” R 

packages in order to investigate the differences in 

survival between distinct groups. Based on clinical 

characteristics and risk scores, the “rms” package in R 

is used to plot the nomogram to predict survival 

outcomes [24]. Calibrating plot was used to determine 

the accuracy of the nomogram. In order to verify the 

model, we divided the ICGC set into high- and low-risk 

groups, and performed Kaplan–Meier curve and 

receiver operating characteristic (ROC) curve of  

ICGC set. 

 

Statistical analyses 

 

Our statistical analyses were performed using R version 

4.1.2. Differential clinical characteristics among distinct 

groups were analyzed by the Chi-squared test. Cox 

regression analysis (univariate and multivariate) was 

conducted to identify the independent prognostic 

factors. Comparison between the two groups was 

performed using Wilcox rank sum test. The significance 

level was set at p × 0.05, and two-tailed p values were 

applied. 

 

RESULTS 
 

Landscape of genetic variation and transcriptional 

alterations of FAMs in HCC 

 

49 FAMs obtained from the Genecards website were 

included in this study. Based on analysis of somatic 

mutation incidence, the TCGA set of 49 FAMs 

displayed a relatively high rate of somatic mutations. 

FAMs mutations were detected in 119 (32.69%) of the 

364 HCC samples (Figure 1A). Among these, ALB was 

found with the highest mutation frequency (13%), 

followed by APOB. 

 

Afterward, we examined somatic copy number 

alterations (CNVs) in these 49 FAMs and found 

widespread alterations in all 49 FAMs. Among them, 

FASN, ACOX1 and MTR showed increased CNVs, 

while FABP3, ACADVL, HADH, FAAH, and ACADS 

showed decreases in CNVs (Figure 1B). The CNVs in 

the FAMs on their respective chromosomes were 

showed in Figure 1C. Moreover, a comparison of 

mRNA levels of FAMs was made between HCC tumor 

and normal tissues, and as showed in Figure 1D, most 

FAMs expression levels were positively correlated with 

CNV gain or loss and significantly different in tumor 

tissues. Consequently, while CNVs can be the primary 

cause of FAM expression changes, they are not the only 

factor that regulates mRNA expression [25]. Gene 

expression can also be affected by transcription factors 

and DNA methylation [26, 27]. We found HCC and 

normal samples have remarkably different genetic 

landscapes and mRNA expression levels of FAMs, 

indicating that FAMs may play an undiscovered role in 

HCC. Furthermore, Supplementary Figure 1A shows 

that the association between each FAM was highly 

correlated. Similarly, the infiltration levels of immune 

cells were assessed by ssGSEA algorithm and they 

showed high correlation in HCC (Supplementary Figure 

1B). In summary, the above results indicated that FAMs 

are strongly correlated with HCC. 

 

Identification of FAM cluster in HCC 

 

Through a FAMs network (Figure 2A), the full scope of 

FAMs interactions and their prognostic value in HCC 

patients was displayed. Next, consensus clustering 

analysis was used to investigate interactions between 

FAMs and HCC. Using a consensus clustering 

algorithm, HCC patients were categorized into different 

clusters (Supplementary Figure 2). Using k = 3, we 

were able to sort the entire cohort into cluster A (n = 

197), B (n = 72) and C (n = 102) (Figure 2B). A 

principal component analysis (PCA) of the FAMs 

transcription profiles highlighted significant differences 

among the three clusters (Figure 2C). The Kaplan-Meier 

curves for the three FAM clusters indicated that cluster 

C had the most prominent survival advantage, while 

cluster A had the worst (p < 0.05) (Figure 2D). 

Moreover, as shown in heatmap of clinicopathological 

features and expression of FAMs in HCC patients, 

cluster A displayed the lowest level of FAMs 

expression (Figure 2E). 

 

GSVA enrichment analysis and immune infiltration 

estimation in distinct clusters 

 

GSVA enrichment analysis was conducted among 

different clusters in order to identify potential biological 

pathways in HCC. The top 20 pathways in each cluster 

were visualized (Figure 3A–3C). Cluster C was 

significantly enriched in fatty acid metabolism pathway 

and immune-related pathways, such as PPAR signaling 

pathway, Toll-like, B cell receptor signaling pathway, 
Fc-gamma-R-mediated phagocytosis pathway and  

Nod-like receptor signaling pathway (Figure 3C). 

Furthermore, in order to assess whether FAMs 
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contribute to TME of HCC, we used the ssGSEA 

algorithm to calculate connection between the three 

clusters and 23 kinds of immune cells of every HCC 

sample. Among the three clusters, there were significant 

differences in the infiltration of immune cells (Figure 

3D). Besides, HCC patients in cluster A had the highest 

expression level of most immune checkpoints among 

three FAM clusters (Figure 3E), that implied an 

exhausted immune TME in cluster A patients. 

