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INTRODUCTION 
 

Skin aging, a complex and unavoidable process among 

the elderly population, has attracted increasing attention 

around the world. It is mainly charactered by 

progressive dysfunction and decreased regenerative 

potentiality of skin layers [1], which appears as laxity, 

dryness and some facial exaggerated expression lines, 

xerosis [2]. Nowadays, with a high rate up to 13.7% of 

aged population in the world (https://population.un.org/), 

aging has been the principal consideration leading to the 

prevalence of skin aging and barrier dysfunction. 

However, another important exterior factor should also 
be taken into account, that is ultraviolet radiation 

(UVR) exposure, which mainly includes ultraviolet 

radiation A (UVA) (90–95%) and ultraviolet radiation B 
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ABSTRACT 
 

Increasing incidence of skin aging has highlighted the importance of identifying effective drugs with 
repurposed opportunities for skin aging. We aimed to identify pharmaco-active compounds with drug-
repurposing opportunities for skin aging from Angelica acutiloba (Siebold & Zucc.) Kitag. (AAK). The 
proximity of network medicine framework (NMF) firstly identified 8 key AAK compounds with repurposed 
opportunities for skin aging, which may exert by regulating 29 differentially expressed genes (DGEs) of skin 
aging, including 13 up-regulated targets and 16 down-regulated targets. Connectivity MAP (cMAP) analysis 
revealed 8 key compounds were involved in regulating the process of cell proliferation and apoptosis, 
mitochondrial energy metabolism and oxidative stress of skin aging. Molecular docking analysis showed 
that 8 key compounds had a high docked ability with AR, BCHE, HPGD and PI3, which were identified as 
specific biomarker for the diagnosis of skin aging. Finally, the mechanisms of these key compounds were 
predicted to be involved in inhibiting autophagy pathway and activating Phospholipase D signaling 
pathway. In conclusion, this study firstly elucidated the drug-repurposing opportunities of AAK compounds 
for skin aging, providing a theoretical reference for identifying repurposing drugs from Chinese medicine 
and new insights for our future research. 
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(UVB) (5–10%) [3]. UVR exposure could accelerate 

skin degradation and photoaging, leading to damage of 

skin appearance, physiological function, and even 

melanoma or non-melanoma skin cancer [4]. UVA and 

UVB exposure are considered to be the potent driver for 

photodamaged skin induced by oxidative stress injury 

and free radical damage [5]. The most popular approach 

in protecting the skin from UVR is the application of 

shading equipment (umbrellas, hats, long sleeved 

clothes etc.) and topical application of sunscreens. 

Although some oral and topical drugs with skin 

photoprotective effects were recommended, most of 

products still lack convincing protective functions, 

which unveiled the need and significance for the 

development and deployment of new drugs with 

potential effectiveness for skin aging. 

 

Network medicine framework (NMF) has been applied 

for unveiling the complex role between drugs and 

diseases by capturing the molecular interaction between 

drugs and their targets [6]. The proximity between the 

targets of compounds and diseases with human 

interactome is calculated to identify their potential 

rational drug repurposing [7–9]. It could enhance the 

confidence and accuracy of predictive power by 

calculating the discernible adjacent regions between the 

targets of AAK component and the human interactome, 

thus the proximity between compound and disease 

targets could be applied for identified the therapeutic 

effects of AAK for skin aging. Deisy Morselli Gysi et 

al. published their results on the Proceedings of the 

National Academy of Sciences (PNAS) suggesting that 

the application of NMF could quickly and correctly 

screen new drugs with repurposing opportunities for 

COVID-19 [9], which greatly reduce time and 

economic cost of new drug development in the context 

of a viral pandemic. The results published on Nature 

Food also proved that calculating the proximity of NMF 

between polyphenol targets and disease proteins could 

precisely predict and screen polyphenols with 

therapeutic effects [8]. The results of Fang J et al. 

published in Nature Aging also successfully identified 

sildenafil with repurposing opportunities for 

Alzheimer’s disease by NMF [10]. NMF is mainly used 

to explore the new therapeutical effect of drugs [11], 

and the rug-repurposing opportunities from one disease 

to another [12]. Thus, the NMF exerts a significant role 

in correctly revealing drug-repurposing opportunities 

for new drugs, especially for nature products, which 

contain multiple compounds [8, 9, 13]. 

 

Traditional Chinese medicine (TCM) has exerted a vital 

role in skin aging during the past decades, it is reported 
that TCM has been the main source of new drugs for 

multiple nature compounds [14]. TCM exerts 

therapeutic effect on skin aging relying on complex 

molecular mechanisms of multi-compounds, multi-

targets and multi-pathways [15], which conceals the 

role of single components with significant efficacy. For 

example, artemisinin, exploited from Artemisia annua 

L., was proven as an antimalarial drug against drug-

resistant plasmodium falciparum [16]. This herb was 

employed for relieving malaria symptoms more than a 

thousand years ago, but its active compound 

(artemisinin) was only extracted and verified at the end 

of the last century [17]. Similarly, Angelica acutiloba 

(Sieb. et Zucc.) Kitagawa (AAK), a herbal medicine in 

TCM, has been widely used for anti-inflammation [18], 

alleviating pain, anti-tumor [19], regulating immunity 

[20], and promotion of hematopoiesis function etc. 

