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INTRODUCTION 
 

The reprogramming of energy metabolism, which 

facilitates rapid cellular growth and proliferation 

through the adjustment of energy metabolism pathways, 

has emerged as a defining characteristic of cancer [1]. 

Due to their heterogeneity and complex structure, tumor 

cells engage in diverse metabolic pathways. They not 

only metabolize glucose to generate ATP but also 

utilize other substrates such as glutamine, serine, 

arginine, fatty acids, and various lipid compounds to 

fuel their rapid proliferation [2]. According to recent 

research, HPDL protects cells from oxidative stress by 

changing the metabolic profile of cancer cells, giving 

priority to glutamine metabolism [3]. Undoubtedly, the 

crucial function of the metabolic process of glutamine is 
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ABSTRACT 
 

The 4-Hydroxyphenylpyruvate Dioxygenase-Like (HPDL) protein plays a crucial role in safeguarding cells from 
oxidative stress by orchestrating metabolic reprogramming. New research suggests that HPDL is considerably 
increased in pancreatic ductal adenocarcinoma, although its impact on cancer immunotherapy is still unclear. 
Pancancer transcriptional data were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue 
Expression datasets. The cBioPortal webtool was utilized to examine genomic changes in different cancer types. 
The prognostic significance of HPDL in pancancer was evaluated using univariate Cox regression analysis. 
Extensive utilization of the CTRP and PRISM databases was performed to forecast potential medications that 
specifically target HPDL in LUAD. In summary, studies were conducted to evaluate the impact of HPDL on the 
proliferation and movement of LUAD cells using loss-of-function experiments. HPDL is expressed excessively in 
a wide variety of cancer types, indicating its prognostic and predictive value. Moreover, we emphasized the 
strong correlation between HPDL and indicators of immune stimulation, infiltration of immune cells, and 
expression of immunoregulators. The remarkable finding of the HPDL was its capacity to precisely anticipate 
responses to cancer therapies using anti-PDL1 and anti-PD1 antibodies among individuals. Moreover, HPDL can 
function as a predictive marker for specific inhibitors in instances of cancer. Suppression of HPDL resulted in 
reduced growth and movement of LUAD cells. To summarize, our results suggest that HPDL acts as a 
prospective predictor of outcomes and a positive indication of response to immunotherapy in patients 
undergoing treatment with immune checkpoint inhibitors (ICIs). 
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to enhance immune cells and control the transformation 

of CD4+ T cells into proinflammatory subtypes [4, 5]. 

Different immune cells have shown an association 

between their functional activity and increased 

utilization of glutamine. These activities encompass 

cellular proliferation, display of antigens, generation 

and secretion of cytokines, generation of nitric oxide 

and peroxide, and engulfment of foreign particles. The 

availability of NADPH reserves is crucial for all these 

processes [6]. 

 

The three-dimensional growth of cell lines associated 

with pancreatic ductal adenocarcinoma (PDAC) is 

influenced by HPDL, a protein found in the inter-

membrane space of mitochondria. Moreover, it 

contributes to the stimulation of MIAPACA2 orthotopic 

xenograft growth [6, 7]. The overproduction of HPDL 

also enhances the growth of PDAC in vitro [3]. 

Research showed that the removal of HPDL did not 

have a notable impact on the development of orthotopic 

or subcutaneous PATU-8902 tumors [7]. Other routes 

for producing the CoQ10 headgroup or the removal of 

CoQ10 or its biosynthetic intermediates could be the 

cause for this. PDAC patients exhibiting elevated HPDL 

expression face poorer overall survival rates. 

Consequently, therapies specifically targeting HPDL or 

its associated CoQ10 biosynthetic pathways could offer 

substantial benefits for this patient group. However, a 

comprehensive understanding of tumor dependence on 

HPDL heterogeneity is needed before such therapies 

can prove effective. Various clinical pathologies can 

occur due to a shortage of COQ enzymes, and a lack of 

CoQ10 can lead to a deficiency [8]. Recently, 

connections have been made between differences in 

HPDL and disorders such as childhood spastic cerebral 

palsy and significant impairments in neurodevelopment, 

as well as deficiencies in myelination [9–12]. Mice 

lacking HPDL showed seizures, reduced brain size due 

to apoptosis, and died shortly after birth, resembling the 

neurodegenerative condition observed in individuals 

with HPDL mutations [11]. Our research indicates that 

HPDL promotes tumor growth, migration and cell cycle 

in LUAD cells, and the administration of 4-

Hydroxymethyl-2-furfural (4-HMA), 4-Hydroxybenzoic 

acid (4-HB), or Coenzyme Q10 (CoQ10) to patients 

bearing HPDL mutations may serve to ameliorate or 

stabilize certain symptomatic manifestations. 

