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INTRODUCTION 
 

Cognitive impairment is one of the most significant 

features of many neurodegenerative diseases. With the 

increases in life expectancy and global surgical patients, 
Parkinson’s disease (PD), Alzheimer’s disease (AD) 

and Huntington’s disease (HD), perioperative neuro-

cognitive disorders (PNDs) and other neuro-
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ABSTRACT 
 

Neuroinflammation is an important reason for the occurrence and development of cognitive impairment. The 
Lentiviral vector Hsp22 was constructed for intracerebroventricular injection pretreatment, LPS was used to 
induce the cognitive impairment model in mice, and the Morris water maze was used to examine the changes 
in cognitive behavior in mice. LPS was used to induce BV-2 microglial cells, and plasmid pretreatment was used 
to overexpress Hsp22. HE staining, Nissl staining, immunohistochemistry, immunofluorescence, ELISA and 
protein blotting were used to examine microglial activation, changes in inflammatory factors, changes in 
pathway proteins and apoptosis. The results showed that LPS induced microglial expression of NLRP3/Caspase-
1/IL-1β signaling pathway protein Iba1, and the inflammatory protein and inflammatory factors IL-1β, IL-6 and 
TNF-α, the expression of Bax increased significantly, Bcl2 expression decreased, and the learning and memory 
abilities of mice decreased significantly. Preconditioning with the Hsp22-overexpressing lentivirus attenuated 
LPS-induced activation of hippocampal microglia, the expression of inflammatory factors and pathway proteins, 
and apoptosis, and improved cognitive impairment in mice. In addition, plasmid-mediated Hsp22 
overexpression reversed LPS-induced inflammation. These findings suggest that Hsp22 overexpression is a 
promising method for the treatment of cognitive impairment. 
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degenerative diseases have become a huge health and 

economic burdens [1, 2]. Neuroinflammation is a vital 

factor leading to cognitive impairment and 

neurodegenerative diseases [3, 4]. To date, the exact 

pathogenesis of most neurodegenerative diseases (such 

as AD and PD) is still unclear, and there is a lack of 

effective treatments. Therefore, there is an urgent need 

to establish a suitable animal model for further 

exploration of neuroinflammation-related cognitive 

impairment and neurodegenerative diseases. Preclinical 

and clinical research have shown that anti-inflammatory 

treatments can alleviate the symptoms of cognitive 

impairment [5, 6]. 

 

Lipopolysaccharide (LPS) is a major gram-negative 

bacterial Toll-like receptor 4(TLR4) ligand. Isolated 

endotoxin promotes of innate immune response and 

inflammation, which activates inflammatory cells to 

produce inflammatory cytokines [7–10]. In addition, 

injection of LPS into animals can induce neuro-

inflammation in the hippocampus, leading to cognitive 

dysfunction [11]. LPS causes anorexia, exploratory 

behaviors, lethargy, and other phenomena similar to 

clinically relevant symptoms of human neuro-

degenerative diseases [12]. Therefore, a growing 

number of studies have used LPS to activate the 

inflammatory response and establish models of 

cognitive dysfunction in vivo and in vitro, which are 

effective methods for studying the mechanism of 

cognitive impairment [13–17]. Although many studies 

have shown that cognitive impairment is related to a 

variety of pathological processes, the exact mechanism 

of these diseases is still not clear. 

 

Microglia are resident macrophages in the brain and 

the main innate immune cells in the central nervous 

system (CNS) [18]. Under physiological conditions, 

constant monitoring of the brain microenvironment 

plays a key role in neurodevelopment and homeostasis 

[19, 20]. However, long-lasting pathological 

stimulation can lead to excessive activation of 

microglia, leading to neuronal death and the 

production of pro-inflammatory cytokines (such as 

tumor necrosis factor (TNF-α) and interleukin-6  

(IL-6). Microglia mediate immune responses through 

pattern recognition receptors, including Toll-like 

receptors and nod-like receptors (NLRs), among which 

NLR family pyrin domain-containing-3 (NLRP3) is 

the most widely studied in the NLRs family [21]. 

Studies have shown that NLRP3 is involved in 

neuroinflammation and cognition. This factor plays a 

vital role in the pathogenesis of the disorders [22, 23]. 

Importantly, recent research shows that the expression 
of NLRP3 in the hippocampus of a cognitive 

impairment model is upregulated, and the impaired 

function can be reversed by inhibiting the expression 

of NLRP3 [24–26]. Therefore, targeting the NLRP3-

Caspase-1-IL-1β signaling axis may be an important 

way to improve cognitive impairment, although the 

exact activation mechanism is unknown. 

 

Heat shock protein 22 (Hsp22), which is also known as 

H11 kinase, E21G1 and HSPB8, belongs to the 

superfamily of small heat shock proteins, and has a 

highly conserved α-crystallin domain [27]. With a 

molecular weight of 21.6kDa, Hsp22 maintains the 

integrity of the protein by binding to the hydrophobic 

region of misfolded and unnatural proteins under stress 

conditions [28]. In recent years, many studies have 

revealed that Hsp22 plays a vital role in the regulation 

of oxidative stress, aging, cancer, apoptosis and 

autophagy [29–33]. However, although there is 

increasing interest in the biological role of Hsp22, the 

role and exact mechanism of Hsp22 in LPS-induced 

cognitive impairment in the hippocampus remain 

unclear. Therefore, given that Hsp22 acts as a 

cytoprotective component in nonneuronal cell lines 

[34]. It is necessary to clarify the potential mechanism 

of Hsp22 in neuroinflammation-mediated cognitive 

impairment and the role of Hsp22 in regulating the 

activation of the NLRP3/Caspase-1/IL-1β pathway. 

 

To our knowledge, this is the first study to report  

the key role of Hsp22 in LPS-induced cognitive 

impairment. Our study showed that Hsp22 could 

improve cognitive dysfunction by regulating the 

NLRP3/Caspase-1/IL-1β signaling pathway in 

hippocampal neuroinflammation induced by LPS. This 

study helps to further improves our understanding of the 

molecular mechanism of NLRP3 activation, and 

provides potential new therapeutic targets for the 

treatment of cognitive impairment. 

