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INTRODUCTION 
 

White matter hyperintensities (WMH), referred to as 

white matter lesions or leukoaraiosis, are commonly 

defined as areas of high signal intensity on magnetic 

resonance imaging (MRI) T2-weighted or fluid-

attenuated inversion recovery (FLAIR) images with low 

signal intensity on T1-weighted images [1]. WMH is 

one of the most important radiological manifestations of 

cerebral small vessel disease (CSVD), the main cause of 

cognitive impairment and vascular dementia [2, 3]. The 

incidence and severity of WMH are known to increase 

with age [4]. The prevalence of WMH ranges from 5% 

to 90%, depending on study design, study population, 

and rating scales [4]. In the general population, WMH 

affects about 90% of individuals aged 60 years or older 

[5], with more than 90% of those aged 80 years or older 

exhibiting some degree of WMH [4]. The pathological 

mechanism of WMH is complex, involving ischemia, 

demyelination, blood-brain barrier dysfunction, altered 

microglial expression, and inflammation [6]. 
 

The central nervous system (CNS) anatomically 

comprises gray matter and white matter based on tissue 
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ABSTRACT 
 

White matter hyperintensities (WMH) and gamma-aminobutyric acid (GABA) are associated with executive 
function. Multiple studies suggested cortical alterations mediate WMH-related cognitive decline. The aim of 
this study was to investigate the crucial role of cortical GABA in the WMH patients. In the 87 WMH patients (46 
mild and 41 moderate to severe) examined in this study, GABA levels in the anterior cingulate cortex (ACC) and 
posterior cingulate cortex (PCC) assessed by the Meshcher-Garwood point resolved spectroscopy (MEGA-
PRESS) sequence, WMH volume and executive function were compared between the two groups. Partial 
correlation and mediation analyses were carried out to examine the GABA levels in mediating the association 
between WMH volume and executive function. Patients with moderate to severe WMH had lower GABA+/Cr in 
the ACC (p = 0.034) and worse executive function (p = 0.004) than mild WMH patients. In all WMH cases, the 
GABA+/Cr levels in the ACC mediated the negative correlation between WMH and executive function (ab: 
effect = −0.020, BootSE = 0.010, 95% CI: −0.042 to −0.004). This finding suggested GABA+/Cr levels in the ACC 
might serve as a protective factor or potential target for preventing the occurrence and progression of 
executive function decline in WMH people. 
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color. Gray matter mostly comprises neuronal cell 

bodies, glial cells, and dendrites, while white matter 

primarily comprises myelinated axonal fibers extending 

from the neuronal soma and glial cells [7]. White matter 

plays an important role in connecting various gray 

matter regions, enabling coordinated cognitive function 

within the brain. Executive function refers to multiple 

high-level cognitive processes required for goal-

directed behavior [8]. Generally, higher executive 

function is associated with reduced risk of external or 

internal interference. Evidence suggests WMH are 

associated with cognitive impairment, particularly in 

terms of executive function [9–11]. As the volume of 

WMH increases, executive function tends to decline. 

Moreover, increasing evidence indicates that cortical 

thickness or gray matter volume mediates the declined 

memory and executive function detected in clinical 

WMH [12, 13]. 

 

Gamma-aminobutyric acid (GABA), an amino acid 

neurotransmitter in the CNS, plays a role in suppressing 

neuronal excitability and reducing energy consumption 

[14]. Multiple studies have shown that the homeostasis 

of the nervous system relies on the balance between 

excitation and inhibition [14, 15]. GABA levels are 

tightly associated with cognitive function [16, 17], and a 

genome-wide study demonstrated executive function  

is affected by GABAergic processes [18]. Proton 

Magnetic Resonance Spectroscopy (1H-MRS) is a non-

invasive tool for detecting endogenous neurochemicals. 

It relies on the principle that radiofrequency signals 

emitted by hydrogen nuclear spins exhibit chemical 

specificity, manifesting as distinct peaks in the 

spectrum [19]. However, due to low brain GABA 

levels (approximately 1 mmol/L) and the overlap of 

GABA peaks with other metabolites’ peaks, detecting 

GABA levels accurately is hardly achieved by the 

traditional MRS [20]. The emerging Meshcher-

Garwood point-resolved spectroscopy (MEGA-PRESS) 

sequence, incorporating the J-difference spectrum 

editing technology, is effective for rapid and accurate 

quantitation of GABA levels [21]. This tool also 

effectively captures glutamate-glutamine (Glx) signals 

due to structural and chemical similarities between Glx 

and GABA [22]. Current clinical studies examining 

CSVD have particularly focused on identifying 

appropriate imaging markers, including brain networks, 

WMH, cortical thickness, gray matter volume, and 

metabolism [23–25]. While studies have investigated 

neurochemical metabolites in WMH lesions and grey 

matter (18F)-fluorodeoxyglucose (FDG) in relation to 

WMH lesions [26, 27], the relationship between WMH 

and cortical GABA levels is rarely examined. 