 

Observing the aberrant expression of HPDL in cancer led 

us to hypothesize that genetic alterations in HPDL might 

be responsible for this phenomenon. To investigate this, 

we analyzed the genetic alterations of HPDL in TCGA 

Pancancer tumor samples. The objective of this study 
was to reveal the differences in HPDL expression 

between malignant tissues and normal human tissues by 

analyzing transcriptomic data from the TCGA-Pancancer 

cohort and GTEx dataset. The significance of HPDL in 

predicting cancer was evaluated using the univariate Cox 

regression technique for all types of cancer. GSEA 

revealed the cancer characteristics associated with HPDL 

expression. Various methods, such as CIBERSORT, 

XCELL, MCPCounter, EPIC, and TIDE, were utilized to 

assess the abundance of immune cells in cancer 

specimens. The associations between the infiltration of 

immune cells and the expression of HPDL were 

computed using these methods in every instance of 

cancer. Finally, two separate groups of cancer patients 

who received immune checkpoint blockade (ICB) 

treatment were used to evaluate the effectiveness of 

HPDL in predicting outcomes and determining the 

response to immunotherapy. 

 

MATERIALS AND METHODS 
 

Data source and processing 
 

Transcriptional data of cancer tissue were provided  

by the TCGA-Pancancer group, whereas normal 

human tissue data were supplied by the Genotype-

Tissue Expression (GTEx) database. Both datasets 

were acquired through UCSC Xena [13] 

(https://xenabrowser.net/). The expression profiles were 

converted to transcripts per kilobase million (TPM) 

format, and the data in log2(TPM+1) format were 

utilized for further analysis. Among the thirty-three 

cancer types, twenty-two had available data on normal 

tissue through the matched information obtained from 

the website Gene Expression Profiling Interactive 

Analysis 2 (GEPIA2; http://gepia2.cancer-pku.cn/ 

#dataset) [14]. 

 

Genomic alterations analysis of HPDL in human 

cancers 
 

The cancer genomics database cBioPortal is capable of 

detecting molecular data in cancer tissues and 

comprehending the related genetics, epigenetics, gene 

expression, and proteome [15, 16]. For this study, we 

utilized cBioPortal to examine the frequencies of 

genetic modifications (such as mutations, structural 

variations, amplifications, deep deletions, and multiple 

alterations) in HPDL cells across various types of 

cancer. Moreover, we utilized bar graphs from the 

cBioPortal web-based application to exhibit the 

occurrence rate of genetic alterations. 

 

HPDL protein localization and interaction 
 

The HPA (http://www.proteinatlas.org) showcases the 
protein expression patterns of various human tissue 

types [17]. To demonstrate the cellular distribution of 

HPDL in cancer cells, we utilized immunofluorescence 
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pictures of three distinct human cancer cell lines 

(MCF7, U-20S, and CACO-2). ComPPI, available at 

https://comppi.linkgroup.hu/, is an innovative and open 

database that provides information on protein-protein 

interactions (PPIs). By combining data from various 

databases, this system offers extensive knowledge on 

interactions, proteins, and their specific locations [18]. 

The ComPPI website provided the protein-protein 

interaction (PPI) data for HPDL. The protein 

information was annotated by using the ‘ID mapping’ 

feature of the UniProt database, which can be accessed 

at https://www.uniprot.org/. 

 

Prognostic analysis 

 

The UCSC Xena database also provided additional 

prognostic information, including overall survival (OS), 

progression-free survival (PFS), disease-free survival 

(DFS), and disease-specific survival (DSS). Next, 

univariate Cox regression analysis was conducted to 

evaluate the predictive significance of HPDL for a 

particular prognosis group in each type of cancer. In the 

univariate Cox regression analysis, the continuous 

variable expression data from the HPDL were utilized, 

and the cutoff was determined using the ‘surv-cutpoint’ 

function from the R package ‘survminer’ (version 

0.4.9). In summary, the relative risk (RR) and its 

corresponding 95% confidence interval (CI) were 

calculated and displayed in a forest plot, which provides 

a visual representation of the results. 

 

Identification of differentially expressed genes 

(DEGs) between low- and high-HPDL subgroup 

 

To identify the genes that exhibited differential 

expression in each form of cancer, the patients were 

categorized into two subgroups based on their HPDL 

levels: the high-HPDL subgroup, comprising the top 

30%, and the low-HPDL subgroup, comprising the 

bottom 30%. To compare the low-HPDL and high-

HPDL subgroups, we conducted differential expression 

analyses with the R package ‘limma’ [19]. We obtained 

the log2 (fold change) and adjusted P value for each 

gene in relation to all types of cancer. Differentially 

expressed genes (DEGs) were categorized as genes with 

P values less than 0.05. Supplementary Table 1 displays 

the differentially expressed genes (DEGs) between the 

low-HPDL subgroup and the high-HPDL subgroup for 

every cancer type (Supplementary Table 1). 

