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INTRODUCTION 
 

Cerebral ischemic stroke (CIS) is a common cerebro-

vascular disease in the department of neurology. It is a 

series of physiological and pathological changes caused 
by the interruption of cerebral blood circulation, which 

leads to the death of brain tissues and cells due to 

ischemia and hypoxia [1]. It also has the characteristics 

of high incidence, high disability rate and high mortality 

[2]. At present, the clinical diagnosis and treatment  

of CIS is still very complex, and most patients cannot  

be treated promptly, quickly and effectively. Therefore, 

continuous understanding of the potential molecular 

mechanism of CIS and exploration of novel biomarkers 
are conducive to the diagnosis and management of CIS. 

 

The immune system plays an important role in the 

pathophysiology of stroke [3]. After CIS, many immune 
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ABSTRACT 
 

Background: Cerebral ischemic stroke (CIS) is a common cerebrovascular disease. The purpose of this study was 
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Methods: All data were downloaded from public databases. Hub mRNAs was identified by differential 
expression analysis, WGCNA analysis and machine learning. Hub mRNAs were used to construct the 
classification models. Pearson correlation analysis was used to analyze the correlation between hub mRNAs 
and immune cell infiltration. Finally, the SAP30 was selected for verification in HMC3 cells. 
Results: The SVM, RF and DT classification models constructed based on 6 hub mRNAs had higher area under 
the curve values, which implied that these classification models had high diagnostic accuracy. Pearson 
correlation analysis found that Macrophage has the highest negative correlation with CCR7, while Neutrophil 
has the highest positive correlation with SLC2A3. Drug prediction found that ruxolitinib, methotrexate, 
resveratrol and resatorvid may play a role in disease treatment by targeting different hub mRNAs. Notably, 
inhibition of SAP30 expression can reduce the apoptosis of HMC3 cells and inhibit the production of ROS and 
MDA. 
Conclusion: The identification of hub miRNAs and the construction of classification diagnosis models provide a 
theoretical basis for the diagnosis and management of CIS. 

mailto:lbw30845198@126.com
https://orcid.org/0009-0001-7325-7179
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 15162 AGING 

cell disorders, including Macrophages, Neutrophils, etc., 

are involved in the development of the disease with 

extremely complex effects [4]. The immune system is 

also involved in regulating brain repair after CIS [5].  

A study has demonstrated the role of astrocytic IL-6-

mediated negative immune regulation in promoting 

neurovascular regeneration and functional recovery after 

stroke [6]. Insufficient oxygen supply is an important 

cause of CIS [7]. The hypoxic induction factor-1α  

(HIF-1α) is considered to be a key regulator of oxygen 

homeostasis. It may regulate the inflammatory response 

through NLRP3 inflammatory small body composite, 

which affects the death of apoptosis and thermal cells 

after stroke [8]. Therefore, exploring the genes related 

to immunity and hypoxia in CIS is helpful to understand 

the molecular mechanism of the disease and contribute 

to the management of the disease. 

 

Weighted gene co-expression network analysis 

(WGCNA) is a systems biology approach used to 

describe correlation patterns among genes in microarray 

samples [9]. It can be used to find clusters (modules)  

of genes that are highly associated with disease  

and identify candidate molecular biomarkers. Machine 

learning in biomedicine has a profound impact on 

disease detection, diagnosis and treatment [10]. In 

recent years machine learning algorithms have also 

been used to analyze the results of biomedical datasets, 

including support vector machines (SVM) random 

forests (RF) and decision trees (DT) [11, 12]. So far, 

few studies have combined WGCNA and machine 

learning algorithms to identify hypoxia and immune 

markers related to CIS. Therefore, the purpose of this 

study is to identify the important hypoxia and immune 

hub mRNAs related to CIS and construct diagnostic 

classification models through differential expression 

analysis, WGCNA and machine learning algorithm.  

In order to further understand the molecular mecha- 

nism of hub mRNAs, we also constructed transcription 

factors (TFs) and competing endogenous RNA (ceRNA) 

regulatory networks. In addition, drugs related to hub 

mRNAs were screened and molecular docking was 

carried out, hoping to provide a new perspective for the 

diagnosis, treatment and research of CIS.  

 

MATERIALS AND METHODS  
 

CIS data screening and preprocessing 
 

Keywords “Ischemic stroke” and “Homosapiens” were 

used to screen gene expression data in Gene Expression 

Omnibus (GEO) database [13]. Studies at the cell line 

or animal level, single-sample studies, and duplicate or 
overlapping studies were then excluded. The datasets 

with no less than 5 samples and containing normal 

control population were included in this study. Finally, 

GSE58294 (blood samples from 69 CIS patients and  

23 normal controls) and GSE16561 (blood samples 

from 39 CIS patients and 24 normal controls) datasets 

were selected for analysis. GPL platform annotation  

file was used to annotate gene expression profiles  

and convert gene probes into gene symbols. Multiple 

probes corresponding to the same gene were averaged. 

GSE58294 dataset was used as the experimental group, 

and GSE16561 dataset was used as the verification 

group. In addition, we downloaded the miRNA dataset 

GSE95204 (blood samples from 3 CIS patients and 

3 normal controls) related to acute ischemic stroke. 

Detailed information of the selected datasets in this 

study is shown in Supplementary Table 1. 

 

Collection of immune and hypoxia-related genes 

 

Immune-related genes (IRGs) were retrieved from  

the immunology database IMMPORT (https://immport. 

niaid.nih.gov), and a comprehensive list of IRGs was 

downloaded. A total of 1,793 IRGs were obtained. 

Hypoxia-related genes (HRGs) were extracted from the 

marker gene set in MSigDB (https://www.gseamsigdb. 

org/gsea/msigdb/) database. A total of 200 HRGs were 

obtained. 