 

The anterior cingulate cortex (ACC) and posterior 

cingulate cortex (PCC) are critical brain regions of the 

limbic system. They were in the superior and posterior 

parts of the corpus callosum, respectively. Broadly 

speaking, the ACC is associated with emotion and 

executive function, and the PCC as an important node 

within the default mode network (DMN) connects with 

regions involved in memory, emotion and executive 

control [28–30]. Additionally, these two regions also 

exhibit metabolic differences. Research indicated that 

the PCC had greater acetylcholine receptor binding 

densities than the ACC [31]. Previous studies supported 

that cognitive function was sensitive to cerebral GABA 

concentrations in the frontal cortex. Moreover, GABA 

concentration in frontal and posterior regions continued 

to decline in later age, and decrease in GABA with age 

in the frontal region was more rapid in women than men 

[32, 33]. 
 

The purpose of the study was to investigate the crucial 

role of cortical GABA in the WMH patients from 

following three specific aspects: (i) to compare GABA 

levels in the ACC and the PCC and executive function 

between the mild WMH and moderate to severe WMH 

groups; (ii) to analyze correlations among WMH volume, 

GABA levels in the ACC and the PCC, and executive 

function; iii) to explore whether GABA levels in the 

ACC and the PCC mediate the association between 

WMH and executive function in WMH patients. 

 

MATERIALS AND METHODS 
 

Patients 

 

The Ethics Committee of Union Hospital, Tongji 

Medical College, Huazhong University of Science and 

Technology approval and informed consent from each 

subject were obtained prior to study initiation. Ninety 

individuals, including 48 mild and 42 moderate to severe 

WMH cases were initially recruited from the neurology 

clinics of Union Hospital, Tongji Medical College, 

Huazhong University of Science and Technology. All 

participants underwent neuropsychological evaluation 

and MRI scanning. A radiology expert assessed all 

images based on the Fazekas score [34] (mild and 

moderate to severe WMH were defined as Fazekas scores 

of 1–2 and 3–6 on FLAIR images, respectively). Two 

mild WMH cases with motion artifacts during the 

scanning process and 1 moderate to severe WMH case 

with poor post-processing spectral fitting were excluded. 

Therefore, 46 mild and 41 moderate to severe WMH 

cases were finally included. All study participants (a) 

were between 50 and 80 (inclusive) years old; (b) were 

right-handed; (c) had no dementia (Montreal cognitive 

assessment, MoCA score ≤19 [35, 36]). Exclusion 

criteria were: (a) a history of symptomatic cerebro-

vascular disease or >50% stenosis of intracranial and 

extracranial arteries; (b) WMH mimics (e.g., neuro-
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degenerative disorders, multiple sclerosis, trauma, 

infection, poisoning, hypoxic-ischemic encephalopathy, 

and leukodystrophy); (c) major psychiatric diseases (e.g., 

severe major depression, severe anxiety, and bipolar 

disorder); (d) recent or current administration of 

acetylcholinesterase inhibitors, neuroleptic agents, L-

dopa, or dopa-a (nta) agonists; (e) significant visual or 

hearing impairment; (f) MRI contraindications, e.g., 

metal implants, pacemakers and claustrophobia. The 

study flowchart is depicted in Figure 1. 

 

Neuropsychological assessment 

 

All individuals underwent neuropsychological 

assessment by a neuropsychologist. Global cognition 

was assessed by the Beijing version of the MoCA 

(MoCA-BJ) [37]. The auditory verbal learning test 

(AVLT) [38], including immediate recall, delayed 

recall, cued recall, and recognition, was utilized to 

examine individual episodic memory performance. 

Attention and executive function were assessed by the 

shape trail test (STT) [39], a modified version of the 

traditional trail-making test, and the Digit Span Test 

[40], which has two parts, i.e., forward digit span test 

(FDS) and backward digit span test (BDS). In which the 

FDS and STT-A measured attention whereas the BDS 

and STT-B measured execution [41]. However, some 

research used the BDS to assess working memory [42, 

43], which is one of the types of executive function. 

Raw examination scores were z-transformed, with 

greater z-scores representing higher cognitive function. 

Subsequently, the z-score of every domain was obtained 

by averaging the z-scores of the related tests [44]. The 

emotional state was evaluated by the Hamilton 

Depression Rating Scale (HAMD) and the Hamilton 

Anxiety Rating Scale (HAMA). Individuals with 

HAMD score ≥24 [45] or HAMA score ≥29, indicating 

severe depression or anxiety, were excluded. 

 

Neuroimaging 

 

All participants underwent scanning on a 3.0T scanner 

(Philips Achieva TX; Philips, Best, The Netherlands) 

utilizing a 32-channel phased-array head coil. The 

experimental protocol involved using magnetization-

prepared turbo field echo sequences to acquire 3D high-

resolution T1-weighted images with the following 

settings: repetition time (TR), 5.8 ms; echo time (TE), 

2.7 ms; field of view (FOV), 220 × 220 × 180 mm3; 

voxel size, 1 × 1 × 1 mm3; acquisition time, 4:13 min; 

slice thickness, 1 mm. 3D FLAIR images were acquired 

utilizing a TSE sequence with the following settings: 

TR, 4800 ms; TE, 307 ms; FOV, 220 × 220 × 150 mm3; 
voxel size, 1 × 1 × 2 mm3; acquisition time, 1:41 min; 

slice thickness, 2 mm; flip angle, 90°; in-plane 

resolution, 1 × 1 mm2. 