 

Identified of gene clusters based on FAM cluster-

related DEGs in HCC 

 

In the previous steps, three clusters were determined, 

then significant DEGs with adjusted p value < 0.001 

were identified by differential analyses between any 

two clusters. The Venn diagram (Figure 4A) illustrated 

the following intersections which resulted in 190 

DEGs. A functional enrichment analysis was employed 

to research the potential biological behavior of 190 

DEGs. According to GO (gene ontology) and KEGG 

(the Kyoto encyclopedia of genes and genomes) 

analysis, these FAM cluster-related genes were 

significantly enriched in metabolism pathways 

(Supplementary Figure 3).  

 

Furthermore, 190 genes were screened for prognostic 

value by univariate cox regression analysis, and among 

them, 79 genes were found to be associated with 

overall survival (OS) in HCC (Supplementary 

Table 2). According to 79 prognostic genes, two 

genomic clusters named gene clusters D and E were 

identified by consensus clustering algorithm (Figure 

4B and Supplementary Figure 4). According to 

Kaplan-Meier curves, HCC patients in gene cluster D 

had poorer overall survival compared to those in gene 

cluster E (Figure 4C). Afterward, HCC patients in 

FAM gene cluster D were related with higher FAM 

gene expression, advanced stage, advanced grade, and 

higher dead risk (Figure 4D). The result of further 

expression analysis was consistent with that in 

heatmap (Figure 4E). 

 

 
 

Figure 1. Multi-omics landscape of FAM-related genes in HCC based on TCGA cohort. (A) The mutation frequency of 49 FAMs in 

TCGA-LIHC cohort. Each column of the figure represents an individual patient. (B) The CNV variation frequency of FAMs (Red and green 
plots separately represent CNV gain and CNV loss). (C) Locations of CNV alterations in FAMs on 23 chromosomes. (D) The mRNA expression 
levels of 49 FAMs between HCC and normal tissues. Abbreviations: FAM: fatty acid metabolism; HCC: hepatocellular carcinoma; FAMs: fatty 
acid metabolism-related genes; TCGA: The Cancer Genome Atlas; LIHC: liver hepatocellular carcinoma; CNV: copy number variant.  
*p < 0.05; **p < 0.01; ***p < 0.001. 
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In addition, the immune analysis between two gene 

clusters revealed that gene cluster D tend to have higher 

infiltration level of most immune cells such as activated 

B cell, activated CD8+ T cells and activated CD4+ T 

cells (Figure 5A). Consistent with this, patients in gene 

cluster D also had higher expression level of immune 

 

 
 

Figure 2. FAM clusters and relevant clinical features. (A) The interaction of expression on 49 FAMs in HCC. The line connecting the 

FAMs represents their interactions, with the line thickness indicating the strength of the association between FAMs. Red dots, fatty acid 
metabolism-related genes; Purple dots, risk factors for HCC; Green dots, favorable factors for HCC; Pink edges, positive correlation with 
P < 0.0001; Blue edges, negative correlation with P < 0.0001. (B) Consensus matrices of 49 FAMs in HCC for k = 3. (C) PCA analysis showing a 
remarkable difference in transcriptomes between the three FAM clusters in TCGA cohort. (D) K-M curve for the three FAM clusters. (E) The 
heatmap of clinical characteristics and expression levels of FAMs in different clusters. Abbreviations: FAM: fatty acid metabolism; FAMs: 
fatty acid metabolism-related genes; HCC: hepatocellular carcinoma; PCA: principal component analysis. 
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checkpoints (Figure 5B). Interestedly, we estimated the 

relative abundance of several important cancer-related 

signatures by ssGSEA algorithm in different gene 

clusters (Figure 5C). The results showed that HCC 

patients in gene cluster D had higher abundance levels 

of bad prognostic signatures, including EMT (epithelial-

mesenchymal transition), poor survival, proliferation, 

vascular invasion, recurrent, metastasis signatures, and 

immune microenvironment signatures, such as innate 

immune response, pan-F-TBRS, co-inhibition antigen 

presenting cell (APC), co-stimulation APC, co-

inhibition T cell, co-stimulation T cell, MHC-I HLA 

(major histocompatibility complex-I human leukocyte 

antigen), MHC-II HLA, antigen processing machinery, 

and immune checkpoint, compared to those in gene 

cluster E. Figure 5D showed that gene cluster D had 

higher expression levels of HLA genes. 