 

Identification of differentially expressed mRNAs 

(DEmRNAs) 

 

Differential expression analysis of mRNA in the 

GSE58294 and GSE16561 datasets was performed 

using the limma package. False discovery rate (FDR) 

<0.05 and |log2fold change| (|log2FC|) >0.2 were used 

as the cut-off criterion for identifying DEmRNAs. 

Subsequently, the “ggplot” package was used to draw 

the volcanic maps. 

 

WGCNA 

 

The WGCNA package was used to analyze the  

mRNA in the top 25% of the coefficient of variation in 

GSE58294 dataset, and a scale-free gene co-expression 

network was constructed. The “hclust” function and  

the “pickSoftThreshold” function were used to detect 

outliers and select the appropriate soft threshold power 

(β) regulator, respectively. Subsequently, the adjacency 

matrix is calculated according to the kernel value [14]. 

Genes with similar expression patterns were grouped 

together, and modules were divided according to the 

“cutreeDynamic” function with default parameters. Then, 

the dynamic tree cutting method was used to merge the 

modules with the similarity <25%. To determine the 

most related module with CIS, the “Moduleeigengenes” 
function was used to calculate the module eigengene 

(ME) of each module. Subsequently, Pearson correlation 

method was used to analyze the correlation between ME 
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and CIS. The module with the highest correlation with 

CIS was selected as the hub module. Finally, candidate 

hub mRNAs were selected according to the module 

connectivity (MM) >0.2 and clinical trait relationship 

(GS) >0.5 of each gene in hub modules [15]. 

 

Identification and functional enrichment analysis of 

intersection mRNAs 

 

The intersection of the DEmRNAs in the GSE58294 

dataset, the DEmRNAs in the GSE16561 dataset, the 

candidate hub mRNAs in the WGCNA and the set of 

IRGs and HRGs were taken. In order to understand the 

biological functions of intersection mRNA, GO and 

KEGG functional enrichment analysis was performed 

based on DAVID database (https://david.ncifcrf.gov/). 

GO functional analysis includes 3 categories, namely 

biological process (BP), cellular component (CC) and 

molecular function (MF). P < 0.05 was considered 

statistically significant. In addition, a protein-protein 

interaction (PPI) network was constructed based on 

STRING database (https://cn.string-db.org/) to study the 

regulatory relationship between intersection mRNAs. 

 

Identification of hub mRNAs and construction of 

classification models based on machine learning 

 

Intersection mRNAs were analyzed using LASSO 

regression in the glmnet package to screen out important 

mRNAs. In LASSO analysis, family parameter was  

set to binomial, alpha parameter was set to 1, nfolds 

parameter was set to 10, type parameter was set to class, 

s parameter was set to lambdo.min, and others were the 

default parameters. Then, the random forest algorithm 

in the randomForest package was used to rank the 

importance of the mRNAs screened by LASSO from 

largest to smallest according to the mean decreased 

accuracy value. One mRNA was added at a time  

from top to bottom according to the ranking order. 

Subsequently, random forest algorithm and 10-fold 

cross validation were used to obtain the optimal mRNA 

quantity.  

 

SVM, RF and DT classification models were 

constructed based on the selected hub mRNAs using 

e1071, randomForest and rpart packages, respectively. 

The probability parameter of the e1071 package used to 

construct the SVM model was set to TRUE, while others 

were the default parameters. When the randomForest 

package constructs the RF model, the ntree parameter 

was set to 500, the importance parameter was set to 

TRUE, the proximity parameter was set to TRUE, and 

others were the default parameters. The method 
parameter of the rpart package used to construct the DT 

model was set to class, while others were the default 

parameters. In addition, multilayer perceptron (MLP) 

classification model was also constructed based on the 

selected hub mRNAs using caret package. The method 

parameter of the caret package used to construct the 

MLP model was set to mlp, while others were the 

default parameters. The area under the curve (AUC) 

values of the receiver operating characteristic (ROC)  

of the classification models were used to evaluate  

the potential diagnostic ability of classification models.  

In the ROC curve, the greater AUC, the higher the 

diagnosis accuracy [16]. AUC > 0.7 indicates good 

diagnostic accuracy. 

 

Analysis of immune cell infiltration in GSE58294 

dataset 

 

Gene sets marking each immune cell type were obtained 

from Charoentong’s study [17]. The ssGSEA algorithms 

were used to quantify the level of immune cell in-

filtration in the immune microenvironment. In addition, 

the CIBERSORT method also was used to evaluate the 

proportion of various immune cell types in the sample. 

The Wilcoxon test was used to statistically analyze the 

difference of immune cell infiltration level between CIS 

group and normal control group. In order to further 

understand the correlation between hub mRNAs and 

immune cell infiltration, we also performed Pearson 

correlation analysis.  

 

Construction of TFs regulatory network and ceRNA 

regulatory network 

 

The TFs related to hub mRNAs were queried based on 

TRRUST database (https://www.grnpedia.org/trrust/) to 

construct TFs regulatory network. In addition, to further 

understand the molecular mechanism of hub mRNA,  

a ceRNA regulatory network was constructed. The 

target miRNAs of hub mRNAs were predicted based  

on ENCORI (http://starbase.sysu.edu.cn/index.php)  

and miRDB (http://mirdb.org/) databases. Meanwhile, 

differential expression of miRNA in GSE95204 data- 

set was analyzed. The screening threshold was P <  

0.05. Then, the intersection of differentially expressed 

miRNAs (DEmiRNAs) negatively regulated with hub 

mRNAs and targeted miRNAs were screened out. The 

lncRNAs associated with intersection miRNAs were 

searched based on ENCORI database, and then the 

correlation between these lncRNAs and hub mRNAs 

was predicted. Subsequently, lncRNAs associated with 

hub mRNAs were screened out (P < 0.05). Finally, the 

ceRNA regulatory network was constructed based on 

the selected miRNAs, lncRNAs and hub mRNAs. 