[20, 21], its active ingredient still need to be elucidated, 

as that it contains multiple compounds, including 

volatile oil, phthalides, terpenes, coumarins, flavonoids, 

phenolic acids, and polysaccharide etc. [22]. Previous 

studies pointed out AAK has the function of protecting 

dermal tissue damage [23], inhibiting photoaging 

induced factors and antioxidant activity [24] of UVA-

induced photoaging. Surprisingly, the function of AAK 

and its extracts are proved to decrease inflammatory 

factors, skin interstitium tissue damage and cell 

apoptosis etc. However, the underlying molecular 

mechanisms, targets and the pharmaco-active 

compounds of AAK for skin aging are unexplored. 

 

The development of new drugs will last for a decade or 

longer time, but it is the main procession of screening 

ingredients with potential pharmacological effective [9]. 

Skin aging is a long-term progression governed by 

internal or external factors interacting with each other, 

which causes great difficulty in finding efficient active 

compounds. The introduce of algorithm strategy relies 

on network distribution, proximity and multimodal 

ensemble grounded on human genome-wide interaction 

network [25]. A drug for a particular disease might have 

pharmacodynamic effects for other diseases, which will 

take a longer time to explore. Take berberine as 

example, the hypoglycemic effect of oral berberine is 

mainly involved in decreased biotransformation of 

glycodeoxycholic acid, but its repurposing efficacy of 

berberine on gut microbiome still lack explore until the 

emerge of corresponding technologies [26]. Thus, new 

strategy should be developed to shorten the cycle of 

new drug development for specific diseases, aiming to 

explore the effectiveness and overall mechanism of 

action of natural medicines. 

 

In the present study, we intend to explore the pharmaco-

active components of AAK with repurposed opportunity 

for skin aging and their pharmacological mechanism via 
the proximity of NMF and cMAP connecting analysis. 

Subsequently the targets and mechanism of these 

pharmaco-active components were verified by clinical 
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data verification from Gene Expression Omnibus (GEO) 

database and molecular docking. The results aimed to 

provide reference for skin aging in clinical practice, a 

theoretical strategy for identifying repurposing drugs, and 

new sight for our future research. 

 

RESULTS 
 

The similarity and congregate feature of AAK 

compound 

 

Human PPI interactomes including 25120 unique 

proteins and 751939 pairs of interaction were collected 

from 20 protein-protein interaction (PPI) databases, 

(Supplementary Table 1). A total of 29 AAK 

compounds were selected after standardization and 

duplication, but only a few AAK compounds had a 

larger number of targets (Figure 1E) (Supplementary 

Table 2). The Jaccard index (JI) indicated that the pairs 

of targets among AAK compounds had a limited 

similarity (average JI = 0.0115) (Supplementary 

Table 3), which may due to the commonality of 

chemicals binding domains in the three-dimensional 

structure of protein targets [6] (Figure 1C). Gene 

ontology enrichment analysis recovered protein targets 

of AAK compounds were enriched in the same gene 

ontology categories and biological process. It indicated 

that AAK compounds target different processes of the 

same biological process to exert pharmacological effect 

as the low similarity between target proteins of AAK 

compound (Figure 1D). When map the targets of AAK 

to human PPI, most targets clustered in special region, 

prompting us to explore whether the interactome 

regions targeted by the AAK compounds reside within 

network neighborhoods associated with skin aging 

(Figure 1A, 1B). 

 

 
 

Figure 1. The similarity and congregate feature of the compounds of AAK. (A) Proteins targeted by AAK compounds were not 

randomly congregated in feature-specific adjacent region of human protein-protein interactome; (B) Proteins targeted by AAK formed a 
large connected component (LCC) consisting of 467 proteins, and multiple small subgraphs in the human interactome; (C) The results of 
Jaccard index (JI) among 29 AAK compounds; (D) Top (n = 20) enriched gene ontology terms (Biological Process)among all AAK compounds’ 
targets; (E) Protein–protein interactions of 29 AAK compounds’ targets). 
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AAK had potential pharmacological effect for skin 

aging 

 

When mapping the targets of AAK compounds to PPI 

of skin aging proteins (Supplementary Table 4), it 

showed that the targets of AAK compound were 

congregated in feature-specific adjacent region of skin 

aging proteins in the interaction network, indicating 

AAK compounds may cluster in the specific regions of 

skin aging with specific pharmacological effect 

(Figure 2A, 2B). We further focused on AAK 

compounds with more than two targets, then we 

measured the size and significance of the largest 

connected component (LCC) formed by each AAK 

compounds. The results indicated 23 of 29 compounds 

have larger LCC than expected (|Z-score| > 1.70) 

(Figure 2C) (Supplementary Table 5), suggesting the 

targets of AAK compounds may have potential 

pharmacological effect on skin aging. 

