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INTRODUCTION 
 

Aging is an unavoidable age-associated physiological 

decline caused by a progressive dysregulation of certain 

cellular and organismal processes [1]. Cancer is the 

leading cause of death worldwide and was regarded as 

an aging-related disease as most individuals are 

diagnosed after they reach fifty [2]. Mortality statistics 

also reflected the age dependency of cancers. According 

to the data from Global Burden of Disease Study (GBD 

2019), elders ≥70 years old had the largest burden of 

cancer mortality [3]. Moreover, the underlying 

biological process of cancers hallmarks are overlapped 

with aging such as corrupted proteostasis, genomic 

instability, telomere attrition, aggravated inflammation 

and heightened cellular senescence [2]. Noteworthy, 

renal cell carcinoma (RCC) has a high occurrence in 

aged 65 years or older and an average first diagnosed 

age at 64, making it one of cancer types strongly 

correlated with aging [4]. As such aging and cancer are 
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ABSTRACT 
 

Aging is responsible for the main intrinsic triggers of cancers; however, the studies of aging risk factors in cancer 
animal models and cancer patients are rare and insufficient to be represented in cancer clinical trials. For a 
better understanding of the complex regulatory networks of aging and cancers, 8 candidate aging related long 
noncoding RNAs (CarLncs) identified from the healthy aging models, centenarians and their offsprings, were 
selected and their association with kidney renal clear cell carcinoma (KIRC) was explored by series of cutting 
edge analyses such as support vector machine (SVM) and random forest (RF) algorithms. Using data 
downloaded from TCGA and GTEx databases, a regulatory network of CarLncs-miRNA-mRNA was constructed 
and five genes within the network were screened out as aging related feature genes for developing KIRC 
prognostic models. After a strict filtering pipeline for modeling, a formula using the transcript per million (TPM) 
values of feature genes “LncAging_score = 0.008* MMP11 + 0.066* THBS1-IT1 + (-0.014)* DYNLL2 + (-0.030)* 
RMND5A+ 0.008* PEG10” was developed. ROC analysis and nomogram suggest our model achieves a great 
performance in KIRC prognosis. Among the 8 CarLncs, we found that THBS1-IT1 was significantly dysregulated 
in 12 cancer types. A comprehensive pan-cancer analysis demonstrated that THBS1-IT1 is a potential prognostic 
biomarker in not only KIRC but also multiple cancers, such as LUSC, BLCA, GBM, LGG, MESO, PAAD, STAD and 
THCA, it was correlated with tumor microenvironment (TME) and tumor immune cell infiltration (TICI) and its 
high expression was related with poor survival. 
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considered as two tightly interconnected biological 

phenomena; however, the studies of aging risk factors 

in cancer animal models and cancer patients are rare and 

insufficient to be represented in cancer clinical trials. 

 

Long noncoding RNA (lncRNA) represents a large 

group of noncoding RNA that is generally classified as 

transcripts ≥ 200bp without coding potential [5, 6]. With 

the significantly important and indispensable roles in 

various biological processes and dynamic expression 

patterns in tissues and cells, lncRNAs have been 

implicated promising diagnostic and prognostic 

biomarkers in human diseases especially in cancers [7]. 

In our previous study of deciphering lncRNA features in 

171 individuals from centenarian (CEN) families, 8 

candidate aging related lncRNAs (CarLncs) were 

identified including THBS1-IT1, THBS1-AS1, DCHS1-

AS1, LINC01871, LEF1-AS1-201, WDR11-AS1-201 and 

GRAPLDR. Comparing with normal elders, these 8 

CarLncs displayed consistent and significant 

dysregulation in the healthy aging models – CENs and 

their offsprings (8). In vitro functional assays validated 

that these lncRNAs especially THBS1-IT1 and THBS1-

AS1 are involved in cellular senescence process and may 

act as anti-cellular aging protective elements in the 

healthy aging of CENs [8]. THBS1-AS1 was positively 

related with cardiac fibrosis and regulates the expression 

of Tgfbr1 through sponging with mir-221/222 [9]. To 

gain a better knowledge of potential function of aging 

related factors in cancer ontogeny and cancer treatment, 

we analyzed the expression signatures of 8 CarLncs in 

kidney renal clear cell carcinoma (KIRC) as KIRC is a 

histopathological subtype of RCC that represents 80% to 

90% of all RCC tumors. Analyses such as co-efficient 

correlation analysis, Wilcoxon test, random forest (RF) 

algorithms and support vector machine (SVM) were used 

for screening and validating the prognostic risk-related 

factors. Five genes were finally selected and employed 

for KIRC prognosis, among which, THBS1-IT1 was 

further evaluated for a pan-cancer analysis as it exhibited 

significant dysregulation in 12 cancers. Our results 

demonstrated that THBS1-IT1 possesses potential capacity 

for the prognosis of multiple cancers. Taken together, this 

study provided new insights into the complicated and 

underlying associations between aging and cancers. 

 

MATERIALS AND METHODS 
 

Data availability 

 

The KIRC cohort data which contain 541 tumor samples 

and 72 para-cancer samples were downloaded from 

TCGA data portal (https://portal.gdc.cancer.gov). Gene 
expression profiles, survival values, clinicopathological 

information and somatic mutation data of 33 tumor types, 

as well as the gene expression levels of 31 tissues in 

GTEx database, were obtained from UCSC Xena 

browser (https://xena.ucsc.edu). 

 

Identification of AR-subgroup using the expression 

profiles of CarLncs 

 

The Wilcoxon test was used to determine the variation 

of 8 CarLncs’ expression among 541 KIRC patients. 