 

Drug prediction 

 

Drugs related to hub mRNAs were screened based on 

DGId database (https://dgidb.org/), hoping to provide a 

https://david.ncifcrf.gov/
https://cn.string-db.org/
https://www.grnpedia.org/trrust/
http://starbase.sysu.edu.cn/index.php
http://mirdb.org/
https://dgidb.org/
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new perspective for the treatment and research of CIS. 

In addition, we also carried out molecular docking 

between some drugs and hub mRNAs. The purpose  

of molecular docking is to find the best binding site 

between the compound and the target gene when the 

binding energy is the lowest. Binding energy less than 

−1.19423 kcal/mol (Note: −1.19423 kcal/mol = −5.0 

kJ/mol) is the basis for screening candidate targets of 

active ingredients [18, 19]. The 3D structures of target 

proteins and drugs were downloaded from RCSB PDB 

(http://www.rcsb.org/pdb/home/home.do) and pubchem 

(https://pubchem.ncbi.nlm.nih.gov/) databases, respec-

tively. Protein receptors were treated in PyMol to 

remove water molecules, and then hydrogenation and 

other pretreatments in AutoDockTools. Drug components 

are also pretreatments in AutoDockTools. Subsequently, 

the molecular docking calculation was performed,  

and the docking results were visualized using PyMol 

software. 

 
Cell experiment 

 

HMC3 cells were selected for in vitro validation. 

HMC3 was treated with oxygen-glucose deprivation 

reperfusion (OGD/R) to induce ischemia/reperfusion 

(I/R) injury models (4 h oxygen-glucose deprivation and 

24 h reoxygenation normal culture) in vitro to simulate 

ischemic stroke. Real time-PCR was used to detect the 

relative expression levels of CCR7, S100A12, SAP30 

and SLC2A3 in the HMC3-OGD/R model group and 

the HMC3 control group. The primers used for real 

time-PCR are shown in Supplementary Table 2. The 

relative expression levels of CCR7, S100A12, SAP30 

and SLC2A3 were calculated using the 2−ΔΔCt method 

[20]. SAP30 was selected to knockdown in HMC3  

cells. Then, the expression of SAP30 was detected  

by real time-PCR to screen out effective interference 

targets. Subsequently, construction of OGD/R model was 

continued to form HMC3-si-SAP30-OGD/R cells. The 

relative contents of reactive oxygen species (ROS) and 

malondialdehyde (MDA) in each group were detected 

by ROS and MDA kit of Nanjing Jiancheng. In addition, 

flow cytometry was used to detect the effect of SAP30 

on cell apoptosis.  

 
Statistical analysis  

 

All statistical analyses were processed by R software. 

The limma package was used to identify DEmRNAs 

based on the screening criteria FDR <0.05 and |log2FC| 

>0.2. The Wilcoxon test was used to statistically 

analyze the difference of immune cell infiltration level 

between CIS group and normal control group. The 

relative expression levels of CCR7, S100A12, SAP30 

and SLC2A3 were calculated using the 2−ΔΔCt method. 

P < 0.05 was considered significant difference.  

Data availability statement 

 

All data generated or analyzed during this study are 

included in this published article. 

 

RESULTS  
 

Identification of DEmRNAs  

 

DEmRNAs in GSE58294 and GSE16561 datasets were 

screened using the limma package according to the 

screening criteria FDR <0.05 and |log2FC| >0.2. In the 

GSE58294 dataset, 6,145 DEmRNAs were identified in 

the CIS group compared with the control group, of 

which 3,109 DEmRNAs were up-regulated and 3,036 

DEmRNAs were down-regulated. In the GSE16561 

dataset, 648 DEmRNAs were identified in the CIS 

group compared with the control group, of which 497 

DEmRN were up-regulated and 151 DEmRNAs were 

down-regulated. The volcanic maps of DEmRNAs in 

the GSE58294 and GSE16561 datasets are shown in 

Figure 1A and 1B.  

 

Identification of candidate hub mRNAs based on 

WGCNA  

 

The “hclust” function was used to cluster the samples, 

and no outlier samples were found (Figure 2A and 2B). 

When β = 7, the topology is approximately scale-free 

(Figure 2C). After constructing the cluster dendrogram, 

the minimum number of mRNAs in the module was set 

to 100, and 8 modules were isolated. Then, the dynamic 

tree cutting method was used to merge the modules  

with the similarity <25%. Finally, 6 modules were 

determined (Figure 2D and 2E). Pearson correlation 

analysis showed that the red module had the highest 

negative correlation with CIS (Pearson r = −0.83), and 

the green module had the highest positive correlation 

with CIS (Pearson r = 0.68) (Figure 2F). Therefore, the 

green and red modules are considered hub modules. 

Based on GS >0.2 and MM >0.5, 350 mRNAs were 

obtained in the red module (Figure 2G), and 777 mRNAs 

were obtained in the green module (Figure 2H). A total 

of 1,127 mRNAs were considered as candidate hub 

mRNAs.  