The MEGA-PRESS sequence, a J-difference spectrum 

editing technology, was employed to obtain GABA+ 

and Glx concentrations relative to creatine (Cr). It 

employed an interleaved acquisition protocol to obtain 

metabolite concentration, with frequency-selective and 

refocusing Gaussian pulses applied at 1.89 ppm (ON 

spectrum) and 7.46 ppm (OFF spectrum), respectively, 

during odd and even scanning. The ACC (volume of 30 

× 30 × 20 mm³) and the PCC (volume of 30 × 30 × 20 

mm³) were considered the regions of interest (ROIs) 

based on 3D high-resolution T1-weighted images 

(Figure 2A, 2B), avoiding lateral ventricles and the 

skull. The midsagittal plane was selected as the 

reference plane for voxel positioning. ACC and PCC 

voxels were in the superior and posterior parts of the 

corpus callosum, respectively, aligning with the shape 

of the corpus callosum and situated medial to the axial 

plane. The sequence settings were as follows: TR, 2000 

ms; TE, 68 ms; 1024 points, averaging 160 (80 ON and 

80 OFF resonance pulses); spectral bandwidth, 2000 

Hz; acquisition time, 5:40 min per voxel (total scanning 

time of 11:20 min). Water suppression was carried out 

by the variable power and optimized relaxation delay 

(VAPOR) method. 

 

Data postprocessing 

 

MRS processing 

Head movement was suspected when artifacts, 

including line splitting and signals from outside the 

region of interest (e.g., subcutaneous lipid signals in 

brain MRS), were found in spectra [46]. Head motion 

artifacts were addressed by the following approaches: 

(1) head fixation with a sponge pad and noise-canceling 

headphones before the scan; (2) B0 shim correction 

during data acquisition; and (3) automatic frequency 

and phase correction, artifact suppression based on 

frequency deviation (>3 SD mean), and 3 Hz 

exponential line-broadening during data preprocessing. 

 

The Gannet3.1 toolbox (https://github.com/richardedden/ 

Gannet3.1), based on MATLAB, was utilized to 

quantitate metabolite signals (Figure 2C, 2D). 

Subtracting spectrum images (ON-OFF), the 

concentrations of metabolites were estimated by fitting 

Gaussian curves to the 3.02 ppm peak (GABA+) and 

double Gaussian curves to the 3.74 ppm (Glx) peak and 

scaling them relative to Cr, which is more stable and 

robust compared with water referencing [47, 48]. And 

these relative values may effectively reduce the 

systematic errors from inhomogeneities of both the B0 

and B1 magnetic fields when using an external reference 

[49]. The signal detected by MEGA-PRESS at 3.02 ppm 
was referred to as “GABA+” instead of GABA because 

of the mixture of contributions from GABA, macro-

molecules, and homocarnosine. We maintained the full 
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width at less than 20 Hz at half-maximum (FWHM) 

values to control the quality of MRS data. Meanwhile, 

individual metabolite ratios with FitError above 15% 

were excluded. 

 

 
 

Figure 1. Flowchart for study recruitment. 

 

 
 

Figure 2. MRS voxel positions for mild WMH (A) and moderate to severe WMH participants (B). The bar color reflects the degree of 

overlap between individual voxels; the brighter the color, the higher the overlap. The coordinates for the transverse, coronal, and sagittal 
planes of the ACC are (90 90 158), while those for the PCC are (109 92 92). (C) GannetLoad output showing spectra pre (red line) and post 
(blue line) frequency and phase correction. (D) GannetFit output showing fitted GABA+/Cr and Glx/Cr signals: blue line, experimental data; 
red line, fitted data; black line, residual data. Abbreviations: ACC: anterior cingulate cortex; PCC: posterior cingulate cortex. 
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Region of interest positioning and segmentation 

 

Figure 2A, 2B illustrate average voxel positions for 

both voxels, after transformation to Montreal 

Neurological Institute (MNI152) space with the FSL 

software (FMRIB SOFTWARE LIBRARY, Oxford 

UK, FSL version 6.0). The 3D high-resolution T1-

weighted images were transformed into the MNI 

space following the structural image processing 

pipeline from the UK Biobank [50]. We first reduced 

FOV of T1 images by cutting down non-brain tissue 

using BET [51] and FLIRT [52], in conjunction with 

the MNI152 “nonlinear 6th generation” standard-

space T1 template15. This results in a reduced-FOV 

T1 head image and the linear transformation  

matrix from T1 space to MNI space. A non-linear 

registration to MNI152 space was carried out using 

FNIRT [53] to obtain the non-linear warp field. Then 

linear transformation matrix and non-linear warp 

field were combined to generate the final non-linear 

transformation, which allows the original T1 to be 

transformed into MNI152 space in a single step. The 

final non-linear transformation was then applied to 

the MEGA-PRESS ROIs in subject space from 

Gannet3.1 package to transform them to MNI152 

space. 