Using their expression profiles, we employed consensus 

clustering to define distinct aging-related subgroups 

(AR-subgroup) by k-means algorithms in R platform 

[10]. The quantity and consistency of clusters were 

evaluated by “ConsensusClusterPlus” R package with 

default parameters [11]. To ensure the stability of the 

categories, 50 iterations and 80% resampling rate 

Pearson correlation analysis was performed. 

 

Characterization of TME in two AR-subgroups 

 

Principal component analysis (PCA) analysis was 

performed to demonstrate the internal distribution of 

each AR-subgroup. To investigate the differences of 

biological function of 8 CarLncs, gene set variation 

analysis (GSVA) was conducted using the KEGG gene 

set (c2.cp.kegg.v7.4) [12]. The infiltrating fractions of 

immune cells were identified via single-sample gene set 

enrichment analysis (ssGSEA) algorithm with default 

parameters [10]. 

 

Correlation between AR-subgroups and clinical 

characteristics 
 

To determine the clinical significance of AR-subgroups, 

we investigated the association among molecular 

patterns, clinical features, and survival outcomes. Age, 

gender, grade, stage, T-stage, M-stage, and N-stage 

were included as the clinical variables. 

 

Comparisons of OS between AR-subgroups in KIRC 
 

Kaplan–Meier (KM) analysis was used to evaluate the 

difference of OS between two AR-subgroups via 

“survival” and “survminer” R packages. 

 

Construction of the CarLnc-miRNA-mRNA network 
 

The CarLnc-miRNA-mRNA network was conducted 

following an optimized method described in previous 

studies [13, 14]. Firstly, differentially expressed mRNAs 

(DE-mRNA) and miRNAs (DE-miRNA) between AR-

subgroups were identified by “limma” R package with 

parameters of |log2(fold change) | > 0 and p value < 0.05. 

MiRNA targets that potentially bound to CarLncs 

(miRNA-Tgt) were predicted by lncBase Predicted v.2 

database [15]. Subsequently, three databases include 

miRDB [16], miRTarBase [17] and TargetScan [18] 

https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
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were used to predict mRNA targets of miRNA-Tgt 

(mRNA-Tgt). Finally, only the overlapped miRNA/ 

mRNA between miRNAs-Tgt and DE-miRNAs/ 

mRNAs-Tgt and DE-mRNAs were retained and  

their interplays with CarLncs were visualized using 

Cytoscape 3.9.0 software [19]. 

 
Functional enrichment analysis 

 

Gene Ontology (GO) [20] and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [21] analyses were 

conducted by “clusterProfiler” R package [22]. 

 
Screening feature genes of AR-subgroups 

 

Feature genes are genes that can be used to distinguish 

the two AR-subgroups. The molecules within CarLnc-

miRNA-mRNA network were used to determine the 

feature genes by random forest (RF) algorithm and 

support vector machine - recursive feature elimination 

(SVM-RFE). At the first step, “e1071” [23] and “caret” 

[24] R packages were utilized for screening the optimal 

gene sets as the signature of AR-Subgroups using SVM-

RFE method [25] as SVM-RFE is an iterative backward 

elimination procedure for feature selection [24]. 

Secondly, “randomForest” R package was used to 

construct the optimal random forest classification model 

(ntree=500), and then to evaluate the correlation weight 

of genes within the network to characterize the effect of 

the gene on aging-related classification (indicator 

“MeanDecreaseGini”) [26]. Finally, the intersected 

genes between the optimal gene set screened by the 

SVM-RFE algorithm and the top-ranked genes with 

“MeanDecreaseGini” ≥2.0 were regarded as aging-

related feature genes in KIRC patients. 

 
Developing the KIRC prognostic model using aging-

related feature genes 

 

We removed samples without clinical survival data and 

clinicopathological information, a total of 514 samples 

were retained. They were randomly divided into 

training (n=345) and validation (n=169) groups. 

Multivariate stepwise COX regression analysis (multi-

Cox) was performed on the aging-related feature genes 

of KIRC patients in the training dataset to construct the 

aging-related prognostic model which was visualized by 

forestplot. Model with the smallest Akaike information 

criterion (AIC) value and the highest C-index was 

selected as the final prognostic model, CarLncs-based 

aging score (LncAging_score) was developed to 

represent the model and it was calculated by the 

following algorithm: 

 

LncAging_score coefi iX=   

where Xi is the expression of the variable in the aging-

related model and coefi is the regression coefficient of 

the variable. 

 

We used the median value of LncAging_score of 

training group as a threshold, and separately divided the 

training, the validation and the entire samples into high 

(≥ median LncAging_score) and low (< median 

LncAging_score) groups. Survival curves of OS and 

progression-free interval (PFI), ROC curves, and risk 

plots were visualized to evaluate the predictive validity 

of the CarLncs-based aging prognostic model by 

examining the differences between high and low 

LncAging_score groups. 

 

Establishment of a predictive nomogram 

 

The “rms” R package [27] was used to depict  

a nomogram to provide clinical predictions for  

KIRC patients using their LncAging_scores and 

clinicopathological characteristics such as age, gender, 

stage, 1-, 3-, and 5-year OS. Next, we performed 

calibration curve, decision curve analysis (DCA) and 

concordance index (C-index) to verify the clinical 

reliability of the established nomogram. Finally, we 

performed Kaplan–Meier (KM) analysis and ROC curve 

analysis on the risk score of the nomogram (Nomo-risk) 

to evaluate the accuracy of prognostic prediction. 