 

Identification and functional enrichment analysis of 

intersection mRNAs 

 

A total of 26 intersection mRNAs were obtained (Figure 

3A), of which 19 were IRGs, 5 were HRGs, and 2 were 

the intersection of IRGs and HRGs (Figure 3B). In GO-

CC, the intersection mRNAs were mainly distributed in 

plasma membrane, integral component of membrane. In 

GO-MF, the intersection mRNAs were mainly involved 

in identical protein binding and receptor binding. In GO-

http://www.rcsb.org/pdb/home/home.do
https://pubchem.ncbi.nlm.nih.gov/
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BP, the intersection mRNAs were mainly involved in 

the regulation of inflammatory response and immune 

response (Figure 3C). KEGG analysis showed that 

intersection mRNAs were significantly enriched in 

cytokine-cytokine receptor interaction, hepatitis B and 

JAK-STAT signaling pathway (Figure 3D). STAT3  

and TLR4 were found to have more interacting genes  

in PPI network (Figure 3E). In addition, 2 pairs with 

interaction scores >0.99 were JAK2 and STAT3 

(interaction score = 0.999), FOS and STAT3 

(interaction score = 0.998), respectively. 

 

Identification of hub mRNAs and construction of 

diagnostic classification models based on machine 

learning 

 

After LASSO analysis, 7 mRNAs were screened  

out from 26 intersection mRNAs (Figure 4A). The  

7 mRNAs were ranked according to mean decreased 

accuracy values (Figure 4B). One mRNA was added at 

a time from top to bottom according to the ranking 

order. Then, RF algorithm was used for classification, 

and AUC was obtained by 10-fold cross validation. The 

results showed that AUC reached the maximum value 

when the number of mRNAs reached 6 (Figure 4C). 

These 6 mRNAs (CCR7, JAK2, S100A12, SAP30, 

SLC2A3 and TLR4) were considered as hub mRNAs, 

among which S100A12, JAK2, CCR7 and TLR4  

were IRGs, and SAP30 and SLC2A3 were HRGs. The 

correlation between CCR7, JAK2, S100A12, SAP30, 

SLC2A3 and TLR4 is shown in Figure 4D. Compared 

with the control, JAK2, S100A12, SAP30, SLC2A3  

and TLR4 were up-regulated and CCR7 was down-

regulated in the CIS (Figure 4E). 

 

Subsequently, SVM, RF and DT classification models 

were constructed based on 6 hub mRNAs in GSE58294 

dataset (Figure 4F–4H). The results showed that the 

AUC values of SVM, RF and DT classification  

models were 0.998, 0.996 and 0.984, respectively, 

which implied that these three classification models had 

high diagnostic accuracy. Subsequently, ROC analysis 

of the 6 hub mRNAs showed that the AUC >0.7 

(Supplementary Figure 1), which implied that they  

also had high diagnostic accuracy. However, the AUC 

of 6 hub mRNAs was less than SVM, RF and DT 

classification models, which implied that the diagnostic 

accuracy of classification models were higher than that 

of single hub mRNAs. In addition, e1071, randomForest 

and rpart packages were also used to construct SVM, 

RF and DT classification models based on the 6 hub 

mRNAs in GSE16561 dataset with the same parameters 

to verify the diagnostic value. The results showed that 

the AUC values of SVM, RF and DT classification 

models were 0.935, 0.923 and 0.856, respectively 

(Figure 5). At the same time, ROC analysis of 6 hub 

mRNAs was also performed in the GSE16561 dataset 

(Supplementary Figure 2). The results showed that the 

AUC >0.7 of 6 hub mRNAs, but less than the AUC 

value of classification models. This again indicates that 

 

 
 

Figure 1. Volcanic maps of DEmRNAs. (A) Volcanic map of DEmRNAs in the GSE58294 dataset; (B) Volcanic map of DEmRNAs in the 

GSE16561 dataset. 
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the classification models based on the 6 hub mRNAs 

has high diagnostic accuracy, which may be beneficial 

to the diagnosis and management of CIS. Moreover, the 

MLP classification model was constructed based on  

the 6 hub mRNAs in the GSE58294 (Supplementary  

Figure 3A) and GSE16561 (Supplementary Figure 3B) 

datasets. The results showed that the AUC values of  

the MLP classification model in the GSE58294 and 

GSE16561 datasets were 0.899 and 0.819 respectively, 

which implied that the MLP classification model based 

on the 6 hub mRNAs also had high diagnostic accuracy.  

 

Analysis of immune cell infiltration in CIS 

 

The ssGSEA analysis showed that the infiltration levels 

of Activated dendritic cell, Immature dendritic cell, 

Macrophage, Mast cell, MDSC, Neutrophil, Plasmacytoid 

dendritic cell and Regulatory T cell in CIS group were 

higher than that in control group, while the infiltration 

level of Activated B cell, CD56 bright natural killer  

cell, Immature B cell, Monocyte, Natural killer cell and  

T follicular helper cell in CIS group was lower (Figure 

6A). In addition, we also evaluated the proportion of 

immune cells according to CIBERSORT method, and  

the proportion of Neutrophils in the CIS group was also 

higher (Figure 6B and 6C). Pearson correlation analysis 

found that Macrophage, Activated B cell, Neutrophil, 

Immature B cell, Regulatory T cell, Mast cell and Type 1 

T helper cell were all correlated with the 6 hub mRNAs 

(Figure 6D). Macrophage has the highest negative cor-

relation with CCR7 (−0.61), while Neutrophil has the 

highest positive correlation with SLC2A3 (0.76).  