 

The proportions of white matter (WM), gray matter 

(GM), and cerebrospinal fluid (CSF) in the voxels 

affected metabolite levels in both groups. Therefore, 3D 

high-resolution T1-weighted images were first 

converted to the NIfTI format with MRIcroGL 

(https://www.nitrc.org/projects/mricrogl/), followed by 

the application of SPM12 (http://www.fil.ion.ucl.ac.uk 

/spm/software/spm12/) to segment and measure GM, 

WM, and CSF volumes within each MRS voxel. The 

GM/(GM + WM) ratio for each voxel was subsequently 

determined manually. 

WMH measurement 

 

The volumes of white matter hyperintensities were 

derived with FSL’s Brain Intensity AbNormality 

Classification Algorithm (BIANCA) [54] following 

the UK Biobank image processing pipeline [50] and 

FMRIB’s Automated Segmentation Tool (FAST) 

[55]. The main procedures included: (a) generating a 

white matter mask with FAST, (b) generating a 

WMH mask with BIANCA in T1 space using  

a threshold of 0.8, which has achieved good 

segmentation performance according to visual check 

by an experienced neuro radiologist Dr. Wang, and 

(c) filtering non-WM voxels in the WMH mask with 

the white matter mask. Then, segmentation for every 

patient was manually checked and revised with ITK-

SNAP (http://www.itksnap.org/) by Dr. Zhu. A 

representative segmentation of WMH volume is 

shown in Figure 3. 

 

Statistical analysis 

 

Differential comparisons and correlation analysis 

SPSS (version 25.0; SPSS Inc., Chicago, IL, USA) was 

used for all statistical analyses, and GraphPad Prism 

(version 9.4.0) was employed for graphing. Data 

distribution was assessed by the Shapiro-Wilk test. 

Differences between groups were assessed by the 

Mann-Whitney U test and independent samples t test. 

Count data were compared by the χ2 test. A general 

linear model was applied to determine group differences 

in metabolite ratios, and neurocognitive z-scores, with 

age, gender, and education in years as covariates. Partial 

correlation analyses were performed to determine the 

correlations of metabolites, WMH volume, and 

executive function, with age, gender, and education in 

years as covariates. P < 0.05 was considered statistically 

significant. 

 

 

 
 

Figure 3. Segmentation of WMH volumes in the transverse (A), coronal (B), and sagittal (C) positions on FLAIR images. The white color 

represents the automatically segmented WMH range. WMH, white matter hyperintensities. 
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Mediation analysis 

 

Mediation analysis used PROCESS for SPSS v3.5 

framework [56]. WMH volume was defined as the 

predictor (X), the metabolite ratios of the ACC and the 

PCC as the mediator (M), and cognitive function as the 

outcome (Y). This method partitions the total effect 

(denoted as c) shared by X and Y into two 

components: one mediated by M (indirect effect; ab) 

and the other independent of M (direct effect; c’). All 

associations of mediators with outcomes were 

determined after adjustment for age, gender, and 

education. We primarily examined the overall 

association between WMH volume and cognitive 

function (total effect; c). Secondly, WMH-metabolite 

ratios (path a) and metabolite ratios-cognitive function 

(path b) were independently assessed. We next tested 

the mediating effect of GABA on the association 

between WMH volume and cognitive function 

(path ab). Finally, the relationship between WMH 

volume and executive function was determined after 

removing the mediating effect (direct effect, c’). The 

bootstrap method (n = 5,000) was utilized for 

mediation analysis, with significant indirect effects 

defined as 95% confidence intervals (CI) fully above 

or below zero. 

 

RESULTS 
 

Demographic and neuropsychological parameters 

 

The demographic data and neurocognitive properties of 

the participants are summarized in Table 1. The 

moderate to severe WMH group had elevated age 

compared with the mild WMH group (p = 0.013). No 

significant differences were detected in gender (p = 

0.412), BMI (p = 0.858), education (p = 0.376), diabetes 

(p = 0.841), hypertension (p = 0.193), hyperlipemia (p = 

0.879), smoking (p = 0.592) and drinking (p = 0.105) 

between the two groups. There were no differences in 

emotional state (HAMA, p = 0.507; HAMD, p = 0.197) 

and global cognition (MoCA, p = 0.834). The moderate 

to severe WMH group showed worse executive function 

(p = 0.004) than mild WMH groups; however, no 

differences were found in episodic memory (p = 0.141) 

and attention (p = 0.436), with age, gender, and 

education in years as covariates. 

 

Metabolite concentrations 

 

The metabolite data of all participants are shown in 

Table 2 and Figure 4 GABA+/Cr (p = 0.034) ratios 

were reduced in the moderate to severe WMH group 

compared with mild WMH cases, after adjustment for 

age, gender, and education. However, no significant 

differences were found in Glx/Cr levels in the ACC (p = 

0.676) and in GABA+/Cr (p = 0.302) and Glx/Cr (p = 

0.668) levels in the PCC. 