Construction and verification of the prognostic risk 

model in HCC 

 

By lasso regression analysis and multivariate cox 

analyses in 79 prognostic DEGs, we identified 5 genes 

including three risk factors (CCDC112, TRNP1, CFL1) 

and two protective factors (CYB5D2, SLC22A1) and 

created a prognostic model in HCC according to these 

five genes (Supplementary Figure 5 and Supplementary 

Table 3). The risk score of HCC patients was 

calculated as follows: risk score = 0.382912 × TRNP1 

+ 0.65021 × CCDC112 + 1.885657 × CFL1 + 

(−1.23099) × CYB5D2 + (−0.29032) × SLC22A1. In 

TCGA-LIHC set, the median cut-off value was used to 

stratify the patients into two groups: high-risk score  

(n = 182) and low-risk score (n = 183). Figure 6A 

displayed the distribution of HCC patients across 

 

 
 

Figure 3. The results of GSVA and immune infiltration analysis in three clusters. GSVA results of biological pathways between:  

(A) cluster A vs. cluster B, (B) cluster B vs. cluster C, and (C) cluster A vs. cluster C, red and blue represent activated and inhibited pathways, 
respectively. (D) The infiltration levels of 23 immune cells in the three FAM clusters. (E) Significant differences in expression of immune 
checkpoint in the three FAM clusters. Abbreviations: GSVA: gene set variation analysis; FAM: fatty acid metabolism. *p < 0.05; **p < 0.01; 
***p < 0.001. 
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three FAM clusters, two gene clusters, and two risk 

score groups. There was a significant risk score 

difference between FAM clusters and gene clusters. The 

risk score of cluster B was the lowest, while that of 

cluster A was the highest (Figure 6B). Cluster D had a 

higher risk score than cluster E (Figure 6C). In 

 

 

 
 

Figure 4. Identification of gene clusters based on DEGs in the TCGA-LIHC cohort. (A) Venn diagram showed the DEGs among the 

three FAM clusters. (B) HCC samples were divided into two clusters based on the consensus clustering (k = 2). (C) The OS analysis of HCC 
samples between gene cluster D and E. (D) The heatmap of clinical characteristics of HCC patients in different clusters. (E) The mRNA 
expression levels of 49 FAMs between gene cluster D and E. Abbreviations: DEGs: different expressed genes; TCGA: the Cancer Genome 
Atlas; LIHC: liver hepatocellular carcinoma; FAM: fatty acid metabolism; HCC: hepatocellular carcinoma; OS: overall survival; FAMs: fatty 
acid metabolism-related genes. *p < 0.05; **p < 0.01; ***p < 0.001. 
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TCGA-LIHC set, high-risk patients had a worse 

outcome than low-risk patients, and AUC (Area under 

curve) values of 0.708, 0.682, and 0.650 respectively 

represent 1-, 2-, and 3-year survival rates of risk scores 

(Figure 6D–6F). 

 

As an external validation cohort, patients in ICGC-JP 

(ICGC-Japan) cohort were categorized, by the median 

risk score, into high- and low-risk groups. Consistently, 

in ICGC-JP cohort, high-risk patients had worse 

outcomes than low-risk patients, and the corresponding 

AUC values of 1-, 2-, and 3-year survival rates were 

0.777, 0.718, 0.695, respectively, which indicated a 

good efficiency (Figure 6G–6I). Furthermore, cox 

regression analysis, both univariate (Figure 6J) and 

multivariate (Figure 6K), revealed the prognostic risk 

model is a reliable independent prognostic factor of 

HCC patients. 

We have done more exploration of five genes on other 

databases, such as TCGA (Supplementary Figure  

6A–6D), ICGC (Supplementary Figure 6E–6G) and 

GEO database (GSE25097, GSE112790, GSE102079, 

GSE45267, GSE39791 datasets) (Supplementary  

Figure 7). Moreover, we verified IHC on HPA database 

(Supplementary Figure 8A) and protein expression 

levels on CPTAC database (Supplementary Figure 8B). 

Interestingly, all results are consistent with our study, 

which TRNP1, CCDC112, CFL1 were risk factors 

(compared to normal tissues, there was a significant 

upregulation of TRNP1, CCDC112, CFL1 expression in 

HCC tissues. K-M curves showed that upregulated 

TRNP1, CCDC112, CFL1 were associated with poor 

OS) and CYB5D2, SLC22A1 were protective genes 

(expression of CYB5D2, SLC22A1 were decreased in 

tumor tissues, and higher expression of CYB5D2, 

SLC22A1 was associated with good OS). 

 

 

 

 
Figure 5. Different immune and cancer-related characteristics in gene cluster D and E. (A) The 23 kinds of immune cells in the 

two gene clusters. (B) Significant differences in expression of immune checkpoint between the two gene clusters. (C) The enrichment levels 
of cancer-related signatures in the two gene clusters. (D) Expression levels of HLA genes between gene cluster D and E. *p < 0.05; **p < 0.01; 
***p < 0.001. 
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Figure 6. Construction and validation of prognostic risk model. (A) Alluvial diagram depicting the relationship of FAMcluster, 

genecluster, risk score (FAMscore) group and survival state. Boxplots of risk score in different FAMclusters (B) and geneclusters (C) Risk 
score distribution and scatter plots showing the risk score distribution and patient survival status in TCGA (D); Kaplan–Meier analysis of OS 
between the two groups in TCGA (E); ROC curves to predict the sensitivity and specificity of 1-, 3-, 5-year survival according the risk score in 
TCGA (F). Risk score distribution and scatter plots (G), Kaplan–Meier curves (H), ROC curves (I) of the risk model in ICGC cohort. The 
univariate (J) and multivariate (K) independent prognostic analysis of the model in TCGA cohort. Abbreviations: TCGA: the cancer genome 
atlas database; ICGC: International Cancer Genome Consortium; OS: overall survival; ROC: receiver operating characteristic. 
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Relationship of TME and the prognostic risk model 

in HCC 

 