 

 
 

Figure 2. Identification of hub modules and candidate hub mRNAs based on WGCNA. (A) Sample clustering dendrogram to 

detect outliers; (B) Sample clustering dendrogram and trait heatmap; (C) Scale-free fitting index and average connectivity for different soft 
threshold power (β); (D) mRNA is divided into different modules by hierarchical clustering, and different colors represent different 
modules; (E) Modules with dissimilarity <25% are merged; (F) Heatmap of correlation between ME and CIS; (G) Scatter plot of mRNAs in 
green module; (H) Scatter plot of mRNAs in red module. 
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Construction of TFs regulatory network and ceRNA 

regulatory network based on hub mRNAs 

 

TFs related to hub mRNAs were queried based on 

TRRUST database, and the results were imported into 

Cytoscape to construct a regulatory network. The results 

showed that S100A12 had no related TF, CCR7 had 6 

related TFs (HIF1A, TRERF1, KLF2, NFKB1, EPAS1 

and RELA), TLR4 had 5 related TFs (IRF3, IRF8, 

SPI1, STAT6 and ZNF160), JAK2 had 4 related TFs 

(BRCA1, ESR1, STAT1 and STAT3), SLC2A3 had 2 

related TFs (HMGA1 and ZBTB7A), and SAP30 had 1 

related TF (YY1) (Figure 7A). A total of 623 targeted 

miRNAs were predicted for 6 hub mRNAs based  

on ENCORI and miRDB databases. 127 DEmiRNAs 

(33 up-regulated and 94 down-regulated) were obtained  

by differential expression analysis of miRNAs in the 

GSE95204 dataset (Figure 7B). Then, the intersection 

of DEmiRNAs negatively regulated with hub mRNAs 

and targeted miRNAs were screened out. 22 intersection 

miRNAs were obtained. The lncRNAs associated with 

intersection miRNAs were searched based on ENCORI 

database, and then the correlation between these 

lncRNAs and hub mRNAs was predicted. Subsequently,

 

 

 
Figure 3. Identification and functional enrichment analysis of intersection mRNAs. (A) Venn diagram of intersection of the 

DEmRNAs in the GSE58294 dataset, the DEmRNAs in the GSE16561 dataset, the candidate key mRNAs in the WGCNA and the set of IRGs 
and HRGs; (B) Venn diagram of the intersection mRNAs, IRGs and HRGs; (C) GO functional enrichment analysis of intersection mRNAs; (D) 
KEGG functional enrichment analysis of intersection mRNAs; (E) A PPI network was constructed based on STRING database to study the 
regulatory relationship between intersection mRNAs.  
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Figure 4. Identification of hub mRNAs and construction of SVM, RF and DT classification models. (A) LASSO regression analysis 

was performed on 26 intersection mRNAs; (B) Mean decreased accuracy sorting of SAP30, S100A12, CCR7, SLC2A3, JAK2, TLR4 and IL32; (C) 
Trend chart of AUC with the increase of DEmRNA quantity; (D) Correlation between SAP30, S100A12, CCR7, SLC2A3, JAK2 and TLR4. Red 
and blue represent positive and negative correlations, respectively. (E) Expression heatmap of SAP30, S100A12, CCR7, SLC2A3, JAK2 and 
TLR4; (F) ROC curve of SVM classification model in GSE58294 dataset; (G) ROC curve of RF classification model in GSE58294 dataset; (H) 
ROC curve of DT classification model in GSE58294 dataset. 

 

 
 

Figure 5. ROC curve validation of SVM (A), RF (B) and DT (C) classification models in GSE16561 dataset. 
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42 lncRNAs associated with hub mRNAs were screened 

out. The correlation between CCR7 and EPB41L4A-

AS1 was the highest (0.80), followed by SLC2A3 and 

LINC01089 (−0.67). Finally, the ceRNA regulatory 

network was constructed based on 42 lncRNAs, 22 

intersection miRNAs and 6 hub mRNAs (Figure 7C). 

 

Drug prediction and molecular docking 

 

Based on DGIdb database, related drugs of hub  

mRNAs were predicted, but only related drugs of JAK2, 

S100A12, SLC2A3 and TLR4 were obtained (Figure 

8A). The search of these drugs found that ruxolitinib, 

methotrexate, resveratrol and resatorvid play an impor-

tant role in the treatment of brain injury. Subsequently, 

the molecular docking of ruxolitinib, methotrexate, 

resveratrol and resatorvid and their action hub mRNAs 

was performed. When the binding energy between the 

drug and the target protein is the lowest, it shows the 

best conformation and the interaction mode between the 

drug molecule and the target protein (Figure 8B–8F and 

Table 1). The lowest binding energies between drugs 

and target proteins were all less than −1.19423 kcal/mol, 

which implies that ruxolitinib, methotrexate, resveratrol 

and resatorvid may play a role in the treatment of 

diseases by acting on target genes. 

 

In vitro cell validation 

 

CCR7, S100A12, SAP30 and SLC2A3 were selected 

for real time-PCR validation to detect the relative 

expression levels in HMC3-OGD/R model group and

 

 
 

Figure 6. Analysis of immune cell infiltration. (A) The level of immune cell infiltration was analyzed by ssGSEA method; (B) Stacked 

histogram of the proportion of each immune cell in the sample analyzed by CIBERSORT method; (C) Box diagram of the proportion of each 
immune cell in the sample analyzed by CIBERSORT method; (D) Correlation between hub mRNAs and immune cell infiltration. Red and blue 
represent positive and negative correlations, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, Abbreviation: ns: no significant 
significance.  



www.aging-us.com 15170 AGING 

HMC3 control group. The results showed that only 

SAP30 was significantly increased in the HMC3-OGD/R 

model group and the expression trend was consistent 

with the results of bioinformatics analysis (Figure  

9A). Therefore, SAP30 was selected for the follow-up 

experiment. In addition, the relative expressions of ROS 

and MDA and apoptosis of cells in HMC3-OGD/R 

model group and HMC3 control group were also 

detected. The results showed that the contents of ROS 

and MDA in the HMC3-OGD/R model group were 

higher than those in the HMC3 control group (Figure 

9B and 9C), and the HMC3-OGD/R model group  

also had higher apoptosis rate (Figure 9D–9F). SAP30  

was selected to knockdown in HMC3 cells. Then, the 

expression of SAP30 was detected by real time-PCR  

to screen out effective interference targets. The  

results showed that target 1 had the best knockdown 

effect (Figure 10A), so siRNA1-SAP30 was selected  

for subsequent experiments. Subsequently, the relative 

expressions of SAP30, ROS and MDA and apoptosis  

of cells in HMC3-si-NC-OGD/R group and HMC3-si-

SAP30-OGD/R group were also detected. The results 

showed that the expression levels of SAP30, ROS and 

MDA in HMC3-si-SAP30-OGD/R group were signi-

ficantly decreased (Figure 10B–10D), and the apoptosis 

rate was also significantly decreased (Figure 10E– 

10G). These results suggest that inhibition of SAP30 

expression in CIS may reduce cell apoptosis and inhibit 

ROS and MDA production, thus playing a regulatory 

role in disease progression. 