 

ROI segmental data and MRS quality 

 

In the moderate to severe WMH group, GM/(GM + 

WM) averaged 54.54% and 58.15% in the ACC and the 

PCC, respectively, versus 54.02% and 59.28% in mild 

WMH cases, respectively (Table 2). Meanwhile, no 

significant differences were found in GM/(GM + WM), 

fitting errors of metabolite ratios, and FWHM between 

the two groups in each voxel (all p > 0.05) (Table 2). 

 

Relationships among WMH burden, neuro-

metabolites, and cognitive function 

 

In all WMH patients, a negative correlation was found 

between WMH volume and GABA levels in the ACC (r 

= −0.286, p = 0.008, Figure 5A), but not in the PCC (p 
> 0.05). Glx levels in both regions were not associated 

with WMH burden in the whole brain (all p > 0.05). 

WMH burden was negatively correlated with executive 

function (r = −0.397, p < 0.001, Figure 5B), but not 

with attention (r = −0.177, p = 0.108) and memory (r = 

−0.005, p = 0.967). 

 

In all WMH patients, significant positive correlations 

were found between GABA+/Cr in both regions and 

executive function (ACC, r = 0.342, p = 0.001; PCC, r = 

0.241, p = 0.027; Figure 5C and Supplementary Table 

1) and attention (ACC, r = 0.237, p = 0.030; PCC, r = 

0,225, p = 0.040; Supplementary Table 1), after 

adjustment for age, gender, and education. However, 

GABA+/Cr levels in both regions were not correlated 

with memory. In addition, no associations were found 

between Glx/Cr in both regions and cognitive function 

(all p > 0.05), except for Glx/Cr that was correlated with 

memory in the PCC (r = 0.295, p = 0.007, 

Supplementary Table 1). 

 

Mediation analysis of WMH volume on cognitive 

performance through neurometabolites 

 

The neurometabolites mediating the association of 

WMH with executive function in the ACC are 

summarized in Figure 6 and Supplementary Table 2. 

The total and direct effects of WHH volume on 

executive function mediated through GABA+/Cr in the 

ACC were significant (c: effect= −0.109, β= −0.407, 

p < 0.001, c’: effect= −0.090, β= −0.334, p = 0.002) in 

all WMH patients. The indirect effect of this model was 

also significant (ab: effect= −0.020, BootSE = 0.010, 

95% CI: −0.042 to −0.004). However, GABA+/Cr 
levels in the PCC and Glx/Cr amounts in both regions 

had no mediation effects. There were no mediating 

effects of WMH volume on attention and memory 
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Table 1. Demographic, clinical and neuropsychological characteristics of participants. 

 mild WMH (n = 46) moderate to severe WMH (n = 41) p-value 

Age (years) 62.07 ± 5.23 64.92 ± 5.31 0.013* 

Gender (F/M) 34/12 27/14 0.412 

BMI (kg/m2) 23.55 ± 2.60 23.66 ± 3.11 0.858 

Edu (years) 10.5 (8–12) 11 (9–12) 0.376 

Diabetes, n (%) 5 (10.9) 3 (7.3) 0.841 

Hypertension, n (%) 14 (30.4) 18 (43.9) 0.193 

Hyperlipemia, n (%) 15 (32.6) 14 (34.1) 0.879 

Smoking, n (%) 8 (17.4) 9 (22.0) 0.592 

Drinking, n (%) 6 (13.0) 11 (26.8) 0.105 

WMH volume (cm3) 0.86 (0.49–1.26) 4.35 (2.70–7.99) <0.001*** 

HAMA 3.5 (0.25–6.75) 2 (0–4.0) 0.507 

HAMD 2.5 (0–5.75) 1 (0–4.0) 0.197 

Global cognition 

MoCA 24(21.25–27) 25(22-27) 0.834 

Episodic memory 

AVLT-immediate recall 14 (13–17) 14 (12–17.5) 0.151 

AVLT-delayed recall 9.33 ± 4.50 8.41 ± 4.62 0.354 

AVLT-cued recall 4.50 ± 2.44 3.85 ± 2.22 0.202 

AVLT-recognition 21 (20–22) 19 (17–22) 0.287 

Attention 

FDS 7 (6–8) 8 (6–8) 0.799 

STT-A 62.65 ± 20.24 67.54 ± 21.18 0.275 

Executive function 

BDS 4 (4–5) 4 (3–5) 0.054 

STT-B 152.35 ± 35.76 174.66 ± 42.51 0.009** 

Neuropsychological z-scoresa 

Episodic memory 0.11 ± 0.81 −0.12 ± 0.88 0.141  

Attention 0.07 ± 0.84 −0.08 ± 0.90 0.436 

Executive function 0.22 ± 0.75 −0.25 ± 0.84 0.004** 

Data are mean ± SD, number (percentage), or median (IQR, interquartile range). Abbreviations: WMH: white matter 
hyperintensities; HAMA: Hamilton anxiety scale; HAMD: Hamilton depression scale; MoCA: Montreal cognitive assessment; 
AVLT: Auditory Verbal Learning Test; BDS: Digit span test backward; FDS: Digit span test forward; STT: Shape Trail Test. 
aCognitive z-scores were corrected for age, sex and education level. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Table 2. MRS analysis and tissue segmentation in the measured voxels. 