In the TCGA-LIHC cohort, we assessed the 

abundance of immune cells and cancer-related 

signatures by using the ssGSEA algorithm. Through 

the spearman method, the association among risk 

score and immune cells, cancer-related signatures 

levels were evaluated. As shown in the boxplots, the 

levels of immune cells (Supplementary Figure 9) and 

immune checkpoints (Figure 7A) in high-risk patients 

were higher than low-risk patients. Moreover, Figure 

7B showed that high-risk patients also had higher 

abundance levels of bad prognostic signatures, such 

as EMT, poor survival, proliferation, vascular 

invasion, recurrent, metastasis signatures, and 

immune microenvironment signatures, such as innate 

immune response, pan-F-TBRS, co-inhibition APC, 

co-inhibition T cell, co-stimulation APC, co-

stimulation T cell, MHC-I HLA, MHC-II HL, antigen 

processing machinery, and immune checkpoint 

compared to low-risk patients. Also, we conducted 

gene set enrichment analysis (GSEA) of HCC 

patients in different risk groups, and the result 

showed that high-risk group was enriched in Fc 

gamma R mediated phagocytosis, T cell receptor 

signaling pathway, Nod-like receptor signaling 

pathway, Fc epsilon Ri signaling pathway, while low 

risk group was enriched in PPAR signaling pathway 

and drug metabolism pathway (Figure 7C).  

 

 
 

Figure 7. Connection among prognostic risk model and immune or cancer-related characteristics of HCC patients. (A) 
Significant differences in expression of immune checkpoints between the two groups. (B) The enrichment level of cancer-related signatures 
in the two groups. (C) Immune-related pathways enriched in the high-risk group. The correlation between genes in prognostic risk model 
and the infiltration level of 23 immune cells (D) and immune-related pathway (E). Red for positive associations and green for negative 
associations. Abbreviation: HCC: hepatocellular carcinoma. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Furthermore, the relationship between five genes in the 

model and immune cells was analyzed (Figure 7D). We 

observed that three high-risk genes (CCDC112, TRNP1 

and CFL1) were significantly positively correlated with 

most immune cells, whereas significant negative 

correlation was observed between two low-risk genes 

(CYB5D2 and SLC22A1) and infiltration of immune 

cells. Consistently, Figure 7E displayed the result of 

correlation between five genes, risk score and immune 

related pathways.  

 

Construction of nomogram in HCC 

 

Comparison of genes mutations between the two risk 

groups revealed that high-risk patients had significantly 

higher mutation rates of TP53, MUC4, FLG, CSMD3, 

ARID1A, FAT3 than low-risk patients (Figure 8A, 8B). 

Moreover, high-risk HCC patients were remarkably 

associated with worse outcome, more advanced tumor 

stage and worse pathological grade (Figure 8C, 8D). To 

identify the reliability of this risk model in HCC 

patients, the prognostic nomogram plot containing the 

risk score and stage was constructed in TCGA-LIHC 

cohort (Figure 8E). Furthermore, calibration plot 

indicated excellent agreement between prediction and 

actual risk (Figure 8F). Overall, the risk model showed 

good prognostic value in HCC samples. 

 

DISCUSSION 
 

HCC seriously threatens human health with high 

mortality rate. While HCC can be managed with 

multiple treatments, patients with the disease have 

extremely low 5-year survival rates due to the fact that 

it is commonly diagnosed in advanced stages [28]. 

 

Currently, a number of immune checkpoint inhibitors 

(ICIs) have been approved by the FDA (Food and Drug 

Administration) to treat advanced HCC, including 

nivolumab [29] and pembrolizumab [30]. However, 

there are numerous disadvantages of ICI treatment, 

including low response rates and side effects. Therefore, 

new therapeutic targets and novel prognostic models are 

essential for HCC patients. 

 

Metabolism reprogramming is critical for tumor 

initiation and progression, especially during HCC 

development [31]. Synthesis of fatty acids has been 

involved in energy metabolism and membrane 

production of tumor cells. Deregulated fatty acid 

metabolism has been regarded as a vital metabolic 

regulator in supporting cancer cell proliferation [32]. A 

remolded microenvironment caused by abnormally fatty 

acid metabolism could promote HCC progression. In 

this study, our objective was to assess the association of 

FAMs and the risk of HCC. 

First, we explored the mutation and correlation state of 

49 FAMs obtained from the Genecard database. The top 

three frequently mutated genes were ALB, APOB, and 

FASN. Missense mutation and C>T of FAMs were the 

most common mutations in HCC. Due to the high 

expression of ALB (20%) [33] and APOB’s ability to 

facilitate VLDL secretion [34] (which consumes large 

amounts of energy), mutation of ALB or APOB may be 

inactivated to divert energy into cancer-relevant 

metabolic pathways [35]. According to the expression 

profiles of 49 FAMs, we determined 3 FAM clusters. 