 

MATERIALS AND METHODS 
 

Animals and ethics statement 
 

Adult male C57BL/6 mice (7–8 weeks old, 22–26 g) 

were purchased from Henan Skbeth Laboratory Animal 

Co., Ltd. (Henan, China). All mice are kept in the 

Animal Management Center of Nanchang University, 

the photoperiod was 12 hours, and food and water were 

freely supplied. The room temperature (RT) was 

controlled at 23°C ± 2°C, and the relative humidity was 

maintained at 50% ~ 60%. To reduce the pain of the 

mice, we obtained the approval of the Institutional 

Animal Care and Utilization Committee of Nanchang 

University (Animal Care and Utilization Committee 

Number: 2016020) before the experimental operation. 

All experimental procedures were performed in 

accordance with the guidelines of the International 

Association for Pain Research. 
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Intracerebroventricular injection (IVC) 

 

Briefly, the mice were anesthetized by an intraperitoneal 

injection (i.p.) of 3% pentobarbital sodium and fixed in  

a stereotactic frame (RWD Life Sciences, Shenzhen, 

China). In a sterile surgical environment, skin 

approximately 1 cm along the midline was cut. Referring 

to the brain atlas the right ventricle was targeted as 

follows (millimeters from bregma): 0.8 mm behind the 

bregma, 1.3 mm on the right side of the median line, and 

3.5 mm subdural. The compound (5 μl) was injected at a 

rate of 1 μl/min with a microsyringe, and the syringe was 

kept in place for 10 min after instillation to prevent 

reagent reflux. Gentamicin ointment was applied locally 

for disinfection. After the operation, the skin was 

sutured, and the mouse was resuscitated using a 

thermostatic heating blanket, and then returned to the 

breeding room for the next experiment. 

 

Experimental design and establishment of the model 

 

First, we pretreated the mice with the Hsp22 plasmid 

overexpression. Eighteen mice were randomly divided 

into the control group, LPS+Lv-Hsp22 group (the 

lentiviral vector was used to overexpress Hsp22) and 

LPS+Lv-Hsp22-NC group (the negative lentiviral 

vector of Hsp22) (n = 6 per group). According to the 

manufacturer’s instructions, the mice in the transfection 

groups were ICV-injected with Hsp22 (1 × 106 TU). 

The Hsp22 lentiviral vector was constructed by China 

Shanghai GeneChem Co., Ltd. After the positioning 

navigation experiment, the mice in each group were 

administered saline/Hsp22 respectively. After 72 of 

hours pretreatment with Hsp22 (refer to Tai for the 

pretreatment time) [35]. The hippocampus was 

collected for enzyme-linked immunosorbent assay 

(ELISA) and Western blot analysis. 

 

Next, mice in the LPS+Lv-Hsp22-NC and LPS+Lv-

Hsp22 groups were subjected to LPS stimulation 

treatment to observe the changes of cognitive behavior 

and hippocampal neuroinflammation in mice. A total of 

12 mice were pretreated with Hsp22 and divided into the 

LPS+Lv-Hsp22-NC and LPS+Lv-Hsp22 groups (n = 6 

per group), and 6 mice were randomly selected for LPS 

stimulation. The administration concentration of LPS 

was 5 μg, which was dissolved in 5 ul of normal saline 

(the concentration is 0.9% of Nacl solution), because 

these doses have been reported to induce disease 

behavior in mice [36, 37]. As described in the previous 

protocol, 24 mice were subjected to behavioral tests 1 

day before LPS injection. LPS (L2880, O55: B5) was 

purchased from Sigma-Aldrich (St. Louis, MO, USA). 
 

After the last behavioral experiment, the mice were 

sacrificed using sodium pentobarbitone (i.p., 45 mg/kg), 

and hippocampal tissues were collected for hematoxylin 

and eosin (H&E) staining, Nissl staining, immuno-

histochemistry, and TUNEL staining. All mice were 

sacrificed 24 h after the LPS injection, and the collected 

the hippocampus was collected for protein extraction 

and Western blot analysis. 

 

Behavioral tests 

 

The Morris water maze (MWM) was used for cognitive 

behavioral testing [38]. Testing included one continuous 

daily of the positioning sailing trial (6 days of training) 

and one space exploration trial (1 day of training). The 

MWM device (XR-XM101, Shanghai Xinruan, China) 

consisted of a circular pool with a diameter of 150 cm 

and a height of 60 cm. The wall had four water inlet 

points marked on the top to divide the pool into four 

quadrants (upper left, upper right, lower right, and 

lower left), which were filled with tap water (30 cm in-

depth, 24–26°C). At the center of the right quadrant, a 

circular white platform (12 cm in diameter) was placed 

3 cm below the water surface. During training, white 

food additive white pigment (GB25577-2010) was used 

to dye the pool white and hide the white platform. First, 

the experimental mouse was placed on the platform for 

30 seconds to familiarize it with the surrounding 

environment. The MWM method includes a continuous 

daily positioning navigation test and a space exploration 

test. In the positioning and navigation tests, one of the 

quadrants was randomly selected and the mouse could 

travel back to the platform, which was randomly placed 

in the water, and the mouse was allowed to explore the 

hidden platform for 60 seconds and stay on it for 15 

seconds. If the mouse could not approach the platform 

within 60 seconds, it was guided to the platform and 

allowed to stay for another 30 seconds. This process 

was repeated in the four quadrants, and record the 

escape latency. At the end of the positioning navigation 

test, the platform was removed, and the space 

exploration test was carried out. The number of plat-

form crossings in 60 s, the escape latency and the time 

spent in the target quadrant were recorded. The MWM 

test was carried out from 8:00–12:00 in the morning. 

 

Tissue and serum collection 

 

Twenty-four hours after LPS injection, the mice were 

deeply anesthetized by an intraperitoneal injection of 

1.5% pentobarbital sodium (45 mg/kg), and blood was 

taken after eyeball removal, and centrifuged at 4000 

rpm in a low-temperature centrifuge (Thermo Fisher 

Scientific, Sorvall Legend Micro 17R). After 

centrifugation for 15 minutes, the supernatant was used 
for ELISA analysis, and then the mice were perfused 

through the heart with cold 0.9% NaCl injection to 

remove blood cells and proteins in the blood circulation. 



www.aging-us.com 1980 AGING 

Next, the brain was removed by craniotomy, and the 

hippocampal tissue was separated, placed in a 

cryopreservation tube, and then transferred to a −80°C 

freezer for Western blot analysis. Finally, PBS (150 

mL) was perfused, and 4% polymer was perfused again. 

