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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is the most aggressive 

histological type of lung cancer with a consistently 

increasing incidence [1, 2]. The lack of early detection 

and effective treatment led to the persistently high 

mortality rate of LUAD, which makes it urgent to explore 

the mechanisms of LUAD. However, the traditional 

experimental approach limits the large-scale investigation 

of hub genes and pathways at the systems biology level 

because it can only identify one or a few genes at a time. 

Machine learning is a new approach to learn data-driven 

concepts which can help researchers uncover hidden 

insights [3], and it is also developed for precise 

classification and accurate prediction in medicine by 

designing models according to RNA-sequencing patterns. 

The molecular characteristics and therapy effects vary 

widely between different subtypes of lung cancer [4]. 

Several high-frequency genetic alternations have been 

identified in LUAD, such as LAMA2, DGCR5, and 

TTC21A [5–7]. 

 

The interaction between cancer cells and the tumor 

(specifically the hypoxia) microenvironment has been 

widely shown to affect the LAUD progression and 

therapy. Hypoxia can decrease the activity of immune 

cells and suppress the production of immune 

stimulants, thereby increasing the release of inhibitory 

factors and improving the expression of immune 
checkpoint inhibitors [8, 9]. Hypoxia, as a promising 

therapeutic target especially for radiotherapy, has 

been applied to most of LUAD patients. However, 
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ABSTRACT 
 

Background: Increasing evidence has demonstrated the clinical importance of hypoxia and its related factors in 
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Methods: RNA-seq datasets from The Cancer Genome Atlas (TCGA) were analyzed using the differentially 
expressed genes in hypoxia pathway by the Least Absolute Shrinkage and Selection Operator (LASSO) model. 
Applying gene ontology (GO) and gene set enrichment analysis (GSEA), a risk signature associated with the 
survival of LUAD patients was constructed between LUAD and normal tissue. 
Results: In total, 166 hypoxia-related genes were identified. Based on the LASSO Cox regression, 12 genes were 
selected for the development of the risk signature. Then, we designed an OS-associated nomogram that 
included the risk score and clinical factors. The concordance index of the nomogram was 0.724. ROC curve 
showed better predictive ability using the nomogram (AUC = 0.811 for 5-year OS). Finally, the expressions of 
the 12 genes were validated in two external datasets and EXO1 was recognized as a potential biomarker in the 
progression of LUAD patients. 
Conclusions: Overall, our data suggested that hypoxia is associated with the prognosis, and EXO1 acted as a 
promising biomarker in LUAD. 
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LUAD hypoxia-targeted therapy is still in clinical 

trials [10]. 

 

In this study, hypoxia-related genes (HRGs) with 

different expressions were screened by using large-

scale sequencing and bioinformatics analysis. 

Hypoxia-related prognostic model was constructed via 

LASSO-Cox regression analysis. A prognostic nomo-

gram, which combined prognostic gene characteristics 

and clinical prognostic factors, was created to predict 

the overall survival (OS). And the EXO1 expression 

levels in tumor and adjacent normal tissues were 

examined and the prognostic value of EXO1 in LUAD 

patients was evaluated. 

 

MATERIALS AND METHODS 
 

Data acquisition and procession 

 

The expression profiles of mRNAs (level 3) in 504 

cases (504 tumor tissues and 59 adjacent normal tissues) 

were downloaded from TCGA database (https://portal. 

gdc.cancer.gov). And its corresponding clinical 

information of LUAD patients was also downloaded 

from TCGA and was shown in Supplementary Table 1. 

Hypoxia-related genes (HRGs) were derived from the 

gene set in the Molecular Signatures Database 

(MSigDB v6.2, http://software.broadinstitute.org/gsea/ 

msigdb) [11]. Transcriptome profiling data of LUAD 

patients in the GSE19188 (91 tumor- and 65 adjacent 

normal samples) and GSE10072 (58 tumor and 49 non-

tumor tissues) datasets from the GEO database were 

used for validation. 

 

Identification of hypoxia‑related genes and 

functional enrichment analysis 

 

With the cut-off criteria set as log2|Fold Change| > 1 

and P-value < 0.05, we normalized these data and 

screened differentially expressed hypoxia-related genes 

(DE-HRGs) using “limma” package by R software [12]. 

Gene ontology (GO) [13] and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [14] pathway enrichment 

analyses were conducted to explore the biological 

functions of the DE-HRGs via the “clusterProfiler” R 

package. Adjusted P-value < 0.05 was set as the 

significance threshold, and the enrichment analysis 

result maps were presented by the “ggplot2” and 

“GOplot” R packages. 

 

Construction and evaluation of the hypoxia-related 

prognostic model 

 

We performed the least absolute shrinkage and selection 

operator (LASSO) regression analysis to select hub 

prognosis-related DE-HRGs via the “glmnet” R 

package. The formula of the risk score for the predicting 

patients’ survival was as follows: 

 

 i iRisk score n (Coefi x )= =    

 

where Coefi refers to the coefficient and xi refers to 

the expression level of HRGs.  Based on the median 

value of risk scores, patients were divided into  

high-risk and low-risk subgroups, in which the clinic 

pathological features and gene expression profiles of 

each patient were displayed through the “pheatmap” 

and “survival” R packages. The OS rates between the 

two groups were compared by the Kaplan-Meier 

survival analysis in R package (P < 0.05). The 

predictive accuracy of the risk model was further 

verified by the receiver operating characteristic (ROC) 

curve. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA was conducted in the molecular signatures 

database (MSigDB), which provided hallmark gene sets 

to predict biological processes between low- and  

high-risk groups [15]. Annotated gene sets of 

hallmarker.all.v6.1.symbols.gmt in MSigDB were 

chosen as the references in GSEA software [16].  

P < 0.05 and FDR < 0.25 was considered as obviously 

enriched.  

 

Estimation of clinical independence and construction 

of the nomogram 

 

Univariate and multivariate Cox regression analyses 

were used to determine whether the prognostic model 

was an independent risk factor. We then used the 

independent risk factors to establish the nomogram and 

calibration curves by the “rms” package in R language. 