Among 3 FAM clusters, cluster C had highest level of 

immune infiltration. Subsequently, differential analyses 

among 3 FAM clusters were employed. We screened 

190 DEGs and showed them in a Venn plot. Based on 

the expression of 79 prognostic genes identified from 

190 DEGs, HCC patients were grouped into 2 different 

gene clusters. Gene cluster D had worse survival rate, 

higher expression level of FAMs, and higher infiltration 

level of immune cells. Interestingly, gene cluster D also 

had higher enrichment of poor prognostic signatures, 

such as poor survival, liver cancer recurrent related 

signatures, cancer progression related signatures such as 

EMT, proliferation, vascular invasion, metastasis 

signatures, and several immune signatures, such as 

innate immune response, pan-F-TBRS, co-inhibition 

APC, co-inhibition T cell, co-stimulation APC, co-

stimulation T cell, MHC-I HLA, MHC-II HLA, antigen 

processing machinery and immune checkpoint related 

signatures. These results indicated that FAMs appear to 

affect TME of HCC. 

 

Moreover, based on 79 prognostic FAMs, a FAM-

related model containing 5 genes (TRNP1, CCDC112, 

CFL1, CYB5D2, SLC22A1) was constructed by 

LASSO and multivariate Cox regression analysis in 

TCGA-LICH cohort. And we successfully confirmed 

the model using ICGC-JP cohort. HCC patients were 

categorized into two groups, high risk and low risk 

group. In both the TCGA and ICGC cohorts, the K-M 

curves showed that patients in the low group had better 

outcomes than those in the high group. The 1 year AUC 

of the model was 0.708, 0.777 in TCGA and ICGC 

cohort, respectively, which demonstrated that the 

accuracy of the risk model was excellent. The relation 

of our model and immune infiltration was also assessed. 

And the infiltration levels of immune cells were 

evaluated by ssGSEA. The analysis of relationship 

revealed that risk score was significantly positively 

correlated with infiltration of immune cell in HCC 

patients, especially CD56 bright natural killer cell, 

activated CD4 T cell and activated dendritic cell. The 

results of correlation analysis between each gene in 
model and HCC immunity were consistent with the 

properties of genes. For example, TRNP1, CCDC112, 

CFL1 are risk factors, then they were positively 



www.aging-us.com 1507 AGING 

correlated with the infiltration levels of most of immune 

cells, whereas the results of CYB5D2, SLC22A1 were 

contrary to this. Patients in high risk group had higher 

enrichment level of poor prognostic signatures, such as 

poor survival, liver cancer recurrent related signatures, 

cancer progression related signatures such as EMT, 

proliferation, vascular invasion, metastasis signatures, 

and several immune signatures, such as innate immune 

response, pan-F-TBRS, co-inhibition APC, co-inhibition 

T cell, co-stimulation APC, co-stimulation T cell,

 

 
 

Figure 8. Connections between prognostic risk model and clinical characteristics of HCC patients. The waterfall plot of tumor 

somatic mutation established in (A) high risk group and (B) low risk group. (C) The heatmap of the model and clinical characteristics in 
TCGA-LIHC cohort. (D) Stacked bar plot of HCC survival state, pathological grade and tumor stage. (E) Nomogram for predicting the 1-,3- 
and 5- year OS of HCC patients. (F) Calibration curve of the program for predicting of 1-,3- and 5-year OS of HCC patients. 
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MHC-I HLA, MHC-II HLA, antigen processing 

machinery and immune checkpoint related signatures. 

 

TRNA1, CCDC112, and CFL1 expression were 

substantially higher in HCC tissues than in normal 

tissues, whereas CYB5D2 and SLC22A1 expression 

were significantly lower. These results were found in 

the TCGA, ICGC, GEO, HPA, and CPTAC databases. 

Liu et al. reported TRNP1 as a risk factor of four-gene 

model for predicting OS in HCC patients [36]. TRNP1 

is essential for neural development and cell self-renewal 

[37]. As a hypoxia-responsive gene, CFL1 contributes 

to hypoxia-induced HCC progression by activating 

PLD1/AKT signals [38]. In a mechanism study, 

knockdown of CFL1 increased F-actin levels and 

disrupted the balance between F-actin and G-actin, 

which resulted in aggressiveness inhibition of HCC 

cells [39]. Researches have reported that decreased level 

of CYB5D2 is associated with breast cancer progression 

[40]. SLC22A1 downregulation correlates with worse 

patient outcomes and tumor progression [41]. It is 

thought that the development of HCC is accompanied 

by aberrant SLC22A1 variants, which may greatly 

affect the sorafenib levels in the affected intracellular 

concentrations in HCC [42]. However, there is still a 

lack of knowledge about how TRNP1 and CCDC112 

affect the development and prognosis of HCC. 