 

Pan-cancer analysis of the association among 

THBS1-IT1, prognosis and clinical phenotype 

 

Survival and clinical phenotype data were downloaded 

from TCGA. Four indicators include disease-specific 

survival (DSS), overall survival (OS), progression-free 

interval (PFI), and disease-free interval (DFI) were 

selected to explore the correlation between THBS1-IT1 

expression and the prognostic status of patients. The 

effects of THBS1-IT1 expression on survival was 

evaluated by KM analysis and log-rank test using R 

packages “survival” and “survminer” as well as COX 

analysis by “survival” and “forestplot” methods [28]. 

 

Two clinical phenotypes consisting of tumor stage and 

age were selected and their relationships with THBS1-
IT1 expression were explored. Patients were divided into 

two groups based on their ages, with 65 years old as the 

threshold. The correlation analyses were conducted 

using “limma” and “ggpubr” R-packages [29]. 

 

Correlation analysis of THBS1-IT1 with tumor 

mutation burden and tumor microsatellite instability 

in pan-cancer 

 

Tumor Mutation Burden (TMB) scores were calculated 

following a published method which utilized Perl scripts 
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for correction via dividing by the total length of exons 

[30]. Tumor Microsatellite Instability (MSI) scores in all 

samples were calculated using the somatic mutation data 

downloaded from TCGA (https://tcga.xenahubs.net). The 

correlations between THBS1-IT1 expression and 

TMB/MSI scores were analyzed by Spearman’s rank 

correlation coefficient. 

 

Evaluation of the association between THBS1-IT1 

and immunity in pan-cancer 

 

The degree of infiltration of stromal or immune cells 

into tumors was assessed by estimating the immune 

scores and stromal scores using “estimate” and “limma” 

R packages as previously described [31]. The 

associations between THBS1-IT1 expression and the two 

scores were calculated by Spearman’s correlation co-

efficient analysis [32]. Additionally, TIMER (Tumor 

Immune Estimation Resource) database [33] was utilized 

to analyze the infiltration of immune cells including 

Dendritic cells, B cells, Neutrophils, Macrophages, 

CD4+ T cells and CD8+ T cells in tumor tissues. 

 

Statistical analysis 
 

α = 0.05 was taken as the significance standard. 

Comparisons between groups were performed by 

Wilcoxon rank-sum test, independent samples T-test, 

chi-square test, Fisher’s exact test, etc. The correlation 

coefficient was analyzed by Spearman’s or Pearson’s 

correlation co-efficient analysis. All the R packages 

used in this study were operated by R (version 4.2.1). 

 

Data availability statement 
 

All the raw data in this study are available from the 

corresponding author upon reasonable request. 

 

RESULTS 
 

Classification of aging related subgroups (AR-

subgroups) in KIRC using CarLncs 

 

The 8 CarLncs identified by our previous study were used 

as signatures genes to investigate their potential roles in 

KIRC (5). To gain the potential expression patterns and 

roles of 8 CarLncs in fields other than aging and cancer, 

we added the expression profiles of 8 CarLncs through 

the comprehensive human lncRNA database – 

LncExpDB (https://ngdc.cncb.ac.cn/lncexpdb/). Probably 

due to the genome annotation files used by LncExpDB 

database (Hg38) was different from our version (Hg19), 

only 5 lncRNAs were detected. It showed that the 5 
CarLncs (THBS1-IT1, DCHS1-IT1, LINC01871, LEF1-

AS1-201 and WDR11-DT-201) exhibit dynamic 

expression from early organogenesis to adulthood and 

display extinct tissue specificity and circadian 

rhythmicity (Supplementary Figure 1). For a better 

understanding of the aging related expression patterns in 

KIRC, a total of 514 tumor patients with both expression 

profiles and survival/clinicopathological data were 

enrolled to reveal the relationship between aging and 

tumorigenesis (Supplementary Table 1). The flowchart of 

this study was shown in Supplementary Figure 2. Firstly, 

we compared the expression levels of 8 CarLncs between 

tumor and adjacent tissues and found that THBS1-IT1, 

LINC01871, LEF1-AS1-201, CCL3-AS1-202, GRAPLDR 

and WDR11-DT-201 were significantly differentially 

expressed (Supplementary Figure 3, P<0.05), suggesting 

these 6 lncRNAs are related with both aging and KIRC. 

Using the expression profiles of the 6 dysregulated 

CarLncs (DS-CarLncs) as the candidate signatures, 

patients (n=514) were then subjected for classification 

using consensus clustering analysis. K-means clustering 

showed that the optimal clustering variable was 2  

(Figure 1A) and patients were classified into two clusters 

(Figure 1B). A significant difference (P<0.05) of overall 

survival (OS) was observed between the two subgroups 

by KM analysis (Figure 1C). PCA analysis was used to 

display the intergroup distribution, which further 

confirmed that two clusters (cluster A and B) were well 

generated by CarLncs expression data (Figure 1D). As 

shown in Supplementary Figure 4, the comparisons of the 

expression level of 8 CarLncs and clinicopathological 

variables also suggested a substantial difference between 

these two groups. These results suggested the enrolled 

KIRC patients may possibly possess two different models 

of aging. 

 

We noticed that the abundance of 24 immune cells 

between two clusters was substantially different (Figure 

1E). The enrichment levels of 19 immune cell types 

were remarkably higher in cluster B (n = 211) than 

cluster A (n= 303), which include activated B cell, 

macrophage, activated CD4 T cell, MDSC, activated 

CD8 T cell, NK T cell, activated dendritic cell, NK cell, 

CD56 bright natural killer cell, type 17 T helper cell, 

CD56 dim natural killer cell, gamma delta T cell, type 1 

T helper cell, immature B cell, immature dendritic cell, 

monocyte, regulatory T cell, T follicular helper cell, 

plasmacytoid dendritic cell and type 2 T helper cell. 