Formaldehyde fixation (pH = 7.3, 150 mL), H&E 

staining, Nissl staining, immunohistochemistry and 

TUNEL staining were performed on mice. 

 

Cell culture and groupings  

 

The mouse microglial (BV2) cell line was purchased 

from Shanghai Tongpai Biotechnology Co., Ltd., China. 

The culture conditions were 37°C in 95% and 5% CO2, 

and DMEM high-glucose medium (Cell max, +4500 

mg/L glucose) supplemented with 10% fetal bovine 

serum. During the whole experiment, the cells were 

randomly divided into the control group and LPS group. 

Our previous studies showed that 5 ug of LPS at a 

concentration of 1 μg/ul could induce a significant 

inflammatory response in microglia [39]. Therefore, we 

used 5 μg of LPS to stimulate BV2 microglia in this 

study. 

 

In the second step of the cell transfection experiment, 

the cells were randomly divided into 2 groups: 

LPS+OE-Control (Hsp22 empty vector plasmid) and 

LPS+OE-Hsp22 (Hsp22 overexpression plasmid). 

Simply put, the BV2 cells were seeded in a 6-well 

plate and grown to 30–40% confluence before  

being transfected. According to the manufacturer’s 

instructions (GenePharma, Suzhou, China), the Hspb8 

(65064-1) plasmid empty vector and Hspb8 (65064-1) 

overexpression plasmid (5 ul dissolved in 195 ul of 

serum-free medium), and GP-transfect-mate (Lot NO: 

200703) reagents (dissolve 25 ul of transfection 

reagent in 175 ul of serum-free medium) were mixed 

to prepare 400 µl of working solution, and added to a 

6-well plate. The medium was replaced with complete 

medium 8 hours after transfection. After 72 h of 

transfection, BV2 cells were stimulated with 5 ug of 

LPS (1 μg/ul) for 24 h, and BV2 cells were collected 

for protein separation. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

The concentrations of proinflammatory cytokines 

(TNF-α, IL-1β and IL-6) in the mouse hippocampal 

tissues were detected by ELISA assays using ELISA 

kits (CUSABIO, Wuhan, China) according to the 

manufacture’s protocols. 

 

Western blot analysis 

 

RIPA lysis buffer, phenylmethylsulfonyl fluoride 

(PMSF), and protein phosphatase inhibitor were 

mixed in a ratio of 100:1 and added to hippocampal 

tissue and BV2 microglia to homogenize and 

incubated for 30 minutes to lyse the samples. Then, 

the samples were centrifuged at 4°C for 30 min 

(15 min/time), with a relative centrifugal force at 

12,000 relative centrifugal force (rcf), and the 

supernatant was collected. The protein concentration 

was determined by a bicinchoninic acid protein assay 

kit (TIANGEN, Beijing, China). Protein samples  

(35–50 μg) were separated protein samples by SDS-

polyacrylamide gel electrophoresis (10%), and then 

transferred them to PVDF membranes (0.22 μm). The 

membranes were blocked in 5% skim milk at RT for 

1 h and incubated with the following primary main 

antibodies overnight at 4°C: rabbit polyclonal anti-

Hsp22 (Abcam, 1:1000, ab151552, USA), rabbit 

monoclonal anti-NLRP3 (Cell Signaling Technology 

1:1000, D4D8T, USA), rabbit monoclonal anti-

Caspase-1 (Cell Signaling Technology 1:500, E2Z1C, 

USA), rabbit monoclonal anti Cleaved caspase-1 

(Cell Signaling Technology 1:500, E2G2I, USA), 

rabbit monoclonal anti-IL-1β (Cell Signaling 

Technology 1:1000, D4T2D, USA), rabbit 

monoclonal Cleaved IL-1β (Cell Signaling 

Technology 1:1000, D3A3Z, USA) and rabbit 

monoclonal anti-Iba1 (Cell Signaling Technology 

1:1000, E404W, USA), rabbit polyclonal anti-Bcl2 

(ABclonal 1:1000, A0208, China), rabbit monoclonal 

anti-Bax (ABclonal 1:1000, A19684, China), rabbit 

polyclonal anti-TNF-α (Proteintech 1:1000, 17590-1-

AP, China), rabbit monoclonal anti-IL-6 (Proteintech 

1:1000, 66146-1-Ig, China), and mouse polyclonal β-

actin (Proteintech 1:5000, 66009-1-Ig, China). 

Subsequently, the membranes were incubated with 

horseradish peroxidase-conjugated secondary 

antibodies respectively (HRP-conjugated Affinipure 

goat anti-Mouse IgG, SA00001-1, Goat Anti-Rabbit 

IgG, SA00001-2, 1:6000, Proteintech, China) for 1 h 

at RT. Bands were visualized with a Bio-Rad Gel 

Doc EZ imager (Bio-Rad, USA), and the intensity 

was analyzed by ImageJ software (NIH Image 

analysis website: http://rsb.info.nih.gov/ij/). β-Actin 

served as an internal control. Each experiment was 

repeated at least three times. 

 

Cell apoptosis analysis 

 

Apoptosis analysis was performed using a TUNEL kit 

(Roche, 11684817910, Wuhan, China). Hippocampal 

tissue was collected after the different treatments and 

add TdT, dUTP and DAPI staining solutions were 

added. After being incubated in the dark at 4°C for 20 

minutes, the samples were washed once with PBS. Cell 
apoptosis was observed with a Nikon inverted 

fluorescence microscope (Nikon Eclipse TI-SR, Tokyo, 

Japan) and analyzed with ImageJ software. 

http://rsb.info.nih.gov/ij/


www.aging-us.com 1981 AGING 

H&E staining, Nissl staining and immuno-

histochemistry 

 

H&E and Nissl staining were used to observe neuronal 

morphology and damage, and immunohistochemistry 

was used to detect the activation of Hsp22 and 

microglia in the hippocampus of mice. The brain tissue 

was embedded in paraffin, and a 4 μm thick brain tissue 

sections were prepared using a microtome (RM2016, 

Leica, Germany). After the sections were deparaffinized 

and rehydrated with xylene and ethanol, H&E staining, 

Nissl staining or immunohistochemical staining were 

performed. Using standard H&E and Nissl staining 

methods, H&E and toluidine blue staining were 

performed on the 4 μm sections, respectively. For 

immunohistochemistry, the sections were placed in 

100°C (0.01 M, pH = 6.0) citrate buffer to induce 

antigen retrieval and then soaked them in 3% hydrogen 

peroxide solution for 10 minutes at RT to quench the 

endogenous peroxidase activity. After being blocked 

with 5% bovine serum albumin, the tissue was 

incubated with anti-Hsp22 antibodies (Abcam, 1:1000, 

ab151552, USA) or anti-Iba1 (Cell Signaling 

Technology 1:1000, E404W, USA) at 4°C overnight. 