The accuracy was examined by checking the 

consistency index between actual and predicted 

probability. Next, we showed the predicted and 

observed results in the calibration curve to visualize the 

performance of the nomogram, and the 45° line 

represented the best prediction. The prognostic 

evaluation of nomogram was then performed with 

Kaplan–Meier survival analysis and the area under the 

tdROC curve (AUC). Finally, we measured Harrel's 

concordance index (C-index) to validate the predictive 

capability of the nomogram [17].  

 

In vitro validation of hub genes  

 

Proteins were extracted and western blot was 

performed as previous described [18]. Total RNA was 

extracted using TRIzol reagent (Tiangen, China). 

cDNAs were reverse transcribed into mRNA through 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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PrimeScript RT-polymerase (Vazyme). qRT-PCR was 

carried out by using SYBR-Green Premix (Vazyme) 

with specific PCR primers (ThermoFisher, USA), with 

Glyceraldehyde-3-phosphate dehydrogenase as an 

internal reference. The gene expression level was 

analyzed using the 2−ΔΔCt method. All steps of  

qRT-PCR follow the instructions. 

RESULTS 
 

Differentially expressed HRGs in patients with 

LUAD 

 

The design of the study was shown in Figure 1. First, 

we extracted the expression of HRGs from the TCGA 

 

 
 

Figure 1. The flow chart of the study design. 
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database. These HRGs were performed with 

differentially expressed analysis, and 166 differentially 

expressed HRGs were obtained, including 9 down-  

regulated and 157 up-regulated genes (Figure 2A, 2B). 

During enrichment analyses for these DE-HRGs, these 

genes were mainly found to play a role in “chromosome 

segregation”, “nuclear chromosome segregation”, 

“sister chromatid segregation”, and “mitotic nuclear 

division” for GO enrichment, and “Cell cycle”, “DNA 

replication”, and “p53 signaling pathway” as shown in 

Kyoto Encyclopedia of Genes and Genomes (KEGG, 

Figure 2C, 2D). The above findings suggested that 

these DE-HRGs were strongly associated with the 

development, progression and proliferation of LUAD 

cells. 

 

Establishment of a 12 HRGs-based prognostic 

signature 

 

For screening out the DE-HRGs with potentially 

prognostic value for LUAD patients, LASSO 

regression was used. LASSO analyses identified 12 

genes significantly associated with prognosis: 

IGFBP3, DDIT4, PHLDA2, RRAS, WDR4, EXO1, 

ECT2, TYMS, CDC25C, PLK1, FERMT1, and 

PCSK9. (Figure 3A, 3B). According to the results of 

LASSO regression analysis, we used the coefficients 

(Table 1) to construct the prognostic model as 

following: risk score = (CDC25C × 0.37358) + 

(DDIT4 × 0.34287) + (ECT2 × 0.12761) +  

(EXO1 × 0.29731) + (FERMT1 × 0.89012) + (IGFBP3 

× 0.29168) + (PCSK9 × 0.52722) + (PHLDA2 × 

0.40304) + (PLK1 × 0.91384) + (RRAS × 0.43750) + 

(TYMS × 0.49112) + (WDR4 × 0.26711). Patients 

were ranked in ascending order by score and divided 

into high- and low-risk subgroups using median risk 

values as a reference. Besides, the expression of the 12 

genes in low- and high-risk patients in the TCGA 

dataset was also demonstrated in the heatmap. The 

expression profiles of the 12 prognostic DE-HRGs 

showed that all of the 12 genes were expressed at 

higher levels in the high-risk subgroup. We also found 

significant differences between the high- and low-risk 

groups associated with tumor status, stage, stage_T, 

stage_N, stage_M, gender, and living status (Figure 

3C). We further analyzed the relationship between the 

12 genes. We found that they were significantly 

relevant, especially between EXO1 and PLK1, ECT2 

and PLK1, IGFBP3 and CDC25C, TYMS and 

CDC25C (Figure 3D). Furthermore, we analyzed the

 

 
 

Figure 2. Expression of genes and function enrichment. (A) Volcano plot and (B) heatmap showing the DEGs between LUAD and 

normal lung samples. Red dots represent up-regulated and green dots represent down-regulated DEGs, black dots represent no difference, 
respectively (log FC >1, P < 0.05). (C) GO analysis showing the differentially expressed hypoxia-related genes. (D) The significantly enriched 
pathways of the DEGs determined by KEGG analysis. Abbreviations: GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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gene expression of the 12 genes in different tissues 

types. We found that expression levels of PCSK9 and 

RRAS were significantly higher in normal tissue, and 

the rest 10 genes were overexpressed in tumor tissues 

(Figure 3E). 

Efficiency of predicting the patients’ outcomes with 

the 12 HRGs signature 

 

The individual risk score and survival status was shown 

on the dot plot, with significantly different OS between 

 

 
 

Figure 3. Ten-fold cross-validation for tuning parameter selection and a gene expression. (A) Plots of the ten-fold  

cross-validation error rates. (B) LASSO coefficient profiles of the twelve hypoxia-related genes. (C) Relationship between the risk score and 
clinical significance. (***P-value < 0.001, **P-value < 0.01, and *P-value < 0.05). (D) Associations between the 12 genes. (E) The expression of 
the 12 genes in different types of tissues. 
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Table 1. Twelve hypoxia-associated genes and corresponding coefficient value. 

Hypoxia associated gene Coefficient 

IGFBP3 0. 29168 

DDIT4 0. 34287 

PHLDA2 0. 40304 

RRAS 0. 43750 

WDR4 0. 26711 

EXO1 0. 29731 

ECT2 0. 12761 

TYMS 0. 49112 

CDC25C 0.37358 

PLK1 0. 91384 

FERMT1 0. 89012 

PCSK9 0. 52722 

Risk score  
Low: < 1.66 

High: ≥ 1.66 

 

two groups (Figure 4A, 4B). As indicated by Kaplan-

Meier curve, the higher-risk group has significantly 

shorter OS than the low-risk group (P = 2.437e−07) 

(Figure 4C). The area under the ROC curve (AUC) of 

the prognostic HRGs model for 1-, 3-, 5-year OS was 

0.695, 0.718, and 0.702, respectively (Figure 4D). 