 

Gene set enrichment analyses 

 

The file ‘h.all.v7.4.symbols.gmt’, containing 50 
hallmark gene sets, was acquired from the Molecular 

Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/index.jsp). Normalized Enrichment 

Score (NES) and False Discovery Rate (FDR) for each 

cancer type were calculated by using this file to 

analyze the biological processes associated with them. 

For each cancer type, we obtained the 20 most 

important HPDL pathways. To generate GSEA 

visualizations for the most dominant immune 

pathways in the top 8 cancer types, we employed the 

‘ggridges’ tool available at https://wilkelab.org/ 

ggridges/. The R software packages ‘clusterProfiler’ 

and ‘GSVA’ [20, 21] were employed to perform gene 

set enrichment analysis. The condensed findings are 

displayed in a bubble chart created using the R library 

‘ggplot2’. 

 

Immune cell infiltration analysis of HPDL 

 

The TIMER resource offers various techniques to 

analyze the infiltration of immune cells in different 

types of cancer, providing data [22]. To establish the 

associations between the infiltration of immune cells 

associated with HPDL and the TCGA Pancancer 

project, relevant data were obtained from the TIMER2.0 

database (http://timer.cistrome.org/) by utilizing the 

‘Gene’ function under the ‘Immune Association’ 

section. To create a heatmap showing the statistical 

Spearman correlations between HPDL mRNA 

expression and 19 various immune cell subsets in 

different types of cancer, we employed the R package 

‘ggplot2’. The groups included cancer-related 

fibroblasts (CAFs), lymphoid precursors, B cells, 

neutrophils, hematopoietic stem cells (HSCs), CD4+ T 

cells, myeloid precursors, monocyte precursors, 

endothelial cells (Endos), eosinophils (Eos), regulatory 

T cells (Tregs), follicular helper T cells, NK T cells, g/d 

T cells, monocytes, macrophages, dendritic cells, CD8+ 

T cells, mast cells, and NK cells. 

 

Immunotherapy prediction analysis 

 

For each type of cancer, Spearman correlation analysis 

was conducted to determine the connections between 

HPDL and the documented cancer immunotherapy 

biomarkers. The correlation between HPDL and tumor 

mutational burden (TMB) as well as microsatellite 

instability (MSI) was examined in pancancer through 

Spearman correlation analysis. To investigate the 

correlation between HPDL and the efficacy of immune 

checkpoint blockade (ICB) therapy, two sets of ICB 

treatments were acquired to confirm the predictive 

capability of HPDL in the response to immunotherapy. 

In the IMvigor210 [7] study, 298 patients with 

urological cancer received atezolizumab (anti-PDL1), 

while the GSE78220 [23] dataset comprised 
transcriptomic profiles of 27 melanoma patients prior 

to nivolumab treatment (anti-PD1). The patients were 

categorized into two groups based on their HPDL 
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expression levels: one group had low expression, while 

the other had high expression. The categorization  

was performed by utilizing the optimal threshold value 

with the ‘surv-cutpoint’ characteristic of the 

‘survminer’ R package. To assess the disparity in 

response rates between the cancer groups with low-

HPDL and high-HPDL, a chi-square test was 

employed. 

 

Potential sensitive drug prediction 

 

A previous study was carried out to analyze the 

sensitivity of drugs [24]. Data on the sensitivity of 

human cancer cell lines were obtained from the Cancer 

Therapeutics Response Portal (CTRP v.2.0, 

https://portals.broadinstitute.org/ctrp) and the PRISM 

Repurposing dataset (19Q4, released December 2019, 

https://depmap.org/portal/prism/). The AUC value for 

each individual sample was computed utilizing the 

‘oncoPredict’ software package [25]. Higher sensitivity 

to potential drugs is indicated by lower AUC values, as 

stated in reference [24]. In addition, we utilized the 

GDSC database to anticipate how LUAD patients 

would react to chemotherapy medications. The response 

of patients to chemotherapy drugs was evaluated by 

calculating the IC50, which represents the concentration 

at which half of the inhibitory effect is achieved, using 

the ‘OncoPredict’ program. 

 

Statistical analyses 

 

To evaluate statistical significance and compare the 

levels of HPDL expression in tumor and normal tissues, 

the Wilcoxon rank-sum test was conducted. The 

prognostic significance of HPDL expression in all types 

of cancer was evaluated using univariate Cox regression 

analysis. The predictive value of HPDL expression in 

the ICB therapy groups was evaluated using the Kaplan-

Meier method (log-rank test) to determine its 

significance. To assess the statistical associations 

between HPDL and various factors, such as immune 

cell infiltration levels, immune regulator genes, TMB, 

and MSI, a Spearman correlation analysis was 

conducted. In summary, the chi-square test was 

employed to establish the statistical significance of 

comparing the proportions of ICI therapy responders 

and nonresponders in the low-HPDL and high-HPDL 

cancer subcategories. 