GSVA analysis suggested that cluster B was enriched in 

immune-associated pathways including intestinal 

immune network for IgA production (hsa04672), 

primary immunodeficiency (hsa05340) and autoimmune 

thyroid disease (hsa05320) while cluster A (n= 303) 

was enriched in metastasis-associated pathways 

consisting pyruvate metabolism (hsa00620), fatty acid 

metabolism and histidine metabolism (hsa01212) 
(Figure 1F and Supplementary Table 2). The results 

indicated the tumor immune environment of cluster A 

and B may be different. 

https://tcga.xenahubs.net/
https://ngdc.cncb.ac.cn/lncexpdb/
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Figure 1. Clinicopathological and biological features of the two ARL subgroups divided by consistent clustering. (A) Consensus 

matrix CDFs from 2 to 9; (B) Two distinct clusters (k = 2) and their correlation area were identified by consensus matrix heatmap; (C) OS 
between cluster A and B is significantly different by KM analysis; (D) PCA analysis showed the transcriptome of the two subgroups is 
apparently different; (E) The abundance of 19 infiltrating immune cells is significantly different in two KIRC subgroups; (F) Biological pathways 
of the two distinct subgroups by GSVA analysis (p < 0.05 *; p < 0.01 **; p < 0.001 ***). 
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Construction the CarLnc-miRNA-mRNA network 

 

To elucidate the potential regulatory function of CarLncs 

in aging and KIRC tumorigenesis, a CarLnc-miRNA-

mRNA network (Figure 2A) was constructed. Firstly, 

the potential miRNA targets of the 6 DS-CarLncs 

(miRNA-Tgt) and the candidate mRNA targets of 

miRNA-Tgt (mRNA-Tgt) were predicted using online 

web tools. Considering the AR-subgroups of KIRC were 

generated based on the expression patterns of 6 DS-

CarLncs, differentially expressed mRNA (DE-mRNA) 

and miRNA (DE-miRNA) between two subgroups were 

 

 
 

Figure 2. Regulatory network of CarLnc-miRNA-mRNA. (A) Visualization of CarLnc-miRNA-mRNA network by Cytoscape; (B) The top 
GO terms of the 148 mRNAs within the network by gene enrichment analysis; (C) The top enriched pathways of 148 mRNAs by KEGG 
enrichment analysis. 



www.aging-us.com 8636 AGING 

identified as these mRNAs/miRNAs may also associated 

with these two aging models. Only 8 miRNAs are 

overlapped between DE-miRNA and miRNA-Tgt which 

include miR-199b-5p, miR-3200-3p, miR-138-5p, miR-

23b-3p, miR-365a-3p, miR-365b-3p, miR-625-5p and 

miR-27a-3p. These 8 overlapped miRNAs are potential 

targets of 3 DS-CarLncs, which is THBS1-AS1, LEF1-

AS1-201 and WDR11-DT-201. Comparing DE-mRNA 

and mRNA-Tgt,148 mRNAs were intersected and were 

retained for further analysis. Finally, a lncRNA-miRNA-

mRNA regulatory network was constructed using the 

148 mRNAs, the 8 miRNA and the 3 CarLnc (Figure 2A 

and Supplementary Table 3). 

 

As the 148 mRNAs were differentially expressed 

between 2 AR-subgroups of KIRC, they were also 

predicted as targets of CarLncs related miRNAs; 

therefore, we hypothesized that they may be involved in 

both aging process and KIRC. To explore their potential 

function and association with aging/KIRC, functional 

enrichment analysis was employed. GO analysis showed 

that they were primarily associated with protein 

serine/threonine kinase activator activity (GO:0043539), 

serine/threonine protein kinase complex (GO:1902554) 

and positive regulation of protein catabolic process 

(GO:0045732) (q<0.05, Figure 2B). The pathway 

enrichment analysis revealed that they were associated 

with FoxO signaling pathway (hsa04068), MAPK 

signaling pathway (hsa04010) and mTOR signaling 

pathway (hsa04150) (q<0.05, Figure 2C). 

 

Development of KIRC prognostic model using aging-

related feature genes 

 

SVM-RFE and RF algorithms were utilized to reduce the 

dimensionality of 159 genes within the network for 

feature genes identification. We obtained 19 genes with 

an optimal RMSE (Figure 3A) by SVM-RFE and 26 

genes with “MeanDecreaseGini” index >2.0 by RF 

(Figure 3B). Among the two gene sets, 13 are overlapped 

in which THBS1-IT1 was included (Figure 3C). KIRC 

patients (n=514) were randomly assigned into the 

 

 
 

Figure 3. Construction of prognostic model using feature genes. (A) Identification of optimal gene set for the signature of CarLncs 
subgroups based on the SVM-RFE algorithm. (B) Top thirty genes with the highest “MeanDecreaseGini” for the optimal RF model. (C) Venn 
diagram of the overlapped genes of the two algorithms; (D) Independent prognostic factors for developing the aging related prognostic 
model were identified by Cox HR model. 
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training cohort (n=345) and the validation cohort 

(n=169). Four selected clinical terms (age, gender, grade 

and stage) of the training and validation groups were 

subjected to Chi-square tests to evaluate the randomness 

between two AR-subgroups and non-significant 

difference was observed (Supplementary Table 4). After 

steps of filtering by multi-Cox analysis, five genes were 

selected as the variables for model construction. We 

developed CarLncs-based aging score (LncAging_score) 

prognostic model to predict prognosis of KIRC patients. 