GSEA analysis showed that the high-risk samples were 

mainly enriched in pathways of apoptosis, cholesterol

 

 
 

Figure 4. Correlation between the risk score and overall survival. (A, B) Distribution of risk score and patient survival status 

of LUAD. (C) The Kaplan–Meier curve demonstrates that patients in the high-risk group have a poorer prognosis. (D) Time-
dependent ROC curve of 1-, 3-, and 5-year analysis for survival prediction by the risk score. (E) Hallmark analysis of Gene Set 
Enrichment Analysis (GSEA) in high-risk and low-risk groups. 
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homeostasis, and EMT; while the low-risk samples 

were mainly in PI3K-AKT-mTOR, Notch, and 

mTORC1 signaling pathways (Figure 4E). 

 

Construction and validation of nomogram for OS 

prediction 

 

To supply a better quantitative approach to predict the 

prognosis of cancer patients, a prognostic nomogram 

was built by integrating the all independent OS risk 

score and other clinicopathological risk factors. Cox 

regression analysis (Univariate and multivariate) was 

performed using clinicopathological and HRGs features 

for the OS of LUAD prediction. Recurrence, stage, 

tumor status, and risk signature were all taken as the 

independent risk factors of OS (Figure 5A), and they 

were used to establish OS nomogram (Figure 5B). The 

predicted value was consistent with the actual 1-, 3-, 

 

 
 

Figure 5. Nomogram to predict the probability of patients with LUAD. (A) Univariate and multivariate regression analyses of the 
prognostic value of clinicopathological features. (B) The nomogram to predict 1-, 3-, or 5-year OS in the LUAD patients. (C) The calibration 
plots for predicting patient 1-, 3-, or 5-year OS. (D) The Kaplan–Meier curves represent the survival probability of low, moderate, and high 
score group patients based on the nomogram. (E) The ROC curves of the nomogram of 1-, 3-, and 5-year survival. 
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Table 2. Corresponding risk score for each variable and total score. 

Variables  Category  Score  

Recurrence  
Recurrence  0 

Recurrence free 60 

Stage  

I 0 

II 50 

III 70 

IV  100 

Tumor status  
Tumor free  0 

With tumor  35 

Risk signature  
Low  0 

High  75  

Total score  

Low risk 0–50 

Moderate risk 60–125 

High risk ≥130 

 

and 5-year OS time, as displayed the nomogram 

(Figure 5C). The score details of different factors were 

shown in Table 2. The C-index of the model was 0.75 

(95% CI: 0.68–0.82). Based on the risk scores from the 

nomogram, the cohort was evenly divided into 3 

subgroups (low-, moderate-e, and high-score groups), in 

which the high-score group had a worse OS than the 

moderate- and low-score groups (Figure 5D). The AUC 

of 1-, 3-, 5-year OS was 0.774, 0.796, and 0.811, 

respectively, which represent the predictive abilities of 

the nomogram (Figure 5E), suggesting that the 

nomogram had a high accuracy in predicting OS. 

 

Verification of 12 genes for prognostic prediction 

 

The correlations between each gene from the prognostic 

model and the patients’ clinical OS were also measured. 

Patients were divided into two cohorts according to 

median value of each gene. The results indicated that 

eleven of the twelve genes, except RRAS, were shown 

to be significantly associated with patient prognosis 

(Figure 6A–ؘ6L).  

 

Expression of the 12 genes in database and in vitro  

 

We validated the expression of 12 genes in two GEO 

datasets, including GSE19188 and GSE 10072, by 

comparing the content between normal tissues and 

tumor tissues. The results were corresponding with that 

in TCGA datasets. Only PCSK9 and RRAS were 

overexpressed in normal tissues, and the rest of ten 

genes were higher in tumor tissues (Figure 7A, 7B). We 

then examined the correlation between the EXO1 and 

clinicopathological characteristics of the LUAD patients 

in TCGA. The analysis showed that EXO1 was 

statistically different in worse outcomes such as 

recurrence (Figure 7C), living with tumor (Figure 7D), 

and higher stage (Figure 7E). We performed the qPCR 

and western blot (WB) validation in clinical specimens 

following the steps described above. We verified the 

expression of EXO1 in the LUAD tissues and their 

adjacent normal tissues. By analysis, the qPCR results 

showed EXO1 was significantly up-regulated in the 

LUAD tissues, while down-regulated in normal LUAD 

tissues (Figure 7F). Results of WB indicated similar 

phenomenon (Figure 7G). These results suggested that 

EXO1 may play a pivotal role in the progression of 

LUAD.  

 

DISCUSSION 
 

LUAD has become a major global health concern and 

the leading cause of cancer-associated mortality [19]. 

Although there has been more information about LUAD 

prognostic and predictive signatures, developing 

individualized treatments and prediction outcome is still 

challenging. Hypoxia is a common feature of most solid 

tumors, and it has widespread effects on metabolism, 

angiogenesis, and metastasis [20]. hypoxia induces a 

HIF1A-dependent complex molecular response [21]. 

Crosstalk between hypoxia and cancer-related 

hallmarks/pathways causes hypoxia-derived aggressive 

phenotypes and therapeutic resistance, which can be 

used as biomarkers to predict the clinical outcomes of 

LUAD patients at stage I [22]. Since hypoxia is a 

crucial factor in cancer progression, it is necessary 

looking for hypoxia-related biomarkers to predict the 

prognosis and promote the immune therapy of LUAD 

patients [23]. As more information about genomic 

changes of LUAD becomes available, some prognostic 

and predictive signatures were discovered and this is 
helpful for personalized therapy. In this study, a novel 

12-gene prognostic signature was validated, which can 

be used to identify high-risk LUAD patients with poor 
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prognosis. What’s more, the content of these 12 genes 

was also validated with two GEO datasets. Further 

study indicated that EXO1 is significantly up-regulated 

in worse clinicopathological features including 

recurrence, living with tumor, and higher stage. We also 

validated the expression of EXO1 with our own samples 

in RNA and protein levels.  