Then, the sections were rinsed 3 times with PBS, 

incubated with anti-rabbit IgG secondary antibodies 

(1:2000, Boster, China, Wuhan) at RT for 1 h, dyed in 

3,3′-diaminobenzidine solution, and reverse stained 

with hematoxylin. The slices were visualized and 

analyzed by an optical microscope (NIKON ECLIPSE 

CI, Tokyo, Japan) equipped with an imaging system and 

ImageJ software. 

 

Statistical analysis 

 

GraphPad Prism 8 software was used for statistical 

analysis. The data are expressed as the mean ± standard 

error (SEM). Two groups were compared using 

Student’s t test, and multiple groups were compared 

using repeated-measures one-way analysis of variance 

followed by post hoc of Bonferroni test or 

Dunnett’s test. 

 

Availability of data 

 

The datasets supporting the conclusions of this study are 

included in this article. 

 

RESULTS 
 

Hsp22 overexpression pretreatment ameliorates 

LPS-induced cognitive impairment of in mice in the 

MWM test 

 

To study the effect of LPS injection and lentiviral 

vector-mediated was utilized to Hsp22 overexpression 

on the learning and memory in mice, the mice were 

subjected to a MWM experiment after 7 days of 

adaptive feeding, After MWM training, mice in the 

LPS+Lv-Hsp22-NC and LPS+Lv-Hsp22 groups were 

pretreated with the corresponding lentiviral vector for 

72 hours, and then stimulated with LPS drugs. 

Twenty-four hours after LPS injection, the water maze 

space exploration experiment was performed to 

observe the changes in the spatial learning and 

memory abilities of mice before and after the drug was 

administered. After the experiment, the mice were 

sacrificed, and serum and the hippocampus were 

collected for subsequent experiments. No mice in each 

group died during the experiment. The experiment 

flow chart is shown in Figure 1A. The water maze 

activity track was recorded for each group of mice 

after modeling (Figure 1B). The results of the MWM 

test showed that compared with the control group, the 

LPS group and the LPS+Lv-Hsp22-NC group 

significantly prolonged the escape latencies of mice on 

day (p < 0.05–0.005, Figure 1C), In addition, there 

was a significant difference in the time spent in the 

target quadrant between the control group and the 

LPS-treated group mice (p < 0.005, Figure 1D). To 

further evaluate the effect of Hsp22 overexpression on 

LPS-induced memory impairment, a lentiviral vector 

was used to overexpress Hsp22 before LPS injection. 

The results showed that compared with the LPS group 

and the LPS+Lv-Hsp22-NC group, the LPS+Lv-Hsp22 

group had a shortened escape latency of LPS-treated 

mice and increased the number of crossing platforms 

(p < 0.01, Figure 1D). These findings indicate that 

LPS can impair the memory and learning abilities of 

mice, indicating that the animal model of cognitive 

impairment was successfully constructed. Hsp22 

overpression pretreatment can improve the cognitive 

decline in mice induced by LPS. 

 

LPS increases the expression of NLRP3/Caspase-

1/IL-1β and proinflammatory cytokines in the 

hippocampus of mice 

 

An increasing number of studies have shown that 

neuroinflammation is an important factor leading to 

cognitive impairment [40, 41]. Our previous research 

showed that the levels of proinflammatory cytokines 

(IL-6 and TNF-α) in the hippocampus increased within 

24 hours of LPS injection [39]. Therefore, we collected 

blood from mouse eyeballs 24 hours after LPS 

administration, which was centrifuged, and the 

obtained serum was used for ELISA analysis. The 

results showed that compared with that in the control 

group, the expression of the proinflammatory cytokines 
IL-6, IL-1β and TNF-α was upregulated in the LPS 

group and the LPS+Lv-Hsp22-NC group after 24 h. 

(p < 0.01–0.005, Figure 2A–2C). In contrast, the 
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LPS+Lv-Hsp22 group exhibited significantly reduced 

the expression of these inflammatory factors (p < 0.01–

0.05, Figure 2A–2C). 

 

The western bolt results (Figure 2D–2F) showed that 

compared with those in the control group, the protein 

levels of NLRP3, IL-1β and Caspase-1 in the LPS group 

and LPS+Lv-Hsp22-NC group were significantly 

increased (p < 0.01–0.05), while, the mice of the 

LPS+Lv-Hsp22 group had significantly reduced the 

expression of these proteins in the hippocampus of mice 

(p < 0.05–0.005). 

 

 
 

Figure 1. Hsp22 overexpression preconditioning improved LPS induced learning and memory impairment in mice. (A) 

Flowchart figure of animal experiment. (B) Representative diagram of Morris water maze of mice in each group. Hsp22 overexpression 
preconditioning reduces escape latency in mouse MWM test (C) and Hsp22 overexpression pretreatment increases the number of mice 
crossing the platform (D). (***p < 0.005, ***p < 0.005 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; #p < 0.05, ##p < 0.01 vs. LPS+Lv-
Hsp22-NC). 
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Hsp22 overexpression decreases pretreatment the 

expression of NLRP3/Caspase-1/IL-1β and pro-

inflammatory cytokines in the hippocampus of LPS-

treated mice 

 

H&E staining was used to observe the neuronal 

morphology in the hippocampal (Figure 3A, 3B). In the 

control group, the cells in the hippocampus CA1 area 

were arranged tightly, with clear nuclei and rich 

cytoplasms, and there was complete brain parenchymal 

structure, and no neuronal degeneration or edema. In the 

LPS group and the LPS+Lv-Hsp22-NC group, a large 

amount of necrosis in nerve cells and deep staining of 

nuclear pyknosis were observed in the hippocampal 

CA1 area, as shown by the yellow arrow; The 

hippocampal neurons in the LPS+Lv-Hsp22 pre-

treatment group were arranged more densely and neatly 

than in the other groups. 