By multivariate stepwise regression (Figure 3D), an 

optimal prognostic model using the TPM values 

(transcript per million) of 5 selected feature genes was 

constructed using the training dataset (Figure 3D), the 

formula was described as follows: 

LncAging_score = 0.008* MMP11 + 0.066* THBS1-

IT1 + (-0.014)* DYNLL2 + (-0.030)* RMND5A+ 

0.008* PEG10. 

 

Based on the aging-related prognostic model, CNN2, 

THBS1-IT1, DYNLL2, RMND5A and PEG10 were 

predicted as independent prognostic factors (Figure 3D, 

P<0.05), among which CNN2, THBS1-IT1 and PEG10 

are risk factors (Figure 3D, hazard ratio (HR) >1). In the 

training cohort, Kaplan-Meier analysis indicated that 

low-risk patients had a better OS or PFI than high-risk 

patients (Figure 4A, 4B), and the AUCs of 1-, 3-, and 5-

years OS were 0.727, 0.696, and 0.726, respectively 

(Figure 4C). The risk plot showed that OS was 

negatively while mortality was positively related with 

 

 
 

Figure 4. Features of LncAging_score as the prognostic model in the training cohort. (A) The sensitivity and specificity of 1-, 3-, and 
5-year overall survival in two groups were predicted by ROC curves according to the LncAging_score; OS (B) and PFI (C) were compared 
between two groups by KM analysis; The distribution of LncAging_score (D) and survival status (E) in low- and high-risk patients was 
displayed by ranked dots and scatter plots; (F) The expression levels of 5 selected prognostic genes in two groups. 
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LncAging_score (Figure 4D, 4E). The correlation 

between risk power and gene expression level of 5 

selected genes was shown in Figure 4F. 

 

To assess the predictive robustness of the model, the 

LncAging_scores of validation group individuals were 

calculated. Using the median value LncAging_score of 

training cohort as the threshold, patients of validation 

group, training group as well as the entire cohort were 

separately assigned into 2 subgroups, which are low-

risk (LncAging_score < median value) and high-risk 

(LncAging_score ≥ median value). Meanwhile, a 

superior OS was found in low-risk than high-risk 

patients by survival analysis and the 1-, 3-, and 5-year 

survival probability predicted by AUC value implied 

that LncAging_scores had a great performance in 

assessing the prognosis of KIRC patients (Sup-

plementary Figure 5). The prognostic independence of 

LncAging_score and four clinical factors including age, 

disease grading, stage in the entire cohort demonstrated 

that LncAging_score, age, grade and stage are 

independent prognostic factors of KIRC (P<0.05, 

HR>1) (Supplementary Figure 6). 

 

Nomogram analysis suggests LncAging_score is a 

good model for KIRC prognostic 

 

To further assess the significance of LncAging_score in 

KIRC prognosis, LncAging_score together with three 

clinical parameters (age, sex and stage information) were 

incorporated as variables to predict 1-, 3-, and 5-year OS 

for the entire KIRC cohort by nomogram (Figure 5A). 

Calibration curves of the established nomogram 

presented good consistency between actual observations 

and predicted values (Figure 5B). LncAging_score 

combined with the three clinical factors presented the 

best net benefits than single variable for predicting 

prognosis (Figure 5C, 5D). The AUC values of Nomo-

risk at 1-, 3-, and 5-year risks were presented in Figure 

5E. ROC curves of the nomogram as well as four 

clinical factors (age, gender, grade and stage) for 1-year 

risk were shown in Figure 5F. The range of AUC values 

of Nomo-risk was 0.796-0.872, which suggested that our 

nomogram achieves a good degree of accuracy for KIRC 

prognosis. Additionally, survival analysis based on the 

risk score of the nomogram showed that high Nomo-risk 

is related with poor prognosis (Figure 5G, P < 0.001). 

 

THBS1-IT1 displayed abnormal expression in 

multiple cancer types 

 

Our previous study has implicated that overexpression of 

THBS1-IT1 affects endoplasmic reticulum (ER) stress 
signaling and decreases p53 express [8]. Considering ER 

stress and p53 are broadly involved in the ontogeny and 

progression of pan-cancer, we hypothesized that THBS1-

IT1 may associate with the tumorigenesis of multiple 

cancers other than KIRC. Gene expression data of 

THBS1-IT1 in 31 normal tissues and 33 types of tumor 

tissues were separately acquired from GTEx and TCGA 

databases, it showed THBS1-IT1 is a widely expressed 

lncRNA gene in the majority of normal tissues (n=31) 

and all the tumor types (Figure 6A). Breast invasive 

carcinoma (BRCA), pancreatic adenocarcinoma (PAAD) 

and KIRC ranked the top three tumor types that 

expressed highest THBS1-IT1 (Figure 6B). Comparing 

with normal controls, THBS1-IT1 showed significant 

different expression in BRCA, cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), 

head and neck squamous cell carcinoma (HNSC), KIRC, 

kidney chromophobe (KICH), kidney renal papillary cell 

carcinoma (KIRP), lung squamous cell carcinoma 

(LUSC), lung adenocarcinoma (LUAD), stomach 

adenocarcinoma (STAD), rectum adenocarcinoma 

(READ), thymoma (THYM) and uterine corpus 

endometrial carcinoma (UCEC) (Figure 6C, P<0.05). 