 

Previous studies have identified many molecular 

signatures that classify patients into different prognostic 

groups. Cheng identified a prognostic gene signature 

associated with microenvironment in LAUD, and the  

3-year area under the ROC curves (AUC) of the risk 

model reached to 0.738 [24]. Another study established 

an immune-related signature that could predict prognosis 

and reflect the tumor immune microenvironment of 

LUAD patients. The risk model promoted individualized 

treatment and provided potential novel targets for 

immunotherapy of LUAD patients [25]. Similarly, we 

also built the predictor based on 12 HRGs and the model 

performed well with much more higher AUC of ROC 

than other studies [26, 27]. 

 

Hypoxia is often caused by a supply-demand imbalance 

of nutrient in the tumor microenvironment. Although 

the incidence and severity of hypoxia in a given patient 

population is variable, it is a feature of the physiology 

of most tumors and is particularly involved in 

mechanisms related to certain malignant features (e.g., 

metastasis and invasion) [28–30]. Hypoxia-related 

genes are usually involved in the corresponding 

pathways or regulating apoptosis of these processes 

[31]. Taken together, tumor hypoxia might be taken as 

the best target. Extensive reports have demonstrated that 

the hypoxic microenvironment is a main factor 

regulating the progression and metastasis of solid 

tumors (including lung cancer) [32, 33]. Under hypoxic 

conditions, cancer cells secrete angiogenic factors to 

promote the abnormal angiogenesis. In addition, 

hypoxia causes cancer cells to be insensitive to

 

 

 

 
Figure 6. Prognostic significance of low and high expression of each of the 12 genes. (A) FERMT1. (B) IGFBP3. (C) PCSK. 

(D) PHLDA2. (E) WRD4. (F) TYMS. (G) RRAS. (H) PLK1. (I) EXO1. (J) ECT2. (K) CDC25C. (L) DDIT4. 
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chemotherapy or radiotherapy by increasing the 

malignancy of the tumor and the ability of invasion and 

metastasis of cancer cells [34]. Thus, the hypoxic 

microenvironment is an important factor for patients 

with LUAD. Hypoxia-inducible factor 1 (HIF-1) is  

a major regulator of the hypoxic response, its function 

has been well characterized [35]. YTHDF1, an  

m6A-modified mRNA-binding protein, is a high-altitude 

adaptation gene that was positively selected during 

evolution and participates in both hypoxic adaptation 

and the pathogenesis of LUAD [36]. 

 

In the correlative analysis, EXO1 is found to be 

associated with TYMS, CDC25C, and PLK1, which is 

the most correlative genes. What’s more, the logFC of 

EXO1 is 3.9, ranking the highest in cancer progression 

genes. Therefore we take EXO1 as our target. The 

function of EXO1 is mainly involved in mismatch 

repair and recombination. In our study, we identified 

EXO1 played a key role in the progression of LUAD 

patients. EXO1 was involved in tumor mutational 

burden (TMB) and its clinical significance in prostate 

cancer [37]. Elevated expression of EXO1 is associated 

with carcinogenesis and poor prognosis in breast cancer, 

and might act as a biomarker for breast cancer treatment 

[38]. EXO1 inhibited the activity of cancer progression 

through PARP pathway. It acted as a novel therapeutic 

target that serves important roles in DNA damage 

response. A recent study investigating the prognostic 

value of TP53-associated immune genes in 

hepatocellular cancer identified and validated a two-

gene (TREM1 and EXO1) prognostic model [39]. 

 

 
 

Figure 7. Expression of the 12 genes in database and in vitro validation of EXO1. (A) Gene expression in GSE19188 and (B) 

GSE10072. Expression of EXO1 in different (C) recurrence subgroups, (D) tumor status, and (E) stages. (F) Relative expression of EXO1 in 
tumor and normal tissues of 5 patients in our center for RNA level. (G) Protein level of EXO1 in patients in our center, and barplot shows its 
relative expression. N represents normal tissue, and T for tumor tissues. 
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Exonuclease 1 (EXO1) interacted with mutator S 

homolog 2 (MSH2) to regulate the mismatch repair and 

recombination [40]. The EXO1expression was up-

regulated in tumor tissue [41]. It was reported that EXO1 

works as a guardian of our genome to reduce cancer 

progression by inducing DNA damage checkpoints and 

DNA damage repair [42]. EXO1 is also reported as a 

potential prognostic biomarker for LUAD, and it is 

related to the infiltrating levels of immune cells. In this 

study, EXO1 has higher expression level in LUAD than 

that in the para-cancerous tissues from public databases 

(p < 0.01). Survival analysis demonstrated the correlation 

between high EXO1 expression with poor LUAD 

prognosis (p < 0.01). Additionally, in vitro results 

showed that downregulation of EXO1 inhibited the 

migratory ability of lung cancer cells.  
 

To further understand the molecular function and 

pathway of these HRGs and risk model, we conducted 

functional enrichment analysis of GO, KEGG pathways, 

and GSEA. By performing KEGG enrichment analysis, 

these hypoxia-related genes were enriched in several 

pathways in cancers, including “p53 signaling pathway”, 

“cell cycle”, and “DNA replication”. Similarly, according 

to GO analysis, the DEGs also mainly clustered in “DNA 

replication” and other cell cycle-related function. In 

recent years, knowledge of the hypoxia features of 

LUAD has increased, and the development of effective 

immunotherapeutic strategies for LUAD has attracted 

much attention. The role of hypoxia functions by 

regulating the tumor microenvironment in LUAD 

therapy, especially through expression and activity of cell 

cycle related proteins [43, 44].  
 

GSEA revealed that the risk model was differentially 

enriched in apoptosis, epithelial mesenchymal 

transition, fatty acid metabolism, glycolysis, Notch 

signaling pathway, and PI3K-AKT-mTOR signaling 

pathway. The activation of the Notch and PI3K-AKT-

mTOR signaling pathway is a critical event which 

frequently occur during LUAD development, and these 

signaling pathways are uncovered clinically relevant to 

hypoxia, making it a therapeutic target for the therapy 

of LUAD [45, 46]. The fatty acid metabolism is 

important for cell growth and apoptotic regulation, 

making it also a potential molecular target for cancer 

treatment and prevention [47, 48]. Our findings 

suggested that these 12-gene signature may be 

involved in the oncogenesis and progression of LUAD. 
  