 mild WMH (n = 46) moderate to severe WMH (n = 41) p-value 

ACC    

GABA+/Cra 0.10 (0.09–0.11) 0.10(0.09–0.11) 0.034* 

Glx/Cra 0.07 (0.07–0.08) 0.07 (0.06–0.08) 0.676 

GABA+ fitting errors (%) 8.00 (6.71–9.78) 8.17 (6.15–9.91) 0.683 

Glx fitting errors (%) 7.62 (6.27–8.89) 7.11 (6.23–10.89) 0.766 

FWHM (Hz) 9.16 (8.67–9.49) 9.16 (8.54–9.58) 0.990 

GM/(GM + WM) (%) 54.02 ± 4.45 54.54 ± 5.54 0.637 

PCC    

GABA+/Cra 0.12 (0.11–0.13) 0.12 (0.11–0.13) 0.302 

Glx/Cra 0.06 (0.06–0.07) 0.07 (0.06–0.07) 0.668 
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GABA+ fitting errors (%) 6.66 (5.65–7.60) 7.00 (5.97–7.78) 0.575 

Glx fitting errors (%) 7.08 (6.08–9.18) 7.13 (6.00–7.99) 0.560 

FWHM (Hz) 8.97 (8.57–9.25) 8.91 (8.79–9.16) 0.710 

GM/(GM + WM) (%) 59.28 ± 3.36 58.15 ± 4.91 0.218 

Data are mean ± SD, or median (IQR, interquartile range). Abbreviations: WMH: white matter hyperintensities; GABA+: GABA 
plus co-edited macromolecules and homocarnosine; Glx: glutamate-glutamine; FWHM: full-width at half-maximum; GM: gray 
matter; WM: white matter. aAfter correction for age, gender, and education level. Data are median (IQR, interquartile range). 
*p < 0.05, **p < 0.01, ***p < 0.001. 
 

through GABA+/Cr or Glx/Cr in both regions 

(Supplementary Tables 3 and 4). 

 

DISCUSSION 
 

This study demonstrated the moderate to severe WMH 

group had reduced executive function compared with 

mild WMH cases. GABA+/Cr levels in the ACC were 

significantly decreased in the moderate to severe WMH 

group compared with mild WMH patients. However, no 

significant differences were found in Glx/Cr in the ACC 

and in both metabolites in the PCC. In addition, WMH 

volume was correlated with GABA levels in the ACC, 

as well as executive function in all WMH participants. 

This study revealed GABA levels in the ACC mediated 

the association between WMH and executive function 

in WMH patients, while GABA levels in the PCC and 

Glx in both regions had no mediating effects. 

This study demonstrated the moderate to severe WMH 

patients were older and had worse executive function 

compared with mild WMH group, corroborating 

previous studies [4, 13]. Research indicated that 

executive function referred to a series of high-level 

cognitive control abilities necessary for goal 

achievement, such as working memory, response 

inhibition, selection among competing options and 

task switching [19]. And some studies used BDS to 

assess working memory [42, 43]. Therefore, we need 

incorporate a broader range of scales to 

comprehensively evaluate executive function in the 

future study. However, there were no significant 

differences in episodic memory and attention between 

the two groups, contradicting previous research [57, 

58]. This discrepancy may be attributed to the small 

sample size and the use of different assessment scales. 

In addition, WMH volume was negatively correlated 

 

 
 

Figure 4. Distributions of GABA+/Cr (A) and Glx/Cr (B) levels in the ACC and the PCC. *p < 0.05. 

 

 
 

Figure 5. Partial correlations among WMH volume (A, B), GABA+/Cr levels in the ACC (A, C), and executive function (B, C) in all WMH 

participants, with age, gender, and education as covariates. 
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with executive function in WMH patients. White matter 

comprises structural connections linking various regions 

of gray matter throughout the brain. These white matter 

bundles are capable of transmitting information that  

is essential for diverse cognitive functions, including 

memory, attention, and execution [7]. A report 

demonstrated WMH impair fiber connections within the 

brain, reducing executive function [24]. Previous 

studies showed a negative correlation between WMH 

burden and executive function [11, 30], with increased 

WMH burden and declined executive function. These 

findings jointly suggested a significant correlation 

between WMH and executive function, which was 

further supported by the current findings. This 

correlation may be attributed to the fact that elevated 

WMH volume results in more pronounced damage to 

the pathways responsible for information transmission. 

 

There was a significance between group difference in 

GABA+/Cr levels in the ACC. Homeostasis of the 

central nervous system depends on the balance between 

excitatory and inhibitory neurotransmitters [14, 15]. 