 

Proximity revealed 8 AAK compounds had therapeutic 

effect on skin aging 

 

AAK compounds can be viewed as drugs in that they 

could exert their therapeutic effect by binding to 

specific proteins of skin aging, which was presented as 

shorter distance in the network framework. We 

therefore calculated the network proximity between 

 

 
 

Figure 2. The proteins of the AAK compounds were congregated in the feature-specific adjacent region of skin aging 
proteins interactome. (A) AAK compound proteins congregated in feature-specific adjacent region of skin aging proteins interactome; 

(B) The random expectation of the LCC size indicates that the observed skin aging LCC; (C) Size of the LCC formed by the targets of each AAK 
compound in the skin aging protein interactome and the corresponding significance (|Z-score|). 
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AAK compound targets and skin aging proteins. We 

ranked and screened the top 8 AAK compounds with 

closest distance in the NMF (Figure 3A) (Supplementary 

Table 6), which indicated these 8 AAK compounds had 

pharmacological effect on skin aging, for the reason that 

they had shortest distance of their target cluster in the PPI 

network of the proteins of skin aging.  

 

Then in the Comparative Toxicogenomic Database (CTD) 

database, we collected 74 diseases which can be targeted 

by 8 AAK compounds with known therapeutic efficacy. 

The proximity values of the 8 AAK compounds between 

skin aging and the 74 validated diseases were compared 

by ROC analysis, (Supplementary Table 7), and the 

results indicated AUC and performance accuracy were 

both greater than 0.75, which was similar as the AUC of 

AAK compounds with 74 validated diseases (AUC = 

0.876) (P = 0.19762 > 0.05) (Figure 3B), all above results 

suggested that 8 AAK compounds may had therapeutic 

effect on skin aging. 

 

Medicinal effect of AAK key compounds in the 

treatment of skin aging 

 

In order to further identify the potential efficacy  

of these key compounds, we conducted genetic 

perturbations analysis via cMAP database. Firstly, we 

identified 356 differential genes (adjust P < 0.05, 

|LogFC| > 0.5) (fold changes, FCs) from dataset 

GSE192564 in the GEO database, including 144 up-

regulated and 212 down-regulated genes (Figure 4A, 

4B). Venn analysis screened 29 intersecting genes 

between the differentially expressed genes (DEGs) and 

targets of AAK compounds (Figure 4C), including 13 

upregulated genes and 16 downregulated genes 

(Figure 4D). As showed in Figure 4E, it indicated the 

pharmacological effect of 8 key AAK compounds were 

analogous to QW-BI-011, Alvespimycin, VU-0418946-

1, TW-37, BMY-45778, SRT-1720, BRD-K30064966, 

TTNPB, 1-phenylbiguanide and alfacalcidol (TOP 10 of 

cMAP connecting score, Figure 4F). It is reported QW-

BI-011 and Alvespimycin exhibit an important role in 

the process of skin aging. QW-BI-011 regulates 

epigenetic modulatory and suppresses the expression of 

histone methyltransferase, G9a, which restrains the 

development of melanoma and prevents photoaging 

injury [27]. Alvespimycin is a HSP90 inhibitor, it 

stabilizes the proteins of fibroblasts by preventing 

HSP90 protein upregulated [28]. VU-0418946-1, TW-

37, BMY-45778, SRT-1720, BRD-K30064966, TTNPB, 

1-phenylbiguanide and alfacalcidol are also intimately 

involved in regulating the process of skin aging. They 

were mainly similar to BCL inhibitor, ATP synthase 

inhibitor, EGFR inhibitor, HIF activator, PKC activator, 

ribonucleotide reductase inhibitor, Tubulin inhibitor, T-

type calcium channel blocker, EIF Proteins LOF and 

PKC inhibitor (Figure 4G), prompting that those AAK 

compounds would act by managing metastasis, growth 

and apoptosis of cells [29–32], restraining oxidative 

stress [33], modulating energy metabolism of 

mitochondrial function [34], modulating vasodilatation 

[35], alone or in combination. 

 

The Hub-Target between AAK key compounds and 

skin aging 

 

Although we have obtained 29 core genes, their 

expression level and regulatory role during the 

 

 
 

Figure 3. The 8 AAK compounds had potential pharmacologic efficacy for skin aging. (A) The shortest, closest and |z-shortest| 

calculated between compounds and skin aging by proximity and LCC analysis; (B) ROC curve of the 8 AAK compounds to skin aging and 
therapeutic diseases). 
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processes of skin aging were not clarified. Thus, PPI 

analysis screened 12 Hub-Target from the 29 core genes 

according to the degree of PPI network (Figure 5E). 