Our study has some limitations. First, analysis on the 

transcriptional level can reflect some aspects of 

patients’ status, but not global changes. Moreover, 

another independent cohort and in vitro or in vivo 

functional studies should be performed to validate our 

results. Finally, mechanism validation and external 

validation of the patients are in need for the risk model 

in our study.  

 

CONCLUSION 
 

In general, we present and validate a robust prognostic 

model aggregating 12 signature genes based on hypoxia 

pathway that can be used to efficiently predict LUAD 

patient prognosis. However, the clinical role as well as 

the biological function of these 12 mRNAs needs to be 

further verified with more experiments, especially for 

EXO1, which had potential to become a therapeutic 

target for LUAD patients. 

 

Abbreviations 
 

TCGA: The Cancer Genome Atlas; LUAD: lung 

adenocarcinoma; LASSO: Least Absolute Shrinkage and 

Selection Operator; GO: gene ontology; GSEA: gene set 

enrichment analysis; OS: overall survival; HRGs: 

hypoxia-related genes; MSigDB: Molecular Signatures 

Database; KEGG: Encyclopedia of Genes and Genomes; 

ROC: Receiver operating characteristic; AUC: area under 

the ROC curve; C-index: concordance index. 

 

AUTHOR CONTRIBUTIONS 
 
Conceptualization: Qirui Chen; Data curation: Shuo 

Chen; Formal analysis: Jing Wang; Investigation: Yan 

Zhao; Methodology: Xin Ye; Resources: Yili Fu; 

Validation: Qirui Chen; Writing-original draft: Shuo 

Chen; Writing-review and editing: Shuo Chen and Yi Liu. 

The authors are accountable for all aspects of the work 

in ensuring that questions related to the accuracy or 

integrity of any part of the work are appropriately 

investigated and resolved. 

 

ACKNOWLEDGMENTS 
 
All authors have read and approved submission of the 

manuscript.The authors thank TCGA and GEO for 

sharing the melanoma data. 

 

CONFLICTS OF INTEREST 
 
There authors declare no conflict of interest in relation 

to the submission. 

 

FUNDING 
 
This work was supported by the funding by Reform and 

Development Program of Beijing Institute of Respiratory 

Medicine (YSRH2022015) and Capital’s Funds for 

Health Improvement and Research (2022-4-1064). 



www.aging-us.com 2304 AGING 

Editorial note 
 
&This corresponding author has a verified history of 

publications using a personal email address for 

correspondence. 

 

REFERENCES 
 
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 

Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 
36 cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 
https://doi.org/10.3322/caac.21492 
PMID:30207593 

2. Matsuda T, Machii R. Morphological distribution of 
lung cancer from Cancer Incidence in Five Continents 
Vol. X. Jpn J Clin Oncol. 2015; 45:404. 
https://doi.org/10.1093/jjco/hyv041 
PMID:25821232 

3. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, 
Fotiadis DI. Machine learning applications in cancer 
prognosis and prediction. Comput Struct Biotechnol J. 
2014; 13:8–17. 
https://doi.org/10.1016/j.csbj.2014.11.005 
PMID:25750696 

4. Lockwood WW, Wilson IM, Coe BP, Chari R, Pikor LA, 
Thu KL, Solis LM, Nunez MI, Behrens C, Yee J, English 
J, Murray N, Tsao MS, et al. Divergent genomic and 
epigenomic landscapes of lung cancer subtypes 
underscore the selection of different oncogenic 
pathways during tumor development. PLoS One. 
2012; 7:e37775. 
https://doi.org/10.1371/journal.pone.0037775 
PMID:22629454 

5. Wang W, Ren S, Wang Z, Zhang C, Huang J. Increased 
expression of TTC21A in lung adenocarcinoma infers 
favorable prognosis and high immune infiltrating 
level. Int Immunopharmacol. 2020; 78:106077. 
https://doi.org/10.1016/j.intimp.2019.106077 
PMID:31812070 

6. Dong HX, Wang R, Jin XY, Zeng J, Pan J. LncRNA 
DGCR5 promotes lung adenocarcinoma (LUAD) 
progression via inhibiting hsa-mir-22-3p. J Cell 
Physiol. 2018; 233:4126–36. 
https://doi.org/10.1002/jcp.26215 
PMID:29030962 

7. Liang J, Li H, Han J, Jiang J, Wang J, Li Y, Feng Z, Zhao 
R, Sun Z, Lv B, Tian H. Mex3a interacts with LAMA2 to 
promote lung adenocarcinoma metastasis via 
PI3K/AKT pathway. Cell Death Dis. 2020; 11:614. 
https://doi.org/10.1038/s41419-020-02858-3 
PMID:32792503 

8. Multhoff G, Vaupel P. Hypoxia Compromises Anti-
Cancer Immune Responses. Adv Exp Med Biol. 2020; 
1232:131–43. 
https://doi.org/10.1007/978-3-030-34461-0_18 
PMID:31893404 

 9. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. 
A mechanism of hypoxia-mediated escape from 
adaptive immunity in cancer cells. Cancer Res. 2014; 
74:665–74. 
https://doi.org/10.1158/0008-5472.CAN-13-0992 
PMID:24336068 

10. Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, 
West CML, O'Connor JPB, Faivre-Finn C. Targeting 
Hypoxia to Improve Non-Small Cell Lung Cancer 
Outcome. J Natl Cancer Inst. 2018; 110:14–30. 
https://doi.org/10.1093/jnci/djx160 
PMID:28922791 

11. Zhang B, Tang B, Gao J, Li J, Kong L, Qin L. A hypoxia-
related signature for clinically predicting diagnosis, 
prognosis and immune microenvironment of 
hepatocellular carcinoma patients. J Transl Med. 
2020; 18:342. 
https://doi.org/10.1186/s12967-020-02492-9 
PMID:32887635 

12. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 
https://doi.org/10.1093/nar/gkv007 
PMID:25605792 

13. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, 
Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, 
Harris MA, Hill DP, Issel-Tarver L, et al. Gene 
ontology: tool for the unification of biology. The Gene 
Ontology Consortium. Nat Genet. 2000; 25:25–9. 
https://doi.org/10.1038/75556 
PMID:10802651 

14. Kanehisa M, Furumichi M, Tanabe M, Sato Y, 
Morishima K. KEGG: new perspectives on genomes, 
pathways, diseases and drugs. Nucleic Acids Res. 
2017; 45:D353–61. 
https://doi.org/10.1093/nar/gkw1092 
PMID:27899662 

15. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc 
Natl Acad Sci U S A. 2005; 102:15545–50. 
https://doi.org/10.1073/pnas.0506580102 
PMID:16199517 

16. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, 

https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.1093/jjco/hyv041
https://pubmed.ncbi.nlm.nih.gov/25821232
https://doi.org/10.1016/j.csbj.2014.11.005
https://pubmed.ncbi.nlm.nih.gov/25750696
https://doi.org/10.1371/journal.pone.0037775
https://pubmed.ncbi.nlm.nih.gov/22629454
https://doi.org/10.1016/j.intimp.2019.106077
https://pubmed.ncbi.nlm.nih.gov/31812070
https://doi.org/10.1002/jcp.26215
https://pubmed.ncbi.nlm.nih.gov/29030962
https://doi.org/10.1038/s41419-020-02858-3
https://pubmed.ncbi.nlm.nih.gov/32792503
https://doi.org/10.1007/978-3-030-34461-0_18
https://pubmed.ncbi.nlm.nih.gov/31893404
https://doi.org/10.1158/0008-5472.CAN-13-0992
https://pubmed.ncbi.nlm.nih.gov/24336068
https://doi.org/10.1093/jnci/djx160
https://pubmed.ncbi.nlm.nih.gov/28922791
https://doi.org/10.1186/s12967-020-02492-9
https://pubmed.ncbi.nlm.nih.gov/32887635
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1038/75556
https://pubmed.ncbi.nlm.nih.gov/10802651
https://doi.org/10.1093/nar/gkw1092
https://pubmed.ncbi.nlm.nih.gov/27899662
https://doi.org/10.1073/pnas.0506580102
https://pubmed.ncbi.nlm.nih.gov/16199517


www.aging-us.com 2305 AGING 

Mesirov JP, Tamayo P. The Molecular Signatures 
Database (MSigDB) hallmark gene set collection. Cell 
Syst. 2015; 1:417–25. 
https://doi.org/10.1016/j.cels.2015.12.004 
PMID:26771021 

17. Royston P, Altman DG. External validation of a Cox 
prognostic model: principles and methods. BMC Med 
Res Methodol. 2013; 13:33. 
https://doi.org/10.1186/1471-2288-13-33 
PMID:23496923 

18. Wang Y, Zeng L, Liang C, Zan R, Ji W, Zhang Z, Wei Y, 
Tu S, Dong Y. Integrated analysis of transcriptome-
wide m6A methylome of osteosarcoma stem cells 
enriched by chemotherapy. Epigenomics. 2019; 
11:1693–715. 
https://doi.org/10.2217/epi-2019-0262 
PMID:31650864 

19. Shen BJ, Lo WC, Lin HH. Global burden of tuberculosis 
attributable to cancer in 2019: Global, regional, and 
national estimates. J Microbiol Immunol Infect. 2022; 
55:266–72. 
https://doi.org/10.1016/j.jmii.2021.02.005 
PMID:33789827 

20. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the 
extracellular matrix: drivers of tumour metastasis. 
Nat Rev Cancer. 2014; 14:430–9. 
https://doi.org/10.1038/nrc3726 
PMID:24827502 

21. Majmundar AJ, Wong WJ, Simon MC.  
Hypoxia-inducible factors and the response to 
hypoxic stress. Mol Cell. 2010; 40:294–309. 
https://doi.org/10.1016/j.molcel.2010.09.022 
PMID:20965423 

22. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia 
and cancer. J Mol Med (Berl). 2007; 85:1301–7. 
https://doi.org/10.1007/s00109-007-0281-3 
PMID:18026916 

23. Islam SMT, Won J, Khan M, Mannie MD, Singh I. 
Hypoxia-inducible factor-1 drives divergent 
immunomodulatory functions in the pathogenesis of 
autoimmune diseases. Immunology. 2021;  
164:31–42. 
https://doi.org/10.1111/imm.13335 
PMID:33813735 

24. Yue C, Ma H, Zhou Y. Identification of prognostic gene 
signature associated with microenvironment of lung 
adenocarcinoma. PeerJ. 2019; 7:e8128. 
https://doi.org/10.7717/peerj.8128 
PMID:31803536 

25. Song Q, Shang J, Yang Z, Zhang L, Zhang C, Chen J, Wu 
X. Identification of an immune signature predicting 
prognosis risk of patients in lung adenocarcinoma.  

J Transl Med. 2019; 17:70. 
https://doi.org/10.1186/s12967-019-1824-4 
PMID:30832680 

26. Wu X, Zhu J, Liu W, Jin M, Xiong M, Hu K. A Novel 
Prognostic and Predictive Signature for Lung 
Adenocarcinoma Derived from Combined Hypoxia 
and Infiltrating Immune Cell-Related Genes in TCGA 
Patients. Int J Gen Med. 2021; 14:10467–81. 
https://doi.org/10.2147/IJGM.S342107 
PMID:35002303 

27. Ouyang W, Jiang Y, Bu S, Tang T, Huang L, Chen M, Tan 
Y, Ou Q, Mao L, Mai Y, Yao H, Yu Y, Lin X. A Prognostic 
Risk Score Based on Hypoxia-, Immunity-, and 
Epithelialto-Mesenchymal Transition-Related Genes for 
the Prognosis and Immunotherapy Response of Lung 
Adenocarcinoma. Front Cell Dev Biol. 2022; 9:758777. 
https://doi.org/10.3389/fcell.2021.758777 
PMID:35141229 

28. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. 
Science. 2016; 352:175–80. 
https://doi.org/10.1126/science.aaf4405 
PMID:27124451 

29. Cheng JC, Klausen C, Leung PC. Hypoxia-inducible 
factor 1 alpha mediates epidermal growth  
factor-induced down-regulation of E-cadherin 
expression and cell invasion in human ovarian cancer 
cells. Cancer Lett. 2013; 329:197–206. 
https://doi.org/10.1016/j.canlet.2012.10.029 
PMID:23142284 

30. Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei 
H, Takano N, Schito L, Levchenko A, Semenza GL, and 
Kshitiz. Hypoxia-inducible factor-dependent breast 
cancer-mesenchymal stem cell bidirectional signaling 
promotes metastasis. J Clin Invest. 2013; 123:189–205. 
https://doi.org/10.1172/JCI64993 
PMID:23318994 

31. Matsuura K, Canfield K, Feng W, Kurokawa M. 
Metabolic Regulation of Apoptosis in Cancer. Int Rev 
Cell Mol Biol. 2016; 327:43–87. 
https://doi.org/10.1016/bs.ircmb.2016.06.006 
PMID:27692180 

32. Tirpe AA, Gulei D, Ciortea SM, Crivii C,  
Berindan-Neagoe I. Hypoxia: Overview on Hypoxia-
Mediated Mechanisms with a Focus on the Role of 
HIF Genes. Int J Mol Sci. 2019; 20:6140. 
https://doi.org/10.3390/ijms20246140 
PMID:31817513 

33. Parks SK, Cormerais Y, Pouysségur J. Hypoxia and 
cellular metabolism in tumour pathophysiology. J 
Physiol. 2017; 595:2439–50. 
https://doi.org/10.1113/JP273309 
PMID:28074546 

https://doi.org/10.1016/j.cels.2015.12.004
https://pubmed.ncbi.nlm.nih.gov/26771021
https://doi.org/10.1186/1471-2288-13-33
https://pubmed.ncbi.nlm.nih.gov/23496923
https://doi.org/10.2217/epi-2019-0262
https://pubmed.ncbi.nlm.nih.gov/31650864
https://doi.org/10.1016/j.jmii.2021.02.005
https://pubmed.ncbi.nlm.nih.gov/33789827
https://doi.org/10.1038/nrc3726
https://pubmed.ncbi.nlm.nih.gov/24827502
https://doi.org/10.1016/j.molcel.2010.09.022
https://pubmed.ncbi.nlm.nih.gov/20965423
https://doi.org/10.1007/s00109-007-0281-3
https://pubmed.ncbi.nlm.nih.gov/18026916
https://doi.org/10.1111/imm.13335
https://pubmed.ncbi.nlm.nih.gov/33813735
https://doi.org/10.7717/peerj.8128
https://pubmed.ncbi.nlm.nih.gov/31803536
https://doi.org/10.1186/s12967-019-1824-4
https://pubmed.ncbi.nlm.nih.gov/30832680
https://doi.org/10.2147/IJGM.S342107
https://pubmed.ncbi.nlm.nih.gov/35002303
https://doi.org/10.3389/fcell.2021.758777
https://pubmed.ncbi.nlm.nih.gov/35141229
https://doi.org/10.1126/science.aaf4405
https://pubmed.ncbi.nlm.nih.gov/27124451
https://doi.org/10.1016/j.canlet.2012.10.029
https://pubmed.ncbi.nlm.nih.gov/23142284
https://doi.org/10.1172/JCI64993
https://pubmed.ncbi.nlm.nih.gov/23318994
https://doi.org/10.1016/bs.ircmb.2016.06.006
https://pubmed.ncbi.nlm.nih.gov/27692180
https://doi.org/10.3390/ijms20246140
https://pubmed.ncbi.nlm.nih.gov/31817513
https://doi.org/10.1113/JP273309
https://pubmed.ncbi.nlm.nih.gov/28074546


www.aging-us.com 2306 AGING 

34. Meng W, Hao Y, He C, Li L, Zhu G.  
Exosome-orchestrated hypoxic tumor 
microenvironment. Mol Cancer. 2019; 18:57. 
https://doi.org/10.1186/s12943-019-0982-6 
PMID:30925935 

35. Li L, Yang L, Fan Z, Xue W, Shen Z, Yuan Y, Sun X, 
Wang D, Lian J, Wang L, Zhao J, Zhang Y.  
Hypoxia-induced GBE1 expression promotes tumor 
progression through metabolic reprogramming in 
lung adenocarcinoma. Signal Transduct Target Ther. 
2020; 5:54. 
https://doi.org/10.1038/s41392-020-0152-8 
PMID:32439898 

36. Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, Shen Q, Xu P, 
Zeng L, Zhou Y, Huang Y, Yang Z, Zhou J, et al. YTHDF1 
links hypoxia adaptation and non-small cell lung 
cancer progression. Nat Commun. 2019; 10:4892. 
https://doi.org/10.1038/s41467-019-12801-6 
PMID:31653849 

37. Wang L, Pan S, Zhu B, Yu Z, Wang W. Comprehensive 
analysis of tumour mutational burden and its clinical 
significance in prostate cancer. BMC Urol. 2021; 
21:29. 
https://doi.org/10.1186/s12894-021-00795-7 
PMID:33632199 

38. Zhou CS, Feng MT, Chen X, Gao Y, Chen L, Li LD, Li DH, 
Cao YQ. Exonuclease 1 (EXO1) is a Potential 
Prognostic Biomarker and Correlates with Immune 
Infiltrates in Lung Adenocarcinoma. Onco Targets 
Ther. 2021; 14:1033–48. 
https://doi.org/10.2147/OTT.S286274 
PMID:33623391 

39. Long J, Wang A, Bai Y, Lin J, Yang X, Wang D, Yang X, 
Jiang Y, Zhao H. Development and validation of a 
TP53-associated immune prognostic model for 
hepatocellular carcinoma. EBioMedicine. 2019; 
42:363–74. 
https://doi.org/10.1016/j.ebiom.2019.03.022 
PMID:30885723 