 

In recognition of the clinical utility of the model in 

predicting over survival in HCC patients, using the risk 

score and stage together, a nomogram was created to 

predict the 1-, 3-, and 5-year survival rates for HCC in 

TCGA cohort. The calibration plot verified the accuracy 

of nomograms. 

 

Nevertheless, our study has several shortcomings. First, 

molecular mechanisms of these genes need to be 

uncovered by additional functional experiments. 

Second, an additional experiment is needed for further 

verification of model genes. Finally, since the study was 

analyzed on data from public database, the risk model 

needs to be validated by our own clinical cohort. 

 

Taken together, we identified 3 FAM clusters, 2 gene 

clusters and established a novel 5-gene prognostic 

model for HCC patients. Fatty acid metabolism-related 

genes exhibited synergy with immune activation. We 

hope the prognostic model may help improve 

immunotherapy for HCC in the future. 

 

CONCLUSION 
 

Our findings investigated molecular cluster and 

prognostic model about fatty acid metabolism in HCC, 

and highlighted a potential strategy for targeting the 

immunometabolism of HCC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The results of correlation analysis in HCC. (A) Correlation analysis among 49 FAMs in HCC patients. Red 

represents positive correlation; blue represents negative correlation. (B) The correlations of immune cells in HCC patients. Red dots 
denoting activated pathways and blue dots denoting inhibited pathways. 
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Supplementary Figure 2. The supplementary results of unsupervised clustering analysis based on 49 FAMs. (A) Consensus 
matrices of 49 FAMs in HCC. (B) The cumulative distribution function (CDF), relative change in area under the CDF curve, and tracking plot. 

 

 

 

 
 

Supplementary Figure 3. GO (A) and KEGG (B) analysis of 190 DEGs among three FAM clusters. 
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Supplementary Figure 4. The supplementary results of unsupervised clustering analysis based on 79 prognostic DEGs.   
(A) Consensus matrices of 79 prognostic DEGs in HCC for k = 3~9. (B) The cumulative distribution function (CDF), relative change in area 
under the CDF curve, and tracking plot. 
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Supplementary Figure 5. Construction of risk prognostic model. (A) Screening of optimal parameter (lambda) at which the vertical 

was drawn. (B) LASSO coefficient profiles of the 10 DEGs with non-zero coefficients determined by the optimal lambda. (C) Multivariate Cox 
regression of five candidate genes. Green represents low-risk genes and red represents high-risk genes. 
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Supplementary Figure 6. The expression of five model genes between tumor and normal tissues in TCGA database (A). The expression of 
five model genes among different pathological grade (B) in TCGA database. The K-M curves of five genes in TCGA database (C). ROC curves 
of five genes in TCGA database (D). The expression of five model genes between tumor and normal tissues (E), the K-M curves five model 
genes (F), the ROC curves of five genes (G) in ICGC database. 



www.aging-us.com 1517 AGING 

 
 

Supplementary Figure 7. Five genes expression in GSE25097 (A), GSE112790 (B), GSE102079 (C), GSE45267 (D), GSE39791 (E) dataset. 
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Supplementary Figure 8. Immunohistochemistry analysis of CCDC112, CFL1, CYB5D2, SLC22A1 expression in HPA database (A); Protein 
levels of CFL1, CYB5D2, SLC22A1 in CPTAC database (B). 
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Supplementary Figure 9. The infiltration levels of 23 kinds of immune cells of TME in the two risk groups. 
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Supplementary Tables 
 

Supplementary Table 1. Fatty acid metabolism-related genes. 

Gene symbol Description Category Relevance score 

FASN Fatty Acid Synthase Protein Coding 88.04946899 

FABP2 Table-S1:Fatty Acid Binding Protein 2 Protein Coding 80.34545898 

LIPA Lipase A, Lysosomal Acid Type Protein Coding 79.07958984 

INS Insulin Protein Coding 78.31687164 

SLC17A5 Solute Carrier Family 17 Member 5 Protein Coding 75.35491943 

FADS1 Fatty Acid Desaturase 1 Protein Coding 73.69827271 

HADHA 
Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme 
Complex Subunit Alpha 

Protein Coding 73.44226837 

FABP4 Fatty Acid Binding Protein 4 Protein Coding 72.57804871 

PPARG Peroxisome Proliferator Activated Receptor Gamma Protein Coding 70.81949615 

FABP1 Fatty Acid Binding Protein 1 Protein Coding 70.25164032 

CPT2 Carnitine Palmitoyltransferase 2 Protein Coding 69.19077301 

ACADM Acyl-CoA Dehydrogenase Medium Chain Protein Coding 66.55280304 

MTR 5-Methyltetrahydrofolate-Homocysteine Methyltransferase Protein Coding 65.85922241 

ALB Albumin Protein Coding 65.84506226 

FADS2 Fatty Acid Desaturase 2 Protein Coding 65.0801239 

FABP3 Fatty Acid Binding Protein 3 Protein Coding 63.80797577 

DDC Dopa Decarboxylase Protein Coding 62.60398865 

FA2H Fatty Acid 2-Hydroxylase Protein Coding 62.45428848 

PPARA Peroxisome Proliferator Activated Receptor Alpha Protein Coding 61.77651215 