Then, we confirmed the down-regulated expressions of 

ABCC4, PTGER3, BCEH, HPGD, and MOXD1 in 

normal group, while AR, CXCR2, HSD17B2, ODC1, 

PI3, PLAU and THBS2 were up-regulated in skin aging 

group (Figure 5A, 5B). It suggested that the key 

 

 
 

Figure 4. Exploration on the function of key AAK compounds via GEO analysis and cMAP analysis. (A) Heatmaps of DEGs 

between normal skin and actinic lentigines skin; (B) Volcano plot of DEGs between normal skin and actinic lentigines skin; (C) Venn analysis 
on the intersection targets between DEGs and targets of key AAK compounds; (D) Circular cluster heatmap of intersection targets; (E) 
Identifying compounds with similar pharmacological effect as key AAK compounds; (F, G) Identifying perturbational class of key AAK 
compounds and which in skin cells). 
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compounds of AAK played a therapeutic role by 

inhibiting or promoting the expression of these genes. 

In addition, ROC curve verified that these hub-target 

had certain sensitivity and specificity for the diagnosis 

of skin aging (AUC greater than 0.5), AR, BCEH, 

CXCR2, HPGD and PI3 performed well especially 

(Figure 5C, 5D, 5F, 5G). The AUC of them were all 

greater than 0.9, reminding that they could be served as 

specific biomarkers for skin aging diagnosis. Hence, we 

calculated their Cutoff value, and the results showed 

that when AR, HPGD and PI3 expression were up-

regulated to 8.221, 9.686 and 7.603 respectively, BCEH 

and CXCR2 expression were down-regulated to 9.948 

and 7.695 respectively, they could be applied as a 

criterion for diagnosing skin aging. 

The LncRNA-miRNA-target network of Hub-Target 

 

microRNA (miRNA) is a type of non-coding single-

stranded RNA molecules, it can directly join in post-

transcriptional gene expression. LncRNAs are long 

noncoding transcripts and exposed function of target-

mimetic, sponge or decoy on miRNA, their expression 

greatly links to specular disease and developmental 

stage [36]. Thus, we constructed lncRNA-miRNA 

interacting with AAK hub-targets to clarify the 

translated regulation and biogenesis pathways. As 

shown in Figure 6A, we screened out 19 regulatory 

miRNA targeting AR, BCEH, CXCR2, HPGD, and PI3 

from 3 miRNA databases. They mainly participated in 

the biological process of cellular nitrogen compound 

 

 
 

Figure 5. The relationship between the Hub-target of AAK compounds and the development processes of skin aging. (A, B) 

The down-regulated expression of ABCC4, PTGER3, BCEH, HPGD, MOXD1 and up-regulated expression of AR, CXCR2, HSD17B2, ODC1, PI3, 
PLAU and THBS2 among hub-target by AAK; (C, D) ROC curves of ABCC4, AR, BCEH, PI3, BCHE, CXCR2, HPGD, HSD17B2 through dataset 
GSE192564 and GSE192565; (E) PPI analysis of 29 core genes; (F, G) ROC curves of MOXD1, ODC1, PLAU, PTGER3, THBS2 through dataset 
GSE192564 and GSE192565). 
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metabolic process, small molecule metabolic process, 

cellular protein metabolic process, biosynthetic process, 

response to stress, cellular protein modification process 

and immune system process. The biological processes 

above were associated with the progression of skin 

aging (Figure 6C). Figure 6B manifested 90 IncRNAs 

(|Energy|>25 kCal/Mol, Score >150) participated in the 

regulatory process of miRNAs of Hub-Target. 

Transcription factor (TF) including ATF ETS1, NFE2, 

FOXO1, KLF11, PBX1, ATF3, BRD3 and RFX5 were 

principally involved in the regulatory process of these 

19 miRNAs (Figure 6D). In brief, AAK compounds 

targeted skin aging by regulating these IncRNA-

miRNA-target network. 

 

Mechanism of AAK compounds targeting skin aging 

 

In order to explore the mechanism of AAK compounds 

targeting skin aging, we performed a single-gene set 

enrichment analysis (GSEA) on the hub targets of AAK 

compounds. The results showed that apart from CXCR2, 

other targets (AR, BCEH, HPGD and PI3) were all 

linked to up-regulation of autophagy (Figure 7A–7L), 

and down-regulation of Phospholipase D signaling 

pathway, which suggested AAK compounds may exert 

therapeutical effect on skin aging via inhibiting autophagy 

process and activating the Phospholipase D signaling. 