 

 
 

Figure 7. Construction of TFs regulatory network and ceRNA regulatory network. (A) TFs regulatory network; (B) Volcano map of 

DEmiRNAs in the GSE95204 dataset; (C) CeRNA regulatory network.  
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DISCUSSION 
 

In this study, differential expression analysis found 

that GSE58294 and GSE16561 datasets had 6,145 and 

648 DEmRNAs, respectively. Based on the GSE58294 

dataset, a total of 6 modules were identified by 

WGCNA, among which the red module had the 

highest negative correlation with CIS and the green 

module had the highest positive correlation with  

CIS. Subsequently, 1,127 candidate hub mRNAs were 

identified in red module and green module according 

to GS >0.2 and MM >0.5. The intersection of the 

DEmRNAs in the GSE58294 dataset, the DEmRNAs 

in the GSE16561 dataset, the candidate hub mRNAs  

in the WGCNA and the set of IRGs and HRGs were 

taken. A total of 26 intersection mRNAs were obtained. 

KEGG analysis showed that intersection mRNAs were 

significantly enriched in cytokine-cytokine receptor 

interaction, hepatitis B and JAK-STAT signaling 

pathway. A study found that CCL2 is highly expressed 

in ischemic stroke tissues, which may promote  

the progression of ischemic stroke by activating 

chemokine signaling pathway and cytokine-cytokine 

receptor interaction pathway [21]. Comprehensive 

analysis of m6A methylation in human ischemic  

stroke blood showed that cytokine-cytokine receptor 

interaction is also a significantly enriched signaling 

pathway [22]. A study of Taiwan nationals found that 

hepatitis B virus is associated with a reduced risk of 

acute ischemic stroke [23]. IL-21R plays a key role  

in neuronal protection through the JAK-STAT signal- 

ing pathway in ischemic stroke [24]. JAK2-STAT3 

signaling pathway plays a protective role in improving 

inflammation, oxidative stress and neuronal apoptosis 

after cerebral ischemia-reperfusion injury mediated by 

interleukin-22 [25]. At present, the specific molecular 

mechanism of cytokine-cytokine receptor interaction, 

hepatitis B and JAK-STAT signaling pathway in CIS 

are still unclear, and a large number of experiments are 

needed for further study. 

 

 
 

Figure 8. Drug prediction and molecular docking of hub mRNAs. (A) Drug prediction of hub mRNAs; (B) Molecular docking of 

methotrexate and S100A12; (C) Molecular docking of methotrexate and TLR4; (D) Molecular docking of resatorvid and TLR4; (E) Molecular 
docking of resveratrol and SLC2A3; (F) Molecular docking of ruxolitinib and JAK2. 
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Table 1. Minimum binding energy in molecular docking between hub mRNAs and drug molecule. 

Medicine Gene Binding Energy 

METHOTREXATE S100A12 −1.92 

METHOTREXATE TLR4 −1.38 

RESATORVID TLR4 −2.47 

RESVERATROL SLC2A3 −3.83 

RUXOLITINIB JAK2 −3.3 

 

6 hub mRNAs (CCR7, JAK2, S100A12,  

SAP30, SLC2A3 and TLR4) were identified from  

26 intersection mRNAs based on machine learning. A 

study showed that CCR7 mRNA expression was 

reduced in patients with traumatic brain injury within  

24 hours of injury [26]. The expression of CCR7 was 

also down-regulated in peripheral blood during the 

acute phase of ischemic stroke [27]. As a key factor  

of JAK2/STAT3 signal pathway, JAK2 is involved  

in regulating neuroinflammation of cerebral ischemic 

injury, and can also mediate the polarization of 

microglia [28–30]. Inhibition of TLR4 may play a role 

in reducing inflammation in ischemic stroke [31]. Loss 

of TLR4 increases the level of alternative Neutrophils 

and is associated with neuroprotection after stroke [32]. 

KEGG analysis showed that CCR7 was enriched in  

the cytokine-cytokine receptor interaction, JAK2 was 

enriched in the hepatitis B and JAK-STAT signaling 

pathway, and TLR4 was enriched in the hepatitis B. 

Therefore, we speculated that CCR7, JAK2 and TLR4 

may play a role in CIS by regulating related path- 

ways. High plasma S100A12 levels on admission are 

associated with a poor functional outcome in patients 

with acute ischemic stroke [33]. SLC2A3 also known as

 

 
 

Figure 9. The relative content of SAP30, ROS and MDA and the apoptosis rate in HMC3-OGD/R model group and HMC3 
control group. (A) The relative expression level of SAP30 in HMC3-OGD/R model group and HMC3 control group was detected by real 

time-PCR; (B) Fluorescence value of ROS in HMC3-OGD/R model group and HMC3 control group; (C) Content of MDA in HMC3-OGD/ 
R model group and HMC3 control group; (D) Apoptosis rate in HMC3 control group was detected by flow cytometry; (E) Apoptosis rate in 
HMC3-OGD/R model group was detected by flow cytometry; (F) Histogram of apoptosis rate in HMC3-OGD/R model group and HMC3 
control group. ****P < 0.0001; Abbreviations: HMC3-NC: HMC3 control group; HMC3-OGD/R HMC3-OGD/R model group. Q1-2 and Q1-4 
quadrants represent late apoptotic cells and early apoptotic cells, respectively.  
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GLUT3, is significantly up-regulated in the penumbra 

after cerebral ischemia [34]. In addition, GLUT3 may 

mediate nerve protection [35]. So far, no relevant studies 

on SAP30 in brain injury have been found.  