Previous reports demonstrated reduced GABA or Glx 

levels in the ACC and the PCC in individuals with 

multiple disorders, including multiple sclerosis, 

schizophrenia, and mild cognitive impairment [59–61]. 

This study found that moderate to severe WMH patients 

had severely impaired executive function. Therefore, 

the decreased GABA levels in the ACC obtained in this 

study were possibly due to CNS disturbance caused  

by moderate to severe WMH. In physiological 

mechanisms, GABAergic/glutamatergic neurons depend 

on a continuous supply of glutamine (Gln, a precursor 

of glutamate and GABA) from astrocytes, for further 

synthesis of GABA or Glu. System A transporters in 

neurons and system N transporters in astrocytes mediate 

Gln transport between astrocytes and neurons [14]. The 

decreased GABA+/Cr in this study was probably due to 

neuronal loss, reduced GABA synthesis, or altered 

astrocyte cycle of GABA, Glu, and Gln. We found no 

significant differences in metabolites in the PCC, which 

could be attributed to the small sample size or 

population heterogeneity. Therefore, large studies are 

required to further investigate differences in neuro-

transmitters between the two groups. 

 

We also revealed a significant inverse relationship 

between GABA levels in the ACC and WMH volume, 

as well as a positive correlation between GABA levels 

and executive function in all WMH patients. Imaging 

studies reported disrupted brain networks and brain 

atrophy mediate the association of WMH with cognitive 

impairment [13, 62, 63]. Additionally, the relationship 

between WMH and cortical FDG uptake was examined 

in elderly hypertensive patients with subjective memory 

symptoms [64], demonstrating a negative correlation 

between Fazekas score and cortical FDG uptake. These 

findings jointly emphasized the tight connection 

between gray and white matter in the brain, which was 

further supported by the current results using the 

imaging marker GABA. However, the relationship 

between execution and GABA has been controversial in 

previous reports. A study showed higher GABA levels 

in dorsal ACC are associated with improved executive 

function [29]. The current results were highly consistent 

with this finding. However, a previous report found 

 

 
 

Figure 6. Mediation effects of GABA+/Cr levels in the ACC on the association between WMH volume and executive 
function. 
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Glx/total Cr (tCr) levels in the dorsolateral prefrontal 

cortex, but not GABA/tCr, are significantly associated 

with executive function in individuals with amnestic 

mild cognitive impairment (aMCI) [65]. Another study 

detected no significant associations of GABA levels in 

the ACC and the PCC with executive function 

determined by the symbol digit modalities test in aMCI 

patients [61]. The discrepancy was likely due to 

differences in scales used for executive function 

assessment as well as the locations of ROIs. 

Additionally, the WMH patients involved in this study 

included non-demented individuals, which may also 

lead to differences in results compared to MCI studies. 

 

We demonstrated that GABA levels in the ACC 

mediated the relationship between WMH and executive 

function, complementary to many previous studies that 

revealed disrupted brain networks and brain atrophy 

mediated the relationship between WMH and cognitive 

impairment [13, 23]. The neurovascular unit is 

important in CSVD, and comprises neurons, glial cells, 

and cerebral blood vessels jointly working to maintain 

microenvironmental homeostasis and ensure normal 

brain function [66, 67]. White matter primarily consists 

of myelinated axonal fibers, and the pathological 

mechanism of WMH is complex [6]. Therefore, the 

current results suggest that CSVD may induce the 

disruption of white matter fiber bundles, which 

appeared as WMH on FLAIR images. Due to secondary 

degeneration, the damaged fiber bundles also affected 

the axonal cytoskeleton [68] and the cortex, where the 

cortex was characterized by high amounts of neuronal 

cell bodies, including GABA neurons and astrocytes. 

Subsequently, alterations in GABA levels drive changes 

in executive function [18]. This finding not only 

suggested the ACC as an important region in executive 

function but also indicated that GABA content in the 

ACC may serve as a protective factor or a potential 

therapeutic target for impaired executive function in 

WMH populations. 

 

This study had several limitations despite notable 

advancements in the current findings. First, this was a 

cross-sectional study with a small sample size. Future 

large and longitudinal studies are required to further 

validate the reliability of these results and to explore the 

dynamic changes of metabolite levels, WMH volume, 

and execution function in WMH patients. Secondly, 

expanding the scope of future studies by incorporating 

additional brain regions, such as orbitofrontal cortex, 

dorsolateral prefrontal cortex, is crucial to provide a 

more comprehensive understanding of intricate 

relationships among WMH burden, GABA, and 

executive function. Additionally, the measured 

metabolites did not exclusively reflect pure GABA and 

Glu, as GABA+ was a combination of GABA, 

macromolecules, and homocarnosine, while Glx was a 

mixture of Glu and Gln. To precisely detect “pure 

GABA” in WMH patients by GABA-edited MRS, it 

may be necessary to use novel macromolecular 

inhibition techniques since it is unlikely that changes in 

homocarnosine are the primary factor determining the 

observed alterations. Moreover, multiple studies have 

subdivided WMH into different cerebral subregions, 

and future investigation should also assess the 

relationships among WMH, GABA, and executive 

function in specific subregions of the brain. 