BAAT Bile Acid-CoA:Amino Acid N-Acyltransferase Protein Coding 61.54239273 

CPT1A Carnitine Palmitoyltransferase 1A Protein Coding 61.52598572 

ACADVL Acyl-CoA Dehydrogenase Very Long Chain Protein Coding 61.33808136 

HADHB 
Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme 
Complex Subunit Beta 

Protein Coding 60.69838715 

MMACHC Metabolism Of Cobalamin Associated C Protein Coding 60.51202393 

ABCD1 ATP Binding Cassette Subfamily D Member 1 Protein Coding 60.29699326 

LPL Lipoprotein Lipase Protein Coding 58.79434204 

FABP5 Fatty Acid Binding Protein 5 Protein Coding 57.8329277 

FAAH Fatty Acid Amide Hydrolase Protein Coding 57.01290512 

PNPLA3 Patatin Like Phospholipase Domain Containing 3 Protein Coding 56.81323242 

CYP2D6 Cytochrome P450 Family 2 Subfamily D Member 6 Protein Coding 55.99719238 

AKR1D1 Aldo-Keto Reductase Family 1 Member D1 Protein Coding 54.9125061 

CYP2C19 Cytochrome P450 Family 2 Subfamily C Member 19 Protein Coding 53.54149628 

NR1H4 Nuclear Receptor Subfamily 1 Group H Member 4 Protein Coding 53.41639328 

ACADS Acyl-CoA Dehydrogenase Short Chain Protein Coding 53.31412506 

ACOX1 Acyl-CoA Oxidase 1 Protein Coding 52.61158371 

ADIPOQ Adiponectin, C1Q And Collagen Domain Containing Protein Coding 52.42185211 

SCD Stearoyl-CoA Desaturase Protein Coding 52.2116394 

SLC27A1 Solute Carrier Family 27 Member 1 Protein Coding 52.18554688 

FABP12 Fatty Acid Binding Protein 12 Protein Coding 52.18073273 

FABP6 Fatty Acid Binding Protein 6 Protein Coding 52.11978912 

CD36 CD36 Molecule Protein Coding 52.04457474 

LIPC Lipase C, Hepatic Type Protein Coding 51.4848938 

APOB Apolipoprotein B Protein Coding 50.64818192 
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APOE Apolipoprotein E Protein Coding 50.5888176 

PHYH Phytanoyl-CoA 2-Hydroxylase Protein Coding 50.57295227 

HADH Hydroxyacyl-CoA Dehydrogenase Protein Coding 50.49472809 

CYP3A4 Cytochrome P450 Family 3 Subfamily A Member 4 Protein Coding 50.4631424 

AMACR Alpha-Methylacyl-CoA Racemase Protein Coding 50.12758636 

HSD17B4 Hydroxysteroid 17-Beta Dehydrogenase 4 Protein Coding 50.03477859 

 

 

Supplementary Table 2. 79 prognostic genes identified by unicox analysis. 