 

Some studies have shown that the structure and function 

of pyramidal cells in the hippocampus and cortex are 

related to learning and memory functions [42, 43]. Our 

histopathological observations on the mouse brain by 

Nissl-stained mouse brains showed that compared with 

those in the control group, the pyramidal cells in the 

hippocampus and cortex in the LPS group and the 

LPS+Lv-Hsp22-NC group were damaged, as shown by 

the yellow arrow, which were characterized by Nissl 

bodies and extensive loss of normal neurons 

(Figure 3C), However, the number of Nissl bodies in 

the LPS+Lv-Hsp22 group was decreased. Our Nissl 

staining results showed that the number of normal 

neurons in the hippocampus and cortex increased 

significantly after Hsp22 overexpression was given, 

suggesting that Hsp22 overexpression has a neuro-

protective effect. 

 

Immunohistochemistry showed that the number of 

Hsp22 positive cells in the hippocampus of mice in the 

LPS group and the LPS+Lv-Hsp22-NC group was 

higher than that in the control group. The LPS+Lv-

Hsp22 group shown a reduction in these cells (p < 0.05, 

Figure 4A, 4B). Moreover, the Hsp22 protein levels in 

of the LPS+Lv-Hsp22 group was higher than that in the 

other groups, indicating that Hsp22 overexpression was 

successfully established (Figure 4C). These results 

indicated that Hsp22 overexpression pretreatment can 

decrease the expression of NLRP3/Caspase-1/IL-1β and 

 

 
 

Figure 2. Effect of Hsp22 on LPS-induced activation of NLRP3/Caspase-1/IL-1β pathways in the mice hippocampus tissue. 
The serum levels of IL-6, TNF-α and IL-1β. (A–C) (**p < 0.01, ***p < 0.005, ***p < 0.005 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; ##p < 
0.01, ##p < 0.01, #p < 0.05 vs. LPS). The protein band of NLRP3, Caspase-1, IL-1β and its expression in the mice Hippocampus tissue (D–F). 
(**p < 0.01, *p < 0.05, **p < 0.01 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; #p < 0.05, ###p < 0.005, #p < 0.05 vs. LPS+Lv-Hsp22-NC). 
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proinflammatory cytokines in the hippocampus of LPS-

treated mice. 

 

Furthermore, our western bolt results showed that the 

expression of TNF-α in the LPS group and the LPS+Lv-

Hsp22-NC group was higher than that in the other 

groups, and the LPS+Lv-Hsp22 group had decreased 

TNF-α expression (p < 0.05, Figure 4D). 

 

Hsp22 overexpression pretreatment decrease the 

expression of NLRP3/Caspase-1/IL-1β and pro-

inflammatory cytokines in LPS-treated BV2 

microglial cells 

 

Next, we used LPS stimulation to study the effect  

of Hsp22 overexpression preconditioning on BV2 

microglia in neuroinflammation in vitro. The cell 

modeling process is shown in Figure 5A. We analysed 

the morphological change of microglia (Supplementary 

Figure 1). Western blot analysis showed that the 

expression of Hsp22 was higher than that in the other 

groups, indicating that the OE-Hsp22 was successfully 

transfected into BV2 microglial cells (p < 0.05, 

Figure 5B). Western blotting was used to measure the 

expression of NLRP3, Caspase-1, and IL-1β. The 

results showed that the protein expression levels in the 

LPS group and the LPS+Lv-Hsp22-NC group were 

higher than those in the control group (p < 0.01–0.05, 

Figure 5C–5E), The protein expression level of cleaved 

form of caspase-1 and IL-1 β has a significant 

difference respectively (p < 0.05–0.005, Supplementary 

Figures 2, 3). After overexpressing Hsp22 in BV2 

 

 
 

Figure 3. Hsp22 overexpression pretreatment improves hippocampus tissue damage induced by LPS. (A) Histological analysis 

of Hippocampus tissue via HE staining (×200). (B) The degeneration rate of neurons in LPS group was higher than that in control group, and 
the difference was statistically significant (***p < 0.005). The degeneration rate of neurons in LPS+Lv-Hsp22 group was lower than that in 
LPS+Lv-Hsp22-NC group, and the difference was statistically significant (###p < 0.005). (C) Histological analysis of Hippocampus tissue via 
Nissl Staining (×200). 
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microglia that were treated with LPS, the expression of 

NLRP3, caspase-1, and IL-1β was significantly reduced 

compared with LPS group (p < 0.01–0.05, Figure 5C–

5E). Compared with that in the LPS+Lv-Hsp22-NC 

group, the difference was not statistically significant (p 

> 0.05, Figure 5C–5E), and the protein expression level 

of cleaved form of caspase-1 and IL-1 β has a 

significant difference respectively (p < 0.05–0.005, 

Supplementary Figures 4, 5). In summary, Hsp22 over-

expression pretreatment can decrease the expression of 

NLRP3, Caspase-1, and IL-1β. 

 

Hsp22 overexpression pretreatment attenuates 

inflammation in the hippocampus and apoptosis in 

BV2 microglial cells 

 

Western blotting was used to measure the expression of 

IL-6 and TNF-α, the results showed that the protein 

expression levels in the LPS group and the LPS+OE- 

Control group were higher than those in the control 

group (p < 0.01, Figure 6A, 6B). After Hsp22 

overexpression, IL-6 and TNF-α were significantly 

reduced compared with those in the LPS group 

 

 
 

Figure 4. Hsp22 levels were increased in hippocampus tissue after LPS stimulation and increased expression after Hsp22 
pretreatment. (A, B) Immunohistochemical staining images of Hsp22(*p < 0.05 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; #p < 
0.05 vs. LPS). (C) The protein band of Hsp22 and its expression (*p < 0.05 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; #p < 0.05 vs. 
LPS+Lv-Hsp22-NC). (D) The protein band of TNF-α and its expression (*p < 0.05 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; #p < 0.05 
vs. LPS+Lv-Hsp22-NC). 
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(p < 0.05, Figure 6A, 6B). We had carried out 

quantitative real-time polymerase chain reaction (qRT-

PCR) experiment and analyzed the mRNA expression 

level of TNF-α, NLRP3, Caspase-1, IL-1β 

(Supplementary Figures 6–9), and obtained the results 

which are similar to Western blotting, which made our 

results more reliable. 