 

Molecular docking  

 

The prerequisite for drug efficacy is the ability of 

binding with proteins or receptors. To identify whether 

the screened compounds could bind with core targets at 

protein conformations, we measured the affinity by 

combining approaches of spatial structure and 

molecular docking [37]. We calculated the docking 

score between the molecular structure of the AAK 

components (camphene, cyclohexane, folinic acid, 

indole, isoquercitrin, limonene, stearic acid, alpha-

pinene) and Hub-Target (AR, CXCR2, BCEH, HPGD, 

PI3) (Figure 8A–8J), the main intermolecular forces are 

Van der Waals, Conventional Hydrogen Bond, Carbon 

 

 
 

Figure 6. LncRNA-miRNA-target gene network of AAK hub-targets. (A) The 19 regulated hub-targets from 3 mi RNA databases; 

(B) The network of LncRNA-miRNA-target gene; (C) Biological processes of 19 regulated miRNA; (D) TF-miRNAs regulatory network). 
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Hydrogen Bond, Pi-Sigma, Pi-Sulfur, Amide-Pi Stacked, 

Pi-Alkyl. Indicated by docking score, the results 

showed that alpha-pinene, camphene, cyclohexane, 

indole and limonene could bind with PI3 better, folinic 

acid, isoquercitrin and stearic acid could bine with 

PHGD, BCEH, CXCR2 better respectively, indicating 

these 8 AAK compounds may exert pharmacological 

effect on skin aging by targeting PI3, HGD, BCEH and 

CXCR2, respectively. 

 

DISCUSSION 
 

Nowadays, aging tendency of population is inevitable, 

aging and UVR exposure were the main drivers for the 

weakness of skin barrier, the decreased ability of 

repairing and regenerating [1]. Chinese medicinal herbs 

exert satisfactory role in anti-aging and has been 

applying for a long time, natural ingredients have 

become the main source for new drugs development, 

but it still lacks effective methods to explore effective 

compounds with newly pharmacology or repurposing 

opportunities for other disease [38]. 

 

Network medicine framework (NMF) was applied for 

exploring the therapeutic effects of drugs by quantifying 

the proximity between candidate compounds and 

disease and prioritizing the interacting nodes in human 

PPI network. The NMF plays a powerful role in quickly 

and correctly identifying ingredients with certain 

pharmacology from existing drugs, which could 

dramatically reduce the time and cost for novel drug 

development [9]. We conducted this comprehensive 

strategy to identify 8 active compounds (camphene, 

cyclohexane, folinic acid, indole, isoquercitrin, 

limonene, stearic acid, alpha-pinene) of AAK with drug 

repurposing opportunity for skin aging. Previous results 

showed that those compounds exhibited great effects in 

regulating autophagy [39], anti-inflammation [40], 

increasing cell viability [41], reducing antioxidant 

enzymes, phospholipase D [42] and lipid peroxidation 

[23]. Thus we made a preliminary proposal that the 8 

AAK compounds would be responsible for the 

pharmacological effect of AAK for skin aging. 

 

From cMAP analysis, we found that those 8 compounds 

had similar genetic perturbations as QW-BI-011, 

Alvespimycin, VU-0418946-1, TW-37, BMY-45778, 

SRT-1720, BRD-K30064966, TTNPB, 1-phenylbiguanide 

and alfacalcidol, indicating that 8 AAK compounds had 

same pharmacological effect as them. As reported, skin 

aging is involved in the process of cell proliferation, 

oxidative stress, apoptosis, inflammation and skin 

barrier repairing etc. It is reported that Alvespimycin 

suppressed the inflammasome/Caspase-1/GSDMD 

 

 
 

Figure 7. Single-gene GSEA pathway enrichment on Hub-targets of key AAK compounds. (A–D) Single-gene GSEA-KEGG pathway 

analysis in AR, BCEH, HPGD and PI3; (E–H) Single-gene GSEA-KEGG pathway enriched in autophagy pathway; (I–L) Single-gene GSEA-KEGG 
pathway enriched in Phospholipase D signaling pathway). 
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signal pathway [28], TW-37 obviously improved 

inflammation by inhibiting the proliferation of human 

oral cancer cell lines such as MC-3, HSC-3 [43, 44]. 

Alfacalcidol regulated inflammation process for weak 

elderly [45], which was similar to Alpha-pinene in 

down-regulating expression of inflammatory proteins. 

Camphene had strong antioxidant effects on 

scavenging the activity of hydroxyl and superoxide 

radicals [46], SRT-1720 suppressed the ROS 

generation against oxidative stress [47], TTNPB 

significantly up-regulated the expression of caspase-3, 

thus induced apoptosis of human melanoma cell [48], 

and Stearic acid could also induce apoptosis via same 

pathways [49]. Limonene and retinoids were the 

chemo-preventive agents for numerous or invasive 

nonmelanoma skin cancer, while TTNPB was a 

retinoid pathway activator, it had the similar 

pharmacological effects by acting on the same 

pathways [50]. Structurally, Folinic acid and TW-37 

both had benzoyl group, thus they often had a similar 

role [51]. All above suggested 8 compounds of AAK 

also had similar effect on regulating these processes to 

alleviate the development and progression of skin 

aging. 