ID HR HR.95L HR.95H p value 

CYP3A4 0.778076355 0.631093988 0.95929105 0.018822658 

RANBP3L 0.485929735 0.257884755 0.915632671 0.025573005 

SORD 0.553252858 0.315242258 0.970963495 0.039146754 

SEC14L2 0.556356443 0.35219986 0.878854671 0.011952572 

AQP9 0.677623041 0.493691285 0.930081205 0.016015165 

ALAS1 0.341885541 0.131021095 0.892113769 0.028289079 

ADH1B 0.605729859 0.438281266 0.837153423 0.002392409 

ECM2 0.490288961 0.28657424 0.838816724 0.009282406 

PACRG 0.489240618 0.272397527 0.87870248 0.016722256 

GRHPR 0.320862856 0.105618949 0.97475854 0.044956842 

APOC4 0.564618825 0.325778952 0.978560512 0.041629443 

ZNF385B 0.599719641 0.383262564 0.938426242 0.025210962 

MYRIP 0.654531516 0.44584435 0.960899259 0.030497356 

UNC119 2.406159309 1.076484474 5.378249999 0.032390758 

COBLL1 0.401391037 0.187490206 0.859323633 0.018756828 

CYP3A43 0.494188942 0.307679981 0.79375561 0.003553024 

ST6GALNAC4 4.577439148 2.318914107 9.035672813 1.16456E-05 

TMSB10 3.52740543 1.218053353 10.21514291 0.020149295 

TRNP1 2.23135374 1.514507558 3.287497302 4.9203E-05 

KCTD17 2.14699596 1.313742559 3.50874806 0.002297419 

ADI1 0.209793466 0.067094199 0.655992608 0.007257318 

CD24 1.433969982 1.041136815 1.975023724 0.027329796 

GTF3C6 13.57443192 3.603410607 51.13633223 0.000116072 

PAFAH1B3 2.512457785 1.407123335 4.486063136 0.001841278 

PDK4 0.541413324 0.326464404 0.897887746 0.017440487 

IKBKE 2.254088928 1.312611493 3.87084596 0.003219696 

ANKRD13D 3.523342088 1.528676787 8.120709085 0.003115166 

LRRC1 1.808283501 1.125661734 2.904859535 0.014308862 

ARPC3 10.79177831 1.894809774 61.4639426 0.007361876 

GLTP 17.37701093 3.613247439 83.57039306 0.000366508 

SLC2A6 1.715164093 1.051338438 2.798135939 0.030738336 

BTNL9 0.366002192 0.201388798 0.665169096 0.000975159 

OAZ1 18.94482761 2.560843715 140.1516583 0.003965072 

CIB2 1.766576726 1.09180951 2.858367965 0.020464379 

SH3BGRL3 6.03881903 1.808128189 20.16855635 0.003471103 
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NFKBIE 2.896363352 1.295007694 6.477892534 0.009613449 

GNAZ 1.915092976 1.255313579 2.92164537 0.002568985 

GRAMD1A 2.411861311 1.140248758 5.101584143 0.021259918 

PLP2 2.429269296 1.239697358 4.760314505 0.009710398 

P2RX4 3.309419925 1.426343897 7.678555126 0.00532122 

BAK1 3.838358962 1.703445451 8.648941187 0.001174366 

DYNLT1 13.36161281 3.008589083 59.34100404 0.000654496 

CAPG 2.309200988 1.383797324 3.853461134 0.001358784 

CCDC149 3.732128772 1.652195378 8.430470968 0.001536791 

TRAPPC4 14.09480342 4.075780094 48.74244409 2.92156E-05 

C11orf80 2.560164894 1.288077049 5.088549859 0.007312492 

SMPD2 5.253812801 1.795266114 15.37518518 0.002461619 

RGS19 3.177490631 1.340891369 7.529652994 0.008630722 

ARPC1B 4.21079628 1.520584487 11.66051966 0.005667732 

S100A6 1.83503394 1.073343413 3.13725274 0.026511316 

C12orf49 2.691628705 1.383349689 5.237189949 0.003551498 

PHLDA2 2.157304562 1.382549384 3.366218252 0.000706858 

EGLN3 2.568763817 1.705472772 3.869043035 6.34526E-06 

MMP9 1.493898792 1.071488971 2.082833945 0.017924239 

RNFT2 3.528666911 1.790133293 6.955621806 0.000270858 

NRM 2.327320495 1.207843706 4.484372159 0.011594105 

GABARAPL1 0.387683107 0.17874024 0.840874958 0.016453825 

GLS 2.339010916 1.280372041 4.272954962 0.005712296 

PDE4A 1.807937851 1.009799228 3.236919955 0.046285649 

TMEM189 6.608824384 2.229300737 19.59204473 0.000659563 

ANKRD24 0.30219409 0.136574227 0.668656669 0.003144648 

TRPM2 2.771002254 1.427282838 5.37977007 0.002603816 

ABHD12 13.09979991 2.834703327 60.5371137 0.000987256 

CCDC112 3.57319329 1.807429626 7.064015164 0.000250133 

ASRGL1 2.309893898 1.433019387 3.723334011 0.000588197 

RBM38 3.92752773 1.482062082 10.408116 0.005937778 

CFL1 128.1863798 14.51617911 1131.960955 1.25869E-05 

DOK1 2.09453848 1.020148304 4.300444777 0.043976754 

IFI27L2 1.761646639 1.025608679 3.025909339 0.040210618 

TMED9 8.276218821 1.054130849 64.97845883 0.044420152 

SAAL1 6.133981755 1.871604613 20.10346197 0.002745506 

MMD 3.088608202 1.519324905 6.278775918 0.001836454 

CYB5D2 0.179105725 0.05980064 0.536430053 0.002120822 

RRM2 3.054808696 1.703875719 5.476840867 0.000177522 

AKR1D1 0.6053703 0.414352169 0.884448612 0.009465756 

C16orf45 0.50778156 0.289491837 0.890671447 0.018088686 

SLC22A1 0.623023973 0.474713929 0.817669016 0.000646909 

FETUB 0.702168912 0.515209768 0.956971726 0.025195346 

CD14 0.373053627 0.139944271 0.994460202 0.048716011 
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Supplementary Table 3. The regression coefficient of five candidate genes. 

ID coef HR HR.95L HR.95H p value 

TRNP1 0.382912477 1.466549668 0.954978512 2.25216369 0.080206219 

CCDC112 0.650210449 1.915943995 0.921571858 3.98323946 0.081641119 

CFL1 1.885657032 6.59068331 0.509098487 85.32161766 0.148951447 

CYB5D2 −1.230989748 0.292003425 0.09700108 0.879021141 0.028575575 

SLC22A1 −0.290320823 0.748023546 0.557853321 1.003022129 0.052403777 

 