 

Western blotting 

 

The cells were lysed in lysis buffer at a low 

temperature, which included phosphatase and protease 
inhibitors. Protein concentrations were determined 

using the bicinchoninic acid assay. Protein samples 

were separated using 4–12% SDS/PAGE and then 

transferred onto PVDF membranes. After blocking and 

incubation with primary antibodies, the membranes 

were then incubated with secondary antibodies. 

Chemiluminescent solution was utilized to identify 

immunoreactive proteins. 

 

Cell lines and transfection 

 

A549 and PC9 cells were cultivated in a humid 

atmosphere consisting of 5% CO2 at 37°C. The cells 

were grown in Roswell Park Memorial Institute (RPMI 

1640, Gibco, United States) enriched with 10% FBS 

(HyClone, USA) and 1% penicillin-streptomycin. The 

shRNA plasmids were sold by Shanghai Jikai Gene Co., 

Ltd. The Lipofectamine® 3000 kit was used to carry out 

transfection, following the guidelines provided by the 

manufacturer. 

 

Transwell assays 

 

Transwell assays were utilized to assess cell migration. 

In the upper compartment, 3 × 105 LUAD cells were 

introduced and suspended in 200 μL of FBS-free 

medium. To improve the lower chamber, a medium 

containing 10% FBS was introduced. Following a 24-

hour incubation period, the cells that adhered to the 

lower membrane were immobilized and colored. 

Afterwards, a microscope was employed to determine 

the quantity of cells in six arbitrarily chosen areas. 

 

Cell viability and colony formation assays 

 

The viability of LUAD cells was assessed using a Cell 

Counting Kit-8 (CCK8) assay (Yeasen, USA) at a 

wavelength of 450 nm after seeding 2.5 × 103 cells per 

well in 96-well plates and evaluated at four different 

time points (24 h, 48 h, 72 h, and 96 h). We performed a 

colony formation experiment to analyze cellular 

proliferation. Following the preparation of separate cell 

suspensions, a total of 1200 cells were evenly allocated 

into every well of a 6-well plate. Following a period of 

11–14 days, the cells were treated with 3.7% 

formaldehyde (Sigma-Aldrich, USA) and subsequently 

subjected to staining using 0.4% crystal violet (Solarbio, 

China). Following three immersions in fresh water, the 

plates were washed and subsequently scanned. 

 

Availability of data and materials 

 

The open-access datasets are available through the 

following URL:  GSE91061 (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi?acc=GSE91061), GSE78220 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE78220), and the Cancer Genome Atlas (TCGA) 

database. 
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RESULTS 
 

HPDL exhibits aberrant expression in neoplastic 

tissues 

 

Figure 1 is the workflow of the study. To clarify the 

patterns of HPDL expression in different types of 

cancer, we combined TCGA databases and performed a 

comprehensive analysis on the levels of HPDL mRNA 

expression in a diverse range of malignant diseases. 

The results showed increased HPDL levels in 21 

different types of tumors, such as BLCA, BRCA, 

CESC, CHOL, COAD, DLBC, ESCA, LAML, LIHC, 

LUAD, LUSC, OV, PAAD, READ, SARC, SKCM, 

STAD, TGCT, THYM, UCEC, and UCS. Conversely, 

reduced HPDL expression was detected in six tumors, 

specifically GBM, KIRC, KIRP, LGG, PRAD, and 

THCA (Figure 2A). Similar outcomes were identified 

in paired tissue samples. Remarkably, HPDL 

expression was markedly raised in PAAD, which may 

be attributable to its function in safeguarding cells from 

oxidative stress by promoting glutamine metabolism 

[3]. In line with prior research, these results indicated a 

discrepancy in HPDL expression in cancerous 

conditions. 

Genetic alteration proportions of HPDL remain 

below 5% in the majority of cancers 

 

Considering the abnormal expression of HPDL in 

cancer, our hypothesis is that genetic changes in HPDL 

might play a role in this occurrence. As a result, we 

conducted a genetic analysis of HPDL by utilizing tumor 

samples obtained from TCGA Pancancer. Based on 

Figure 2B, the prevalence of ‘Amplification’ was the 

highest among patients diagnosed with ovarian serous 

cystadenocarcinoma (OV), surpassing 4% in frequency. 

We subsequently analyzed HPDL expression in the 

Amplification and diploid groups of OV tumors, 

discovering that expression in the Amplification group 

was notably higher compared to the Diploid group 

(Figure 2C). On the other hand, the uterine corpus 

primarily showed the ‘Mutation’ type of copy number 

alteration