 

Evaluation of the predictive potential of THBS1-IT1 

in pan-cancer prognosis 

 

To evaluate the effects of THBS1-IT1 expression level 

on tumor prognosis, a series of survival association 

analyses using four indicators including overall survival 

(OS), disease-specific survival (DSS), disease-free 

interval (DFI) and progression-free interval (PFI) were 

performed in each cancer type by Cox proportional 

hazards model (Cox) and KM survival analysis. Cox-OS 

analysis showed that THBS1-IT1 expression levels were 

associated with OS in adrenocortical carcinoma (ACC), 

bladder urothelial carcinoma (BLCA), glioblastoma 

multiforme (GBM), KIRC, brain lower grade glioma 

(LGG), mesothelioma (MESO), PAAD, STAD and 

THCA (Figure 6D, P < 0.05), and its high expression is a 

risk factor in these tumor types (HR>1). KM-OS 

analysis showed that among the patients of ACC, 

BLCA, GBM, HNSC, KIRC, LGG, MESO, PAAD, 

STAD and thyroid carcinoma (THCA), those who 

expressed higher levels of THBS1-IT1 had shorter 

survival time; in addiction, it also demonstrated a 

negative correlation was observed between THBS1-IT1 

expression level and outcome in ACC, BLCA, GBM, 

HNSC, KIRC, LGG and PAAD (Supplementary Figure 

7 log-rank test P < 0.05). Cox-DSS data revealed that 

low THBS1-IT1 expression had relative better prognosis 

in patients of ACC, BLCA, GBM, HNSC, KIRC, LGG, 

ovarian serous cystadenocarcinoma (OV), PAAD and 

STAD (Supplementary Figure 8, HR > 1, P < 0.05). 

KM-DSS displayed a correlation between THBS1-IT1 

and poor prognosis in ACC, BLCA, GBM, HNSC, 
KIRC LGG and PAAD patients (Supplementary Figure 

9, log-rank test P<0.05). Both Cox and KM survival 

analysis showed that high expression of THBS1-IT1 in 
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Figure 5. A nomogram was constructed for validating the prognostic model in the entire KIRC cohort. (A) The 1-, 3-, and 5-year 
OS in KIRC patients of the entire cohort was predicted by Nomogram; (B) Calibration curve of the nomogram and actual OS; Comparisons of 
DCA curve (C) and C-index (D) among the nomogram, LncAging_score model and 5 clinical variables for 1−year OS prediction; (E) ROC curves 
of the Nomo-risk at 1-, 3-, and 5-year; (F) ROC curves of Nomogram and 4 clinical variables for 1-year risk prediction; (G) KM survival analysis 
for KIRC patients with high- or low-Nomo-risk. 
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LUAD, LUSC and sarcoma (SARC) was associated with 

shorter DFI (Supplementary Figures 10, 11). Forest plots 

showed upper expression of THBS1-IT1 was associated 

with poor PFI in BLCA, GBM, HNSC, KIRC, LGG, 

LUAD, LUSC, PAAD, SARC and uveal melanoma 

(UVM) (Supplementary Figure 12). The same result was 

also found in GBM, LGG, HNSC, KIRC, LUSC, 

PAAD, LUAD and UVM patients by KM analysis 

(Supplementary Figure 13). Taken together, these 

survival analyses lead to a consistent conclusion that 

high expression of THBS1-IT1 in tumors is related with 

poor outcome. 

 

 
 

Figure 6. Pan-cancer analysis of THBS1-IT1. (A) Distribution of THBS1-IT1 expression in normal tissues; (B) THBS1-IT1 expression in 33 

cancers; (C) Comparisons of THBS1-IT1 expression between tumor and normal samples suggested it was dysregulated in 12 cancer types;  
(D) The association between THBS1-IT1 expression and OS in 33 types of tumors by forest plot; (E) Correlation between THBS1-IT1 gene 
expression and age; (F) The relevance of tumor stage and THBS1-IT1 expression. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Correlation of THBS1-IT1 expression with clinical 

phenotypes in pan-cancer 

 

As THBS1-IT1 is an aging-related lncRNA, we further 

investigated the association between age and THBS1-

IT1 expression levels in pan-cancer. We found that 

elder patients (≥ 65 years) of BLCA, CESC, LAML, 

SARC, and THYM expressed higher THBS1-IT1 than 

patients of < 65 years; on the contrary, elder UCEC 

patients expressed lower levels (Figure 6E). The 

relevance of tumor stage and THBS1-IT1 expression 

was explored and we found that THBS1-IT1 was 

significantly correlated with tumor stage in 13 types of 

cancer such as BLCA, KIRC and THCA (Figure 6F). 

 

Relationship between THBS1-IT1 expression and the 

tumor microenvironment and tumor immune cell 

infiltration 

 

Tumor immune microenvironment (TME) and tumor 

immune cell infiltration (TICI) are closely related to 

clinical outcome, they played as critical roles in tumor 

occurrence, tumor progression and cancer therapeutic 

response [34–36]. To further test the prognostic 

potential of THBS1-IT1 in pan-cancer, the ESTIMATE 

algorithm [31] was used to calculate the stromal and 

immune cell scores in 33 types of cancer. It showed that 

THBS1-IT1 was positively correlated with immune 

scores (r > 0.5, P < 0.001) in esophageal carcinoma 

(ESCA), KICH and pheochromocytoma and 

paraganglioma (PCPG) (Supplementary Figure 14). 