40. Tran PT, Erdeniz N, Symington LS, Liskay RM. EXO1-A 
multi-tasking eukaryotic nuclease. DNA Repair (Amst). 
2004; 3:1549–59. 
https://doi.org/10.1016/j.dnarep.2004.05.015 
PMID:15474417 

41. Zheng G, Zhang C, Zhong C. Identification of potential 
prognostic biomarkers for breast cancer using 
WGCNA and PPI integrated techniques. Ann Diagn 
Pathol. 2021; 50:151675. 
https://doi.org/10.1016/j.anndiagpath.2020.151675 
PMID:33291061 

42. Sperka T, Wang J, Rudolph KL. DNA damage 
checkpoints in stem cells, ageing and cancer. Nat Rev 
Mol Cell Biol. 2012; 13:579–90. 
https://doi.org/10.1038/nrm3420 
PMID:22914294 

43. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, 
Holcombe RF, Mahajna J, Marino M,  
Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, 
Sharma D, Saxena NK, Singh N, et al. Sustained 
proliferation in cancer: Mechanisms and novel 
therapeutic targets. Semin Cancer Biol. 2015 (Suppl); 
35:S25–54. 
https://doi.org/10.1016/j.semcancer.2015.02.006 
PMID:25892662 

44. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y. 
Role of hypoxia in cancer therapy by regulating the 
tumor microenvironment. Mol Cancer. 2019; 18:157. 
https://doi.org/10.1186/s12943-019-1089-9 
PMID:31711497 

45. Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, 
Basom R, Liggitt D, Eaton KD, Martins R, Poirier JT, 
Rudin CM, Milletti F, Cheng WY, et al. Targeting 
NOTCH activation in small cell lung cancer through 
LSD1 inhibition. Sci Signal. 2019; 12:eaau2922. 
https://doi.org/10.1126/scisignal.aau2922 
PMID:30723171 

46. Tan AC. Targeting the PI3K/Akt/mTOR pathway in 
non-small cell lung cancer (NSCLC). Thorac Cancer. 
2020; 11:511–8. 
https://doi.org/10.1111/1759-7714.13328 
PMID:31989769 

47. Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L, Liu J, Huang G. 
LINC01123, a c-Myc-activated long non-coding RNA, 
promotes proliferation and aerobic glycolysis of  
non-small cell lung cancer through miR-199a-5p/c-
Myc axis. J Hematol Oncol. 2019; 12:91. 
https://doi.org/10.1186/s13045-019-0773-y 
PMID:31488218 

48. Niu J, Sun Y, Chen B, Zheng B, Jarugumilli GK, Walker 
SR, Hata AN, Mino-Kenudson M, Frank DA, Wu X. 
Fatty acids and cancer-amplified ZDHHC19 promote 
STAT3 activation through S-palmitoylation. Nature. 
2019; 573:139–43. 
https://doi.org/10.1038/s41586-019-1511-x 
PMID:31462771 

 

 

https://doi.org/10.1186/s12943-019-0982-6
https://pubmed.ncbi.nlm.nih.gov/30925935
https://doi.org/10.1038/s41392-020-0152-8
https://pubmed.ncbi.nlm.nih.gov/32439898
https://doi.org/10.1038/s41467-019-12801-6
https://pubmed.ncbi.nlm.nih.gov/31653849
https://doi.org/10.1186/s12894-021-00795-7
https://pubmed.ncbi.nlm.nih.gov/33632199
https://doi.org/10.2147/OTT.S286274
https://pubmed.ncbi.nlm.nih.gov/33623391
https://doi.org/10.1016/j.ebiom.2019.03.022
https://pubmed.ncbi.nlm.nih.gov/30885723
https://doi.org/10.1016/j.dnarep.2004.05.015
https://pubmed.ncbi.nlm.nih.gov/15474417
https://doi.org/10.1016/j.anndiagpath.2020.151675
https://pubmed.ncbi.nlm.nih.gov/33291061
https://doi.org/10.1038/nrm3420
https://pubmed.ncbi.nlm.nih.gov/22914294
https://doi.org/10.1016/j.semcancer.2015.02.006
https://pubmed.ncbi.nlm.nih.gov/25892662
https://doi.org/10.1186/s12943-019-1089-9
https://pubmed.ncbi.nlm.nih.gov/31711497
https://doi.org/10.1126/scisignal.aau2922
https://pubmed.ncbi.nlm.nih.gov/30723171
https://doi.org/10.1111/1759-7714.13328
https://pubmed.ncbi.nlm.nih.gov/31989769
https://doi.org/10.1186/s13045-019-0773-y
https://pubmed.ncbi.nlm.nih.gov/31488218
https://doi.org/10.1038/s41586-019-1511-x
https://pubmed.ncbi.nlm.nih.gov/31462771


www.aging-us.com 2307 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Characteristics of patients in TCGA LUAD dataset. 

Variables  Whole cohort 

Total number 504 

Age (year) 65.80 ± 13.5 

OS (day) 913.6 ± 729.3 

Living status   

Alive  322 (63.89%)  

Death  182 (36.11%)  

Gender   

Male  233 (46.23%)  

Female  271 (53.77%)  

Stage_T   

T1 327 (64.88%)  

T2 96 (19.05%)  

T3 69(13.69%)  

TX 12 (2.38%) 

Stage_M   

M0 338 (67.06%)  

M1 25 (4.96%)  

MX 141 (27.98%) 

Stage_N  

N0  327 (64.88%)  

N1  96 (19.05%)  

N2  71 (14.09%) 

NX  10 (1.98%) 

Stage   

Stage I 274 (54.36%)  

Stage II 122 (24.20%) 

Stage III 83 (16.47%) 

Stage IV 25 (4.97%)  

Recurrence   

No  320 (63.49%)  

Yes  184 (36.51%)  

Tumor status  

Tumor free  392 (77.78%)  

With tumor  112 (22.22%)  

Abbreviations: TCGA: The Cancer Genome Atlas; LUAD: Lung adenocarcinoma. 