 

This study may be the first to discover abnormal 

expression of SAP30 in CIS. SAP30 was a HRG 

screened from the MSigDB database. As the most 

vulnerable organ in the human body, the brain needs an 

adequate and timely supply of oxygen and energy. 

Previous studies have shown that the mortality and 

recurrence rates of ischemic stroke increase with the 

duration of hypoxia [36, 37]. Therefore, exploring the 

molecular mechanism of hypoxia in CIS can help in 

disease management. The outcome of ischemic stroke 

largely depends on the amount of hypoxia-related 

neuronal death in the affected brain area [38]. 

Microglial cell is the first response cells of ischemic 

brain injury. In ischemic cerebrovascular disease, 

microglial cell is the key to neuronal damage and

 

 
 

Figure 10. The relative content of SAP30, ROS and MDA and the apoptosis rate in HMC3-si-NC-OGD/R group and HMC3-si-
SAP30-OGD/R group. (A) Real time-PCR was used to detect the expression of SAP30 to screen out effective interference targets in HMC3 

cell; (B) The relative expression level of SAP30 in HMC3-si-NC-OGD/R group and HMC3-si-SAP30-OGD/R group; (C) Fluorescence value of ROS in 
HMC3-si-NC-OGD/R group and HMC3-si-SAP30-OGD/R group; (D) Content of MDA in HMC3-si-NC-OGD/R group and HMC3-si-SAP30-OGD/ 
R group; (E) Apoptosis rate in HMC3-si-NC-OGD/R group was detected by flow cytometry; (F) Apoptosis rate in HMC3-si-SAP30-OGD/R group 
was detected by flow cytometry; (G) Histogram of apoptosis rate in HMC3-si-NC-OGD/R group and HMC3-si-SAP30-OGD/R group. *P < 0.05,  
**P < 0.01, ***P <0.001, ****P < 0.0001. Q1-2 and Q1-4 quadrants represent late apoptotic cells and early apoptotic cells, respectively.  
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remodeling [39]. HMC3 cells, a type of microglial cell 

in the brain. So far, HMC3 cell is also commonly used 

in research on cerebrovascular diseases [40–42]. In this 

study, HMC3 cells were also selected for in vitro 

experiments to investigate the potential role of SAP30. 

The results showed that knockdown of SAP30 could 

significantly reduce the contents of ROS and MDA in 

HMC3-OGD/R model, and inhibit apoptosis. These 

results suggest that inhibition of SAP30 expression in 

CIS may reduce cell apoptosis and inhibit ROS and 

MDA production, thus playing a regulatory role in 

disease progression.  

 

Subsequently, SVM, RF and DT classification  

models were constructed based on 6 hub mRNAs. The  

results showed that SVM, RF and DT classification 

models all had high AUC values, which indicated that 

these three classification models had high diagnostic 

accuracy. Moreover, the AUC of 6 hub mRNAs was 

less than SVM, RF and DT classification models, which 

implied that the diagnostic accuracy of classification 

models were higher than that of single hub mRNAs.  

To further understand the molecular mechanisms of  

the hub mRNAs that constitute classification models, 

we constructed TFs and ceRNA regulatory networks. In 

the TFs regulating network, we found that HIF-1α is 

related to CCR-7. The HIF-1α is considered to be a  

key regulator of oxygen homeostasis. It is also involved 

in mediating neuroprotective effects in ischemic  

stroke [43]. Moreover, CCR7 is abnormally expressed 

in ischemic stroke [27]. Therefore, we speculated that 

HIF-1α may be involved in mediating the influence of 

CCR7 on CIS progression. It also suggests that there 

may be some potential links between hypoxia and 

immune regulation, but the specific mechanism needs 

further study. In the ceRNA regulating network, we 

found that CCR7 and EPB41L4A-AS1 have the highest 

correlation (0.80), followed by SLC2A3 and LINC01089 

(−0.67). One study found that EPB41L4A-AS1 is closely 

related to type 2 diabetic mellitus, and EPB41L4A-AS1 

knockdown can enhance the inflammatory response 

[44]. Zheng et al. identified 11 hub lncRNAs in ischemic 

stroke based on subpathway-LNCE method, including 

EPB41L4A-AS1 [45]. Furthermore, LINC01089 has 

been found to be a potential therapeutic target for  

acute ischemic stroke [46]. In this study, we also  

found that EPB41L4A-AS1 and LINC01089 were 

correlated with hsa-miR-3611 and hsa-miR-4424, 

respectively. Therefore, we hypothesized that the hsa-

miR-3611/EPB41L4A-AS1/CCR7 axis and hsa-miR-

4424/ LINC01089/SLC2A3 axis play a moderating  

role in the progression of CIS. So far, no relevant 

research on hsa-miR-3611 and hsa-miR-4424 has been 
found in brain diseases. The specific mechanism of  

hsa-miR-3611/EPB41L4A-AS1/CCR7 axis and hsa-

miR-4424/LINC01089/SLC2A3 in CIS needs a lot of 

experiments for further verification. In addition, the 

correlation between hub mRNAs and immune cells  

was also analyzed. The results showed that Macrophage 

has the highest negative correlation with CCR7 (−0.61), 

while Neutrophil has the highest positive correlation 

with SLC2A3 (0.76). Macrophages are one of the  

major cellular contributors to neuroinflammation [47]. 