THBS1-IT1 also exhibited strong connection with 

stromal scores in BLCA, KICH, ESCA, LUSC, READ, 

PAAD, MESO, OV, PCPG and STAD by pan-cancer 

analysis (r > 0.5, P < 0.001) (Supplementary Figure 15). 

In addition, THBS1-IT1 is related with the infiltration of 

6 immune cell types including B cells, Macrophages, 

CD4+ T cells, CD8+ T cells, Neutrophils and Dendritic 

cells in ESCA, liver hepatocellular carcinoma (LIHC) 

and LUSC (r > 0.3, P < 0.001) (Supplementary Figure 

16). In the majority of the 33 tumor types, degree of 

macrophage infiltration was correlated with THBS1-IT1 

(r > 0.4, P < 0.001). 

 

Correlations of THBS1-IT1 expression levels with 

tumor mutation burden and tumor microsatellite 

instability 

 

Increasing evidence has implicated that tumor mutation 

burden (TMB) and tumor microsatellite instability 

(MSI) are potential markers associated with the efficacy 

of immunotherapy and/or chemotherapy and thus 

involving with tumor survival [37, 38]. To investigate 
the correlations between THBS1-IT1 expression levels 

and TMB/MSI, Spearman’s rank correlation coefficient 

analysis was applied. Our results demonstrated that 

THBS1-IT1 is related with TMB in 7 types of  

tumors including BLCA, BRCA, GBM, LIHC, LUSC, 

STAD and THYM (Supplementary Figure 17, P<0.05). 

In ESCA, HNSC, PRAD, STAD and THCA, THBS1-

IT1 was related to MSI (Supplementary Figure 18, 

P<0.05). 

 

DISCUSSION 
 

Over the past decades, great efforts have been made to 

propel a better understanding of the driving forces that 

lead to aging and cancer [39]. To discipline the vital and 

complex links between aging, cellular senescence and 

cancer, the prognostic power of 8 candidate aging 

related lncRNAs (CarLncs) in KIRC were evaluated. 

Among these CarLncs, THBS1-IT1, LEF1-AS1-201 and 

WDR11-DT-201 showed significant variations between 

KIRC and tumor-adjacent tissues in TCGA data while 

THBS1-AS1 and DCHS1-AS1 displayed non-significant 

changes. DCHS1-AS1 is sequence conserved and 

transcribed from the antisense of dachsous cadherin-

related (DCHS1) [8]. Although the function of these 

dysregulated lncRNAs in KIRC remains to be explored, 

our results summarized a broad overview of their 

expression patterns in KIRC, which provided new 

insights into aging, cancer and lncRNA studies. 

Comparing with previous model that utilized m6A-

Related lncRNA as signatures [14], we estimated the 

predictive power of 8 aging related lncRNAs in KIRC 

prognosis via a series of analyses, which enhanced the 

understanding of the associations between aging and 

cancers. 

 

THBS1-IT1 and THBS1-AS1 are two lncRNAs that 

separately transcribed from the intronic and antisense 

regions of protein coding gene Thrombospondin 1 

(THBS1). THBS1 is a matricellular protein that has 

been shown to accelerate the production and 

modulation of relative oxidative stress (ROS) in 

vasoreactivity and in the peripheral circulation, 

making it an aging marker that contributes to the aging 

progress [40]. In addition, increasing studies suggest 

that THBS1 is a prognostic biomarker of cancers 

and/or plays complex roles in various cancer types, 

such as glioblastoma [41, 42], papillary thyroid cancer 

[43], gastric cancer [44, 45], esophageal squamous cell 

carcinoma [46], and acute myeloid leukemia [47]. It is 

well documented that many lncRNAs can in cis 

control the expression of their nearby genes [48]. 
Previous study found that THBS1-IT1 and THBS1-AS1 

are anti-aging lncRNAs and their expression was 

strongly correlated with the nearest gene THBS1, 

negatively or positively, suggesting they may be 

involved in the regulation of THBS1 expression [8]. 

The faceted functions of THBS1 in both aging and 

cancers as well as the regulation between THBS1-IT1 
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and ER-stress/p53 signaling, we hypothesized THBS1-
IT1 may act as prognostic biomarkers in not only 

KIRC but also in a pan-cancer manner. We 

surprisingly found that THBS1-IT1 was dysregulated 

in 12 tumors and its high expression is associated with 

poor prognosis in multiple tumors, which suggests 

THBS1-IT1 may act as a predominant factor involved 

in both aging and cancer regulatory empires although 

the deeper mechanisms remain to be explored. 

 

CONCLUSIONS 
 

In this study, we seek for providing new connections 

between aging and cancers from the perspective of 

lncRNAs. An integrated regulatory network of CarLncs, 

miRNAs and mRNAs was constructed. Five aging-

related signature genes within the network were 

identified by analyses such as SVM and RF, and they 

were utilized for developing the aging related model of 

KIRC. The robustness and efficiency of our model was 

evaluated by Nomogram, which suggested that 

LncAging_scores is a powerful predictive model for 

KIRC prognosis. Our next-step pan-cancer analysis 

found that one of the signature genes, THBS1-IT1, is a 

potential prognostic biomarker for multiple cancers. A 

series of survival analysis consistently refers to a strong 

correlation between its high expression and poor 

outcome. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Dynamic expression patterns of five Car-Lncs include DCHS1-AS1 (A, B), LEF1-AS1-201 (C–E), LINC01871 (F–H), 
THBS1-IT1 (I–K) and WDR11-DT-201 (M–O). 
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Supplementary Figure 2. The entire analytical process of the study. 