 

CONCLUSION 
 

We demonstrated that individuals with moderate to 

severe WMH have reduced executive function and 

decreased GABA+/Cr levels in the ACC compared with 

mild WMH group. Moreover, we revealed that GABA 

in the ACC mediates the association between WMH and 

executive function in WMH patients. These findings not 

only indicated that GABA+/Cr levels in the ACC have a 

vital role, but also suggested GABA levels in the ACC 

may serve as a protective factor or potential target for 

preventing the occurrence and progression of executive 

function impairment in WMH patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Partial correlations between metabolites, WMH volume, and cognitive function. 

 
Executive function Attention Episodic memory 

r p r p r p 

ACC(GABA+/Cr) 0.342 0.001 0.237 0.030 0.121 0.274 

ACC(Glx/Cr) −0.035 0.749 −0.112 0.310 −0.052 0.639 

PCC(GABA+/Cr) 0.241 0.027 0.225 0.040 0.184 0.094 

PCC(Glx/Cr) 0.029 0.790 0.034 0.761 0.295 0.007 

WMH volume (cm3) −0.397 <0.001 −0.177 0.108 −0.005 0.967 

Abbreviations: GABA+: GABA plus co-edited macromolecules and homocarnosine; Glx: glutamate-glutamine; ACC: anterior 
cortical cortex; PCC: posterior cortical cortex. 

 

 

Supplementary Table 2. Mediation effects of metabolites on the association between WMH volume and 
executive function. 

Metabolites Total effect (c) Direct effect (c’) a b Indirect effect (ab) 

 Effect β p Effect β p β p β p Effect BootSE 95% CI 

ACC(GABA

+/Cr) 

−0.109 −0.407 <0.001 

−0.090 −0.334 0.002 −0.267 0.008 0.273 0.018 −0.020 0.010 (−0.042, −0.004) 

ACC(Glx/Cr) −0.111 −0.416 <0.001 −0.111 0.325 −0.080 0.439 0.002 0.004 (−0.003, 0.012) 

PCC(GABA+

/Cr) 
−0103 −0.386 <0.001 −0.104 0.359 0.202 0.045 −0.006 0.007 (−0.022, 0.008) 

PCC(Glx/Cr) −0.110 −0.409 <0.001 0.041 0.714 0.047 0.656 0.001 0.003 (−0.004, 0.009) 

Abbreviations: GABA+: GABA plus co-edited macromolecules and homocarnosine; Glx: glutamate-glutamine; ACC: anterior cortical cortex; PCC: posterior 
cortical cortex. 

 

 

Supplementary Table 3. Mediation effects of metabolites on the association between WMH volume and 
attention. 

Metabolites Total effect (c) Direct effect (c’) a b Indirect effect (ab) 

 Effect β p Effect β p β p β p Effect BootSE 95% CI 

ACC(GABA+/Cr) 

−0.049 −0.171 0.108 

−0.033 −0.115 0.291 −0.267 0.008 0.210 0.074 −0.016 0.011 (−0.041, 0.002) 

ACC(Glx/Cr) −0.052 −0.185 0.083 −0.111 0.325 −0.126 0.226 0.004 0.005 (−0.002, 0.017) 

PCC(GABA+/Cr) −0.043 −0.151 0.151 −0.104 0.359 0.197 0.055 −0.006 0.008 (−0.024, 0.007) 

PCC(Glx/Cr) −0.049 −0.173 0.106 0.041 0.714 0.039 0.709 0.001 0.004 (−0.006, 0.012) 

Abbreviations: GABA+: GABA plus co-edited macromolecules and homocarnosine; Glx: glutamate-glutamine; ACC: anterior cortical cortex; PCC: posterior 
cortical cortex. 
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Supplementary Table 4. Mediation effects of metabolites on the association between WMH volume and 
episodic memory. 

Metabolites Total effect (c) Direct effect (c’) a b Indirect effect (ab) 

 Effect β p Effect β p β p β p Effect BootSE 95% CI 

ACC(GABA+/Cr) 

−0.001 −0.005 0.967 

0.009 0.033 0.777 −0.267 0.008 0.140 0.261 −0.010 0.010 (−0.033, 0.008) 

ACC(Glx/Cr) −0.003 −0.010 0.927 −0.111 0.325 −0.052 0.636 0.002 0.004 (−0.006, 0.011) 

PCC(GABA+/Cr) 0.004 0.014 0.897 −0.104 0.359 0.181 0.095 −0.005 0.008 (−0.026, 0.006) 

PCC(Glx/Cr) −0.005 −0.017 0.877 0.041 0.714 0.294 0.007 0.003 0.009 (−0.015, 0.022) 

Abbreviations: GABA+: GABA plus co-edited macromolecules and homocarnosine; Glx: glutamate-glutamine; ACC: anterior cortical cortex; PCC: posterior 
cortical cortex. 
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