 

Apoptosis is a form of the process of inducing 

programmed cell death that is induced by gene 

 

 
 

Figure 5. Effect of Hsp22 on LPS-induced activation of NLRP3/Caspase-1/IL-1β pathways in BV2 Microglial Cells. (A) Cell 

Modeling Flowchart. (B) The protein band of Hsp22 and its expression (*p < 0.05 vs. Control; ns: p > 0.05, LPS vs. LPS+OE-Control; #p < 0.05 
vs. LPS+OE-Control). (C–E) The protein band of NLRP3, Caspase-1, IL-1β and its expression. (**p < 0.01, *p < 0.05, **p < 0.01 vs. Control; ns: 
p > 0.05, LPS vs. LPS+OE-Control; ##p < 0.01, #p < 0.05, ##p < 0.01 vs. LPS+OE-Control). 
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expression to maintain homeostasis under certain 

physiological and pathological conditions [44]. Previous 

studies have shown that LPS-induced cognitive 

impairment is related to apoptosis [17]. The ratio of 

proapoptotic molecules to antiapoptotic molecules is 

increased (Bax/Bcl-2). To confirm the influence of 

inflammation model on apoptosis, we performed 

TUNEL staining and Western blotting. Western blot 

analysis of BV2 microglial cells showed that, compared 

with the control group, Bax was upregulated in the 

hippocampus in the LPS and LPS+OE-control group, 

and Bcl2 was downregulated (p < 0.05–0.005, Figure 

6C, 6D). We analyzed the Bax/Bcl-2 ratio in vivo and 

in vitro experiments and the results are the same as 

reliable (p < 0.05–0.005, Supplementary Figures 10, 11). 

The TUNEL assay and hippocampal tissue protein 

analysis yielded similar results (p < 0.05–0.005, Figure 

7A–7D). Hsp22 overexpression in the pretreatment 

group reversed this outcome. Our research shows that 

overexpression of Hsp22 may exert a neuroprotective 

effect by reducing cell apoptosis. 

 

Hsp22 overexpress pretreatment attenuates 

microglial activation in the hippocampus of LPS-

treated mice and BV2 microglial cells 

 

Iba1 is considered to be an activation marker of 

microglia [45, 46]. This factor plays an essential role in 

inflammatory diseases of the central nervous system 

[47]. In this study, we examined the number of 

 

 

 
Figure 6. Hsp22 overexpression pretreatment alleviates BV2 microglial cells inflammation and apoptosis induced by LPS. 
The protein band of IL-6 (A), TNF-α (B) and its expression (**p < 0.01, **p < 0.01 vs. Control; ns: p > 0.05, LPS vs. LPS+OE-Control; #p < 0.05, #p 
< 0.05 vs. LPS+OE-Control). (C) The protein band of Bax and its expression (D); The protein band of Bcl2 and its expression (***p < 0.005, *p 
< 0.01 vs. Control; ns: p > 0.05, LPS vs. LPS+OE-Control; #p < 0.05, #p < 0.05 vs. LPS+OE-Control). 
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Iba1-positive (microglia marker) cells by immuno-

histochemistry. We observed that compared with that in 

the control group, the number of Iba1 positive cells in 

the LPS group and the LPS+Lv-Hsp22-NC group was 

significantly increased (p < 0.005, Figure 8A, 8B). The 

Iba1-positive cells in the Hsp22 over-expression 

pretreatment group were significantly reduced 

compared with those in the LPS group (p < 0.005, 

Figure 8A, 8B). Next, we also detected the expression 

of Iba1 protein in the hippocampus and BV2 cells in 

each group. The expression of Iba1 protein in the 

hippocampus in the LPS group and the LPS+Lv-Hsp22-

NC group was higher than that in the control group. The 

expression of Iba1 protein in the LPS+Lv-Hsp22 group 

was lower than that in the LPS group (p < 0.01–0.05, 

Figure 8C). Similar results were obtained in the LPS-

induced microglial BV2 cell model in vitro (p < 0.05–

0.005, Figure 8D). These results indicate that Hsp22 

overexpression preconditioning negatively regulates 

microglia activation in a mouse model of cognitive 

dysfunction. 
 

DISCUSSION 
 

In this study, we explored the potential role of the 

Hsp22/NLRP3/Caspase-1/IL-1β axis in LPS-induced 

hippocampal neuroinflammation and cognitive 

impairment in mice. The related mechanisms were 

 

 
 

Figure 7. Hsp22 overexpression pretreatment alleviates hippocampus tissue apoptosis induced by LPS. (A, B) Representative 

images of Tunel-stained brain sections (×200) (***p < 0.005 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; ###p < 0.005 vs. LPS+Lv-Hsp22-
NC). (C) The protein band of Bax and its expression. (D) The protein band of Bcl2 and its expression. (*p < 0.05, ***p < 0.005 vs. Control; ns: 
p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; #p < 0.05, #p < 0.05 vs. LPS+Lv-Hsp22-NC). 
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evaluated by overexpressing Hsp22 in the mouse 

hippocampus and BV2 microglia. The results showed 

that LPS upregulated the expression of NLRP3/ 

Caspase-1/IL-1β and proinflammatory cytokines (IL-6 

and TNF-α), enhanced the hippocampal neuro-

inflammatory response and activated microglia. In 

addition, our study shows that pretreatment by 

overexpressing Hsp22 can improve neuroinflammation 

and hippocampus-dependent learning and memory 

decline in LPS-treated mice. In summary, the results 

show that the activation of the NLRP3/Caspase-1/IL-1β 

signaling pathway negatively regulates the hippocampal 

neuroinflammation and cognitive impairment induced 

by LPS (Figure 9). 