 

 
 

Figure 8. Molecular docking analysis between AAK compounds and hub-targets. (A–E) 2D and 3D structure visualization of alpha-

pinene, camphene, cyclohexane, indole, limonene interaction docked with PI3; (F) type of interaction between key compounds and hub 
targets; (G) 2D and 3D structure visualization of folinic acid interaction docked with PHGD; (H) 2D and 3D structure visualization of isoquercitrin 
docked with BCHE; (I) 2D and 3D structure visualization of stearic acid interaction docked with CXCR2; (J) hot map of docking score. 
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Next, we further found that these 8 key AAK 

compounds would exert therapeutic effect by targeting 

AR, BCHE, CXCR2, HPGD and PI3. AR is an 

androgen receptor, and its expression in sun-protected 

skin is higher than the sun-unprotected [52], whose 

level is negatively correlated with the degree of 

damage; The activity of BCHE directly correlated with 

low susceptible to oxidative stress and detoxification 

[53]. Selective agonist to CXCR2 and PI3 kinase 

pathway promote human skin wound healing and 

keratinization, cell proliferation and migration [54], and 

reverse delayed skin healing as the degradation and 

inactivation of HPGD [55, 56]. The molecular docking 

proved that the high affinity between key compounds 

and these hub-targets, which also provided the evidence 

for efficacy validation. 

 

In addition, we also found that 8 key compounds would 

exert anti-skin aging effect by inhibiting autophagy and 

activating phospholipase D (PLD) signaling pathway. 

Autophagy is a critical pathway against skin aging via 

removing aged proteins and subcellular organelles, 

maintaining homeostasis under external and internal 

stimulus such as UV irradiation and stress, and activating 

synthase kinase signaling pathway to protect epidermal 

cells [1]. Autophagy also inhibits hyperinflammatory 

skin reaction induced by inflammasome activation, and 

regulates the level of differentiated skin cells and the 

number of epidermal stem cells [39]. In detail, it is 

reported that isoquercitrin and stearic acid take part in the 

regulated process of autophagy by causing endoplasmic 

reticulum stress [49] and activating the AMPK/ mTOR/ 

p70S6K pathway [57]. Simultaneously, PLD and its 

enzymatic reaction product are the important protein in 

cell survival, which is regulated by the autophagosomes 

key component of autophagy, mTOR. mTOR combining 

with PLD enzymatic reaction product dual-directional 

regulates the formation and maintenance of the 

autophagosomes. The inhibitor of PLD also take part in 

accumulation of ceramide, which is assist in the survival 

of variety of cells, so that it can avoid the termination of 

the cell cycle [42]. 

 

The biological process of skin aging is closely related to 

oxidative stress, mitochondrial dysfunction, free radical 

accumulation and autophagy [47]. Meanwhile, this 

study revealed that 8 key AAK compounds had 

therapeutic activity on regulating oxidative stress, 

cellular proliferation and apoptosis and mitochondrial 

energy metabolism in our study. There are the reasons 

to believe that AAK exerts anti-skin aging effects 

through the mechanism of above pathways. However, 

due to lack of corresponding research, the regulating 

mechanism of 8 AAK key compounds for autophagy 

and PLD signaling pathway is still ambiguous, thus we 

initially proposed that 8 key compounds of AAK may 

exert anti-skin aging by regulating the autophagy and 

PLD signaling pathway, which drew new sights for our 

future research in next step. 

 

CONCLUSIONS 
 

In conclusion, this study identified 8 key compounds 

which would be responsible for the main 

pharmacological effect of AAK for skin aging, these 8 

key AAK compounds had therapeutic activity on 

regulating oxidative stress, cellular proliferation and 

apoptosis and mitochondrial energy metabolism in our 

study, and their mechanism would be involving in 

regulating autophagy and activating phospholipase D 

signaling pathway, providing a theoretical reference for 

identifying repurposing drugs from Chinese medicine 

and new insights for our future research. 

 

MATERIALS AND METHODS 
 

Human PPI interactome establishment 

 

The human interactome was established according to 20 

databases containing five different types of PPIs: (1) 

binary PPIs root in high throughput yeast two-hybrid 

(Y2H) experiments from Interactome INSIDER [58], 

HURI, HI-union [59], Intact [60]; (2) primary document 

curated from BioGRID [61], PINA [62], MINT [63], 

LitBM, HINT [64], HIPPIE [65], InWeb_IM [66], 

APID [67]; (3) low throughput kinase substrate 

interactions experiments from Phosphositeplus [68], 

KinomeNetworkX [69], Human Protein Resource 

Database (HPRD) [70] and affinity purification 

followed by mass spectrometry (AP-MS) from 

bioplex3.0 [71] (4) three-dimension structural analysis 

from Instruct [72], Interactome 3D [73], Interactome 

INSIDER (5) signaling interactions originated from low 

through-put experiments documented from Signalink. 

These genes were normalized according to the Entrez 

ID and official gene symbols through the National 

Center for Biotechnology Information (NCBI) database. 