The blocking of Macrophage infiltration may also be 

associated with reduced the infarct size and mitigated 

neurological deficits in mice after ischemic stroke [48]. 

Stroke attracts Neutrophils to injured brain tissue, where 

they can disrupt the integrity of the blood-brain barrier 

and exacerbate lesions [49]. Neutrophils are a precursor 

of brain injury after ischemic stroke and are associated 

with poor prognosis after stroke [50]. Therefore, we 

speculated that CCR7 and SLC2A2 may also be 

involved in regulating the immunomodulatory effects of 

Macrophages and Neutrophils and play a role in the 

brain injury of CIS.  

 

In this study, we also obtained drugs related to JAK2, 

S100A12, SLC2A3 and TLR4 based on the DGIdb 

database. Ruxolitinib, formerly known as INCB018424 

or INC424, is a potent inhibitor of JAK1 and JAK2 

[51]. A previous study has shown that ruxolitinib 

treatment can improve the neurological score, reduce 

the infarct size, improve cerebral edema and inhibit the 

expression of pro-inflammatory factors in stroke [28]. 

At a certain dose, short-term methotrexate may reduce 

the risk of ischemic stroke in rheumatoid arthritis 

patients [52]. Resveratrol preconditioning significantly 

improved neurological function, reduced infarct volume 

and reduced neuronal apoptosis in vivo and in vitro  

after stroke [53, 54]. In the rat model of ischemic 

stroke, resveratrol treatment not only significantly 

reduced infarction, but also improved motor and 

cognitive function. In addition, resveratrol pretreatment 

also improved the markers of oxidative stress [55]. 

Resatorvid, also known as TAK-242, is a small 

molecule specific inhibitor of TLR4 signaling that 

inhibits the production of inflammatory mediators  

by binding to TLR4 [56]. TAK-242 is able to cross  

the blood-brain barrier and block TLR4 signaling, 

mediating the expression of inflammatory cytokines, 

and protecting the brain from I/R-induced acute 

damage [57]. When the binding energy between the 

drug and the target protein is the lowest, it shows the 

best conformation and the interaction mode between 

the drug molecule and the target protein. In this 

study, the lowest binding energies between drugs  

and target proteins were all less than −1.19423 

kcal/mol. Binding energy less than −1.19423 

kcal/mol is the basis for screening candidate targets 
of active ingredients [18, 19]. This again proves that 

ruxolitinib, methotrexate, resveratrol and resatorvid 

have important value in the treatment of CIS. In 
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addition, other drugs identified may also play a role 

in CIS treatment, but the specific mechanism of 

action still needs further study. 

 

However, this experiment still has a certain degree  

of limitations. First, the identified hub mRNAs and 

classification diagnostic models lack clinical verification. 

Therefore, a large number of clinical samples need to  

be collected in the later period for further research. 

Secondly, the specific mechanism of key signaling 

pathways and important molecules in CIS is still 

unclear, so a large number of experimental studies are 

needed in the later stage.  

 

CONCLUSION 
 

In conclusion, the identification of hub miRNAs and  

the construction of classification models provide a 

theoretical basis for the diagnosis and management of 

CIS. Moreover, inhibition of SAP30 expression in CIS 

may reduce cell apoptosis and inhibit ROS and MDA 

production, thus playing a regulatory role in disease 

progression. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The ROC curves of CCR7 (A), JAK2 (B), S100A12 (C), SAP30 (D), SLC2A3 (E) and TLR4 (F) in the GSE58294 dataset. 

 



www.aging-us.com 15181 AGING 

 
 

Supplementary Figure 2. The ROC curves of CCR7 (A), JAK2 (B), S100A12 (C), SAP30 (D), SLC2A3 (E) and TLR4 (F) in the GSE16561 dataset. 

 

 
 

Supplementary Figure 3. The ROC curves of MLP classification model in GSE58294 (A) and GSE16561 (B) datasets. 
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Supplementary Tables 
 

Supplementary Table 1. Detailed information of the datasets selected in this study. 

GEO ID Platform Year Omics 
Sample 

type 
Author Samples size 

GSE58294 
GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array 

2014 mRNA blood StamovaBB 
CIS:  

Control = 69:23 

GSE16561 
GPL6883 Illumina HumanRef-8 v3.0 
expression beadchip 

2010 mRNA blood BarrTL 
CIS:  

Control = 39:24 

GSE95204 
GPL18058 Exiqon miRCURY LNA microRNA 
array, 7th generation [miRBase v18, condensed 
Probe_ID version] 

2017 miRNA blood Deng Z 
CIS:  

Control = 3:3 

 

 

Supplementary Table 2. Primer sequences used for the RT-PCR. 

Primer name Primer sequence (5′ to 3′) 

Human ACTB/Actin-F (internal reference) 5′-GACAGGATGCAGAAGGAGATTACT-3′ 

Human ACTB/Actin-R (internal reference) 5′-TGATCCACATCTGCTGGAAGGT-3′ 

CCR7-F 5′-GTGATCGGCTTTCTGGTCCC-3′ 

CCR7-R 5′-GACCACAGCGATGATCACCTTG-3′ 

S100A12-F 5′-CTTCCACCAATACTCAGTTCG-3′ 

S100A12-R 5′-GCAAGCTCCTTTGTAAGCA-3′ 

SAP30-F 5′-AACGCCAGCTTCAGCAAGA-3′ 

SAP30-R 5′-TGTAAAGATGCCTTGCGCTCT-3′ 

SLC2A3-F 5′-GCTCTTTCCAATTTGGCTACAAC-3′ 

SLC2A3-R 5′-GCATTTCCCTTGTCCGTCA-3′ 

 