Neurodegenerative diseases have complex pathological 

mechanisms and low cure rates, as well as with chronic 

and progressive characteristics [48]. Neurodegenerative 

diseases often affect the quality of life of patients, bring 

heavy social and economic burdens, and often lead to 

death. Current treatments include clinical, physical 

therapy, psychotherapy, and other strategies, with the 

goal of relieving symptoms or delaying their 

progression [49]. Cognitive dysfunction is a common 

clinical manifestation of many neurodegenerative 

diseases. The underlying mechanism has been 

extensively explored, but the specific treatment of this 

syndrome remains to be determined [2]. Increasing 

evidence shows that neuroinflammation, especially 

 

 

 
Figure 8. Hsp22 overexpression pretreatment alleviates Iba1 activation induced by LPS. (A, B) Immunohistochemical staining 

images of Iba1(***p < 0.005 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-Hsp22-NC; ###p < 0.005 vs. LPS+Lv-Hsp22-NC). The arrow points to Iba1 
positive cell. (C) The protein band of Iba1 and its expression in Hippocampus tissue (**p < 0.01 vs. Control; ns: p > 0.05, LPS vs. LPS+Lv-
Hsp22-NC; #p < 0.05 vs. LPS+Lv-Hsp22-NC). (D) The protein band of Iba1 and its expression in BV2 Microglial Cells. (***p < 0.005 vs. Control; 
ns: p > 0.05, LPS vs. LPS+OE-Control; #p < 0.05 vs. LPS+OE-Control). 
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hippocampal neuroinflammation, is the main factor that 

triggers cognitive dysfunction [3, 50]. Previous studies 

have shown that LPS-induced cognitive impairment 

models, such as AD and PD, are effective methods for 

studying cognitive impairment mechanisms [51, 52]. 

Published research shows that the MWM test is a 

robust, reliable and most popular hippocampus-

dependent cognitive function test [53]. To this end, 

thus, we established a neuroinflammation model with 

LPS to explore cognitive dysfunction, and chose the 

MWM test to evaluate cognitive function. As expected, 

the MWM test results showed that after mice were 

administered LPS by icv injection, significant cognitive 

decline was observed, suggesting that our LPS-induced 

cognitive impairment model was successful. 

 

Published studies have shown that the NLRP3 

inflammasome triggers the activation of Caspase-1, 

which cleaves the inactivated cytokine precursors (IL-

1β and IL-18) into proinflammatory cytokines (IL-1β 

and IL-18) [54]. The inflammasome plays a vital role in 

the activation of CASP1 and the maturation of IL-1β. 

Previous studies have shown that the NLRP3 

inflammasome is associated with many neuro-

degenerative diseases, such as type 2 diabetes (T2D) 

and PD [55], and cognitive impairment caused by 

surgery and anesthesia. Many methods have been 

identified to inhibit the NLRP3 inflammatory signal at 

multiple steps [56]. Among them, dexmedetomidine 

reduces NLRP3-mediated neuroinflammation through 

the ubiquitin-autophagy pathway and improves 

perioperative neurocognitive impairment in mice [57]. 

In addition, microRNA-138-5p has been reported to 

regulate hippocampal neuroinflammation and cognitive 

impairment in rats through the NLRP3 signaling 

pathway [39]. Similarly, our results showed that LPS 

enhanced the expression of NLRP3/Caspase-1/IL-1β 

and the proinflammatory cytokines TNF-α and IL-6 in 

the mouse hippocampus and BV2 microglia. Therefore, 

our findings suggest that the NLRP3 inflammasome 

may be a new therapeutic target for cognitive 

impairment, and that targeting the NLRP3/Caspase-

1/IL-1β signaling axis is a promising approach for the 

treatment of postoperative inflammation. 

 

Previous studies have revealed a similar regulatory 

relationship between Hsp22 and NLRP3 inflamma-

somes in cognitive dysfunction-related diseases. It has 

been reported that in doxorubicin-treated mice, NLRP3 

overexpression reduces the protective effect of 

 

 
 

Figure 9. Schematic depicting the potential mechanism of action of the NLRP3/caspase-1/IL-1β axis in LPS-induced 
hippocampal neuroinflammation and cognition. LPS upregulates the expression of Hsp22, which then activates the NLRP3 

inflammasome leading to activation of caspase-1, which cleaves pro-IL-1β to IL-1β. As a result, hippocampal neuroinflammation levels are 
elevated and induce cognitive impairment. 
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Hsp22 on cardiac function [58]. Hsp22 has anti-

apoptotic activity in melanoma, glioblastoma and breast 

cancer cells have also been reported successively [59]. 

Moreover, recent studies have shown that LPS can 

induce neuronal apoptosis, and the proapoptotic protein 

Bax and antiapoptotic protein Bcl-2 are involved in 

regulating apoptosis [60]. Similar to previous research 

results, our results show that Hsp22 overexpression 

pretreatment can inhibit the expression of NLRP3, 

Caspase-1, IL-1β and proinflammatory cytokines in 

hippocampal neurons, improve cognitive impairment in 

mice, and improve learning and memory capabilities. In 

addition, we also noticed that the proapoptotic protein 

Bax was upregulated and the antiapoptotic protein Bcl-2 

was downregulated in LPS-treated mice, and Hsp22 

overexpression and preconditioning could reversed this 

phenomenon. These above results suggest that Hsp22 

overexpression and preconditioning protects against on 

LPS-induced neurotoxicity in the hippocampus of mice, 

which is characterized by a shorter escape latency, a 

higher target quadrant time ratio and more platform 

crossing time [15]. 

 

In summary, our study demonstrated for the first time 

that overexpress Hsp22 overexpression can regulate the 

NLRP3/Caspase1/IL-1β signaling pathway, ameliorate 

hippocampal neuroinflammation, and improve 

cognition by reducing microglial dysfunction induced 

by LPS in mice. Our research shows that the 

Hsp22/NLRP3/Caspase1/IL-1β axis may be a potential 

new target to improve neuroinflammation. Under stress 

conditions, this pathway mediates mitochondrial 

homeostasis, oxidative stress and apoptosis, and has 

cytoprotective activity, thereby accelerating the 

recovery of nerve function [61]. In addition, other 

studies have reported that Hsp22 inhibits oxidative 

stress-induced hippocampal neuronal cell death by 

regulating mitochondrial pathway and that Hsp22 

improves lipopolysaccharide induced myocardial injury 

[62, 63]. In contrast to existing studies, our study is the 

first to shows that Hsp22 targets the NLRP3/caspase-

1/IL-1β pathway to improve LPS-induced cognitive 

impairment, that Hsp22 preconditioning reduces the 

LPS-induced inflammatory response and cell apoptosis 

and improves learning and memory impairment in mice. 

and more experimental data are needed to accurately 

explain the neuroprotective effect of Hsp22, which may 

help identify new strategies to prevent nerve damage. 