 

Collecting compounds and targets of AAK 

 

A total of 173 AAK compounds were retrieved from 

literatures and herb compounds database (PubMed, 

CNKI and HERB database). Then AAK compounds 

were screened according to the following criteria that (1) 

could be mapped in PubChem IDs, (2) were listed as 

having therapeutic effects on human diseases in the CTD 

database (3) had protein-binding information present in 

the STITCH and Drugbank database with experimental 

evidence. Finally, the targets of the screened compounds 
of AAK were retrieved from STITCH, Drugbank 

database, and ChEMBL database (on the threshold of 

homo sapiens, 90% confidence, active targets). 



www.aging-us.com 5155 AGING 

Collection of skin aging disease proteins (targets) 

 

According to CTD database, we collected the 

symptoms of skin aging considering the similarity 

level in hierarchical branches of diseases along the 

MeSH tree, the involved proteins of skin aging were 

collected from GWAS (Genome-Wide Association 

Studies database) and Genecards database by inputting 

the MESH word of skin aging or its related symptoms, 

including “skin aging” and “aging, skin” etc. The latter 

database help to clarify the human genes information 

like generic name, Entrez id, official symbol in 

genome. 

 

Network proximity between AAK targets and skin 

aging disease proteins 

 

The proximity between skin aging and compounds of 

AAK were evaluated using a distance metric according 

to Deisy Morselli Gysi et al. [9] and Italo F. do Valle 

et al. [8], which takes into account the shortest path 

lengths between compounds targets and disease 

protein. The effective compounds aimed at skin aging 

disease proteins showed closer proximity and shorter 

distance. In order to evaluate the significance of 

proximity, we calculated the reference distance 

distribution and the expected distances between the 

proteins of compounds and diseases by randomly 

mapping, the mean and SD of reference distribution 

represented by proximity were calculated for 1000 

repeats [74]. As human interactome had few nodes 

with high degrees due to its scale-free nature, we 

conducted randomly selection of nodes by stratified 

sampling according (binning approach) to the degree 

in order to avoid repeatedly selecting the same nodes 

with high-degree. 

 

AKK–disease associations 

 

We retrieved the AAK compounds–disease 

associations from the CTD database, we only 

considered the diseases in the condition that AAK 

compounds have therapeutical effect, observing 

unconnected association at network as negative cases 

out of true negative cases. Network proximity was 

calculated based on AAK compound targets with 

identified disease targets from CTD database and skin 

aging targets. Then the AUC value of 8 AAK 

compounds were measured for skin aging with 

therapeutic and non-therapeutic diseases, meanwhile, 

receiver operating characteristic curve (ROC curve) 

was applied for comparative analysis of therapeutic 

targets link to compounds with skin aging. So that it 
could verify the predictive power of network proximity 

limiting the items with predictive performance of 

AUC >0.75. 

GEO data collection and identification of DEGs of 

skin aging 

 

Expression profiling by high throughput sequencing 

with series number GSE192564 based on platform 

GPL570 (Affymetrix Human Genome U133 Plus 2.0 

Array (Homo sapiens)) was downloaded from the GEO 

database in NCBI (https://www.ncbi.nlm.nih.gov/). The 

dataset contained 26 actinic lentigines skin samples and 

26 normal skin samples. Then the DEGs were analyzed 

through the online tool GEO2R according to the |log 

FC| >0.5 and adjust P < 0.05 [75]. Hierarchical 

clustering and visualization were used by Heat-map plot 

and Volcano plot by R software (Version 4.2.0) [76]. 

The verification dataset (GSE192565) was also selected 

from GEO database and was analyzed for DEGs 

through online tool GEO2R according to the |log FC| 

>0.5 and adjust P < 0.05. 

 

cMAP analysis 

 

cMAP is commonly applied for exploring the 

relationship among drugs, targets, and diseases by 

experimental verification result using the L1000 

analysis platform, which could be used to explore or 

identified similar molecules sharing a same mechanism 

of action, chemicals and physiological processes etc. 

[77]. The intersection targets between key compounds 

of AAK and DGEs of dataset GSE192564 were 

imported into cMAP database to find out similar 

molecules sharing a same differential expressed genes 

to further infer the mechanism and pharmacological 

effect of the key compounds of AAK. 

 

PPI network analysis 

 

The intersection targets between key compounds of 

AAK and DGEs of dataset GSE192564 were imported 

into the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING, http://string-db.org/; version 

11.0) to construct the Protein–Protein Interaction (PPI) 

network, then it was introduced into Cytoscape 3.1.1 

software for network analysis of the core subsystem. 

Key targets (Hub-Target) were screened according to 

the degree after network topology analysis. 

 

Verifying the expression of key predicted targets of 

AAK compounds  

 

After the hub-targets were screened, they indicated 

that the key compounds of AAK exerted pharma-

cological effect against skin aging by targeting these 

hub-targets. In order to validate whether these hub-
targets were actually the pathogenic gene of skin 

aging, thus we verified the expression of hub-targets in 

an external cohort (the validate datasets GSE192565). 

https://www.ncbi.nlm.nih.gov/
http://string-db.org/
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The boxplot of hub-targets expression was performed 

using the “ggplot2” package in R software 

(Version 4.2). 