 

 
 

Supplementary Figure 3. Comparison of expression levels of 8 CarLncs between tumor and adjacent tissues of KIRC patients. 
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Supplementary Figure 4. Comparisons of the expression level of 8 CarLncs and clinicopathological variables. 
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Supplementary Figure 5. Validation of LncAging_score in training (A–E) and validation (F–J) cohort. (A, F) ROC curves to predict the 

sensitivity and specificity of 1-, 3-, and 5-year survival according to the LncAging_score. (B, G) KM analysis of the OS between the two groups. 
(C, D, H, I) The ranked dot plot indicates the LncAging_score distribution and scatter plot presenting the patients’ survival status. (E, J) 
Expression patterns of 5 selected prognostic genes in high- and low-risk groups. 
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Supplementary Figure 6. The independent prognosis analysis of LncAging_score and clinicopathological variables in KIRC. 
Univariate (left panel) and multivariate (right panel) analyses showed the prognostic value of the LncAging_score in the entire cohort. 
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Supplementary Figure 7. Kaplan-Meier analysis of the association between THBS1-IT1 (ensemble ID: ENSG00000276107) 
expression and OS. (A) ACC; (B) BLCA; (C) GBM; (D) HNSC; (E) KIRC; (F) LGG; (G) MESO; (H) PAAD; (I) STAD; (J) THCA. 
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Supplementary Figure 8. Forest plot of association of THBS1-IT1 with disease-specific survival (DSS) for 33 types of tumors.  
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Supplementary Figure 9. Kaplan-Meier analysis of the association between THBS1-IT1 (ensemble ID: ENSG00000276107) 
expression and DSS. (A) ACC; (B) PAAD; (C) GBM; (D) HNSC; (E) KIRC; (F) LGG. 
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Supplementary Figure 10. Forest plot of association of THBS1-IT1 with disease-free interval (DFI) for 33 types of tumors. 

 

 
 

Supplementary Figure 11. Kaplan-Meier analysis of the association between THBS1-IT1 (ensemble ID: ENSG00000276107) expression and 

DFI in LUAD (A), LUSC (B) and SARC (C). 
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Supplementary Figure 12. Forest plot of association of THBS1-IT1 with progression-free interval (PFI) for 33 types of tumors. 
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Supplementary Figure 13. Kaplan-Meier analysis of the association between THBS1-IT1 (ensemble ID: ENSG00000276107) 
expression and PFI. (A) UVM; (B) GBM; (C) HNSC; (D) KIRC; (E) LGG; (F) LUAD; (G) LUSC; (H) PAAD. 
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Supplementary Figure 14. Correlation between THBS1-IT1 expression and immune scores in 33 types of tumors. 
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Supplementary Figure 15. Correlation between THBS1-IT1 expression and stromal scores in 33 types of tumors. 
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Supplementary Figure 16. Correlation between TREM2 expression and immune cell infiltration in ESCA, LIHC and LUSC. 
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Supplementary Figure 17. Associations between THBS1-IT1 expression and tumor mutational burden (TMB). The correlation 
coefficient *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Supplementary Figure 18. Associations between THBS1-IT1 expression and microsatellite instability (MSI). The correlation 
coefficient *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3. 

 

 

Supplementary Table 1. Survival/clinicopathological 
information of 514 KIRC patients. 

Characteristics Frequency (N=514) Percentage (%) 

Age   

<65 325 63.2 

≥65 189 36.8 

Gender   

FEMALE 180 35.0 

MALE 334 65.0 

Grade   

G1 13 2.5 

G2 217 42.2 

G3 201 39.1 

G4 75 14.6 

GX 5 1.0 

unknown 3 0.6 

Pathologic stage   

Stage I 252 49.0 

Stage II 55 10.7 

Stage III 122 23.7 

Stage IV 82 16.0 

unknown 3 0.6 

Survival status   

Alive 343 66.7 

Dead 171 33.3 

T stage   

T1 258 50.2 

T2 67 13.0 

T3 178 34.6 

T4 11 2.1 

M stage   

M0 404 78.6 

M1 78 15.2 

MX 30 5.8 

unknown 2 0.4 

N stage   

N0 228 44.4 

N1 16 3.1 

Nx 270 52.5 

 

Supplementary Table 2. The activation states of biological pathways in distinct AR-subtype by GSVA enrichment 
analysis. 

 

Supplementary Table 3. LncRNA-miRNA-mRNA network. 
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Supplementary Table 4. Comparison of clinical variables between the 
training set and validation set. 

Covariates Entire set Training set Validation set P-value 

Age    0.7477 

<=65 341(66.34%) 231(66.96%) 110(65.09%)   

>65 173(33.66%) 114(33.04%) 59(34.91%)  

Gender    0.7954 

FEMALE 180(35.02%) 119(34.49%) 61(36.09%)   

MALE 334(64.98%) 226(65.51%) 108(63.91%)  

Grade    0.9163 

G1 13(2.53%) 8(2.32%) 5(2.96%)   

G2 217(42.22%) 148(42.9%) 69(40.83%)   

G3 201(39.11%) 132(38.26%) 69(40.83%)   

G4 75(14.59%) 51(14.78%) 24(14.2%)   

unknow 8(1.56%) 6(1.74%) 2(1.18%)  

Stage    0.3022 

Stage I 252(49.03%) 174(50.43%) 78(46.15%)  
Stage II 55(10.7%) 38(11.01%) 17(10.06%)   

Stage III 122(23.74%) 73(21.16%) 49(28.99%)   

Stage IV 82(15.95%) 57(16.52%) 25(14.79%)   

unknow 3(0.58%) 3(0.87%) 0(0%)   

 