Hsp22 overexpression may protect against LPS-induced 

neurodegenerative diseases and cognitive impairment. 

 

Our research has several limitations. First of all, in this 

study, we only focused on the cognitive function in the 

early postoperative period, and the long-term cognitive 

function needs to be further studied. Second, we only 

studied the effect of Hsp22 on the activation of 

microglia. Astrocytes and other cells involved in the 

CNS immune response were not explored. Third, in this 

study, we analyzed the expression of pro-inflammatory 

M1 phenotype TNF-α, IL-1 β, and IL-6, but the anti-

inflammatory M2 phenotypes such as IL-10, CCL18 

and CCL22 have not been analyzed. In the follow-up 

study, we will improve the detection of IL-10, CCL18 

and CCL22. In addition, we will further use electron 

microscopy to observe the changes in the microstructure 

of mitochondria in the next study, and analyze the 

indicators such as cytochrome c to further explore the 

relationship between Bax and mitochondrial 

translocation in cell apoptosis. Finally, the surgical 

process itself, anesthesia and injection stress may affect 

the expression of Hsp22, hippocampal neuro-

inflammation and the behavior in mice. However, the 

current study is a preliminary study. There is no doubt 

that more experimental data are needed to accurately 

explain the neuroprotective effect of Hsp22 on 

cognitive impairment. Subsequent studies will identify 

the potential effects of these factors on hippocampal 

inflammation and cognitive behavioral changes. 

 

CONCLUSIONS 
 

In summary, our study demonstrated for the first time 

that Hsp22 overexpression preconditioning could 

regulate the NLRP3/Caspase1/IL-1β signaling pathway, 

inhibit hippocampal neuroinflammation, and improve 

cognition by inhibiting microglial activation and 

dysfunction in LPS-treated mice. Our research shows 

that the Hsp22/NLRP3/Caspase1/IL-1β axis may be a 

potential new target to improve neuroinflammation. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The morphological change of microglia. The following microglia can be seen under fluorescent 

microscope (Olympus, Japan): The cell body of microglia in resting state is small and oval, as shown by the black arrow in the left of Figure 
S9. LPS is used to induce microglia, and the activated microglia cell body increases and the process becomes shorter, as shown in the right 
of Supplementary Figure 9. 
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Supplementary Figure 2. The protein expression level of Cleaved caspase-1. Supplementary Figure 1 The protein expression level 

of Cleaved caspase-1 in LPS group was higher than that in control group, and the difference was statistically significant (**p < 0.005). The 
protein expression level of Cleaved caspase-1 in LPS+Lv-Hsp22 group was lower than that in LPS+Lv-Hsp22-NC group, and the difference 
was statistically significant (#p  < 0.05). 
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Supplementary Figure 3. The protein expression level of Cleaved IL-1β. The protein expression level of Cleaved IL-1β in LPS group 

was higher than that in control group, and the difference was statistically significant (*p < 0.05). The protein expression level of Cleaved 
caspase-1 in LPS+Lv-Hsp22 group was lower than that in LPS+Lv-Hsp22-NC group, and the difference was statistically significant (#p < 0.05). 
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Supplementary Figure 4. The protein expression level of Cleaved caspase-1. The protein expression level of Cleaved caspase-1 in 

LPS group was higher than that in control group, and the difference was statistically significant (*p < 0.05). The protein expression level of 
Cleaved caspase-1 in LPS+OE-Hsp22 group was lower than that in LPS+ OE-control group, and the difference was statistically significant (#p < 
0.05). 
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Supplementary Figure 5. The protein expression level of Cleaved IL-1β. The protein expression level of Cleaved IL-1β in LPS group 

was higher than that in control group, and the difference was statistically significant (*p < 0.05). The protein expression level of Cleaved IL-
1β in LPS+OE-Hsp22 group was lower than that in LPS+ OE-control group, and the difference was statistically significant (#p < 0.05). 
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Supplementary Figure 6. The mRNA expression level of TNF-α. The mRNA expression level of TNF-α in LPS group was higher than 

that in control group, and the difference was statistically significant (**p < 0.005). The mRNA expression level of TNF-α in LPS+Lv-Hsp22 
group was lower than that in LPS+Lv-Hsp22-NC group, and the difference was statistically significant (#p < 0.05). 

 

 
 

Supplementary Figure 7. The mRNA expression level of NLRP3. The mRNA expression level of NLRP3 in LPS group was higher than 

that in control group, and the difference was statistically significant (***p < 0.005). The mRNA expression level of NLRP3 in LPS+Lv-Hsp22 
group was lower than that in LPS+Lv-Hsp22-NC group, and the difference was statistically significant (##p < 0.005). 
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Supplementary Figure 8. The mRNA expression level of Caspase-1. The mRNA expression level of Caspase-1 in LPS group was 

higher than that in control group, and the difference was statistically significant (***p < 0.005). The mRNA expression level of Caspase-1 in 
LPS+Lv-Hsp22 group was lower than that in LPS+Lv-Hsp22-NC group, and the difference was statistically significant (###p < 0.005). 

 

 
 

Supplementary Figure 9. The mRNA expression level of IL-1β. The mRNA expression level of IL-1β in LPS group was higher than that 

in control group, and the difference was statistically significant (**p < 0.005). The mRNA expression level of IL-1β in LPS+Lv-Hsp22 group was 
lower than that in LPS+Lv-Hsp22-NC group, and the difference was statistically significant (#p < 0.05). 
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Supplementary Figure 10. The Bax/Bcl-2 ratio in vivo experiments. The Bax/Bcl-2 ratio in vivo experiments of LPS group was higher 

than that in control group, and the difference was statistically significant (**p  < 0.005). The Bax/Bcl-2 ratio in vivo experiments of LPS+Lv-
Hsp22 group was lower than that in LPS+Lv-Hsp22-NC group, and the difference was statistically significant (####p  < 0.005). 

 

 
 

Supplementary Figure 11. The Bax/Bcl-2 ratio in vitro experiments. The Bax/Bcl-2 ratio in vitro experiments of LPS group was 

higher than that in control group, and the difference was statistically significant (**p < 0.005). The Bax/Bcl-2 ratio in vivo experiments of 
LPS+OE-Hsp22 group was lower than that in LPS+OE-control group, and the difference was statistically significant (##p < 0.005). 