 

ROC analysis 

 

GEO dataset 129564 (training set) and external 

validation datasets (GSE192565) were used to validate 

whether hub-targets were the specific biomarker for the 

diagnosis of skin aging by classifying the sensitivity and 

specificity of the hub-targets. The calculation of area 

under curve (AUC) >0.9 was seen to be of high 

accuracy for diagnosis, providing clinical perspective in 

skin aging diagnosis. The R software (Version 4.2) was 

used to visualize the diagnostic value of each individual 

gene and construct the AUC curve using “pROC” 

package. 

 

Identifying the IncRNA-miRNA-target gene network 

of AAK Hub-Target 

 

miRNet database (https://www.mirnet.ca/) was used to 

predict lncRNA of miRNA, miRDB database 

(http://mirdb.org), miRWalk database (http://mirwalk. 

umm.uni-heidelberg.de), miRTarBase database 

(https://miRTarBase.cuhk.edu.cn/), and RNAInter 

database (http://www.rna-society.org/rnainter) were 

used to forecast the miRNA of mRNA (targets). 

Cytoscape 3.7.2 was used to construct IncRNA-

miRNA-mRNA regulatory networks. 

 

GSEA analysis on AAK Hub-Target 

 

To further probe the pathway involving in the 

mechanism of the key compounds of AAK targeting 

skin aging, GSEA analysis was performed on single 

Hub-Targets via “clusterprofiler” package (version 

3.18.1) and org.Hs.eg.db package (version 3.12.0) in 

R software. KEGG pathways with |NES| >1, and 

adjust P < 0.05 were considered to be markedly 

enriched. 

 

Verification by molecular docking 

 

The protein structures of hub-targets were downloaded 

from the PDB Database (https://www.rcsb.org/) and 

were preprocessed by Discovery studio software 

(Version 4.5). The structural files of the key compounds 

of AAK were downloaded from the PubChem Database 

(https://pubchem.ncbi.nlm.nih.gov/) and were pre-

processed by Discovery studio software (Version 4.5). 

Finally, molecules and proteins were docked through 

the Libdock modular, the model with the highest 
docking score was selected, and their structural 

visualizations were conducted by Discovery studio 

software (Version 4.5). 

Data and materials availability 

 

All the data could be obtained from the Supplementary 

Material and contacting the corresponding authors. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4 and 7. 

 

Supplementary Table 1. Protein interactions of human protein-protein interactome. 
 

Supplementary Table 2. 29 AAK compounds with associated target proteins. 
 

Supplementary Table 3. Jaccard index of targets among AAK compounds and human PPI interactome. 
 

Supplementary Table 4. PPI analysis of AAK compound targets to skin aging proteins. 
 

Supplementary Table 5. LCC analysis of AAK target proteins on skin aging. 

Compound LCC Z-score 

Apigenin 51 3.926823 

Cyclohexane 2 2.141119 

Decursin 5 3.638068 

Ferulic acid 3 8.156159 

Folic acid 25 3.763513 

Folinic acid 1 NaN 

Furfural 2 3.510562 

Gallic acid 8 1.245189 

Hydroquinone 13 1.576066 

Indole 4 1.924453 

Limonene 3 2.490705 

Methoxsalen 1 −0.2219654 

Osthol 6  4.204503 

Phenol 3 8.081199 

Protocatechuic acid 2 3.854626 

Scopoletin 7 20.49735 

Stearic acid 42 3.554228 

1-Phenyl-1,2-propanedione 1 −0.08391839 

5-Hydroxymethylfurfural 2 4.96149 

8,11,14-Eicosatrienoic Acid 2 31.59115 

9,11-Octadecadienoic acid 1 −0.1567341 

alpha-pinene 1 −0.1233418 

Diosmin 1 −0.07765424 

Furfuryl alcohol 1 −0.4538074 

Isoquercitrin 1 −0.1427857 

m-Cresol 1 −0.3505093 

Methoxyphenol 1 −0.3835486 

Pyrocatechol 4 2.584471 

Camphene 1 NaN 
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Supplementary Table 6. Network proximity analysis of 8 AAK key compounds. 

Disease n_mapped_disease n_mapped_chemical Chemical Shortest Closest z_shortest z_closest 

Skin aging 378 3 alpha-pinene 2.640212 1.666667 1.077049 1.867111 

Skin aging 378 1 camphene 2.383598 1 −0.29701 −0.20752 

Skin aging 378 8 cyclohexane 2.535053 1.125 −1.85766 −1.62922 

Skin aging 378 6 folinic acid 2.772487 1.666667 −0.38161 0.379728 

Skin aging 378 26 indole 2.749695 1.538462 −0.24965 0.259211 

Skin aging 378 2 isoquercitrin 2.691799 1.5 1.029956 0.693842 

Skin aging 378 9 limonene 2.439447 1.111111 −1.75109 −1.16157 

Skin aging 378 73 stearic acid 2.518047 1.287671 −2.87258 −0.19628 

 
Supplementary Table 7. Network proximity analysis of known and unknown association in AAK validated. 

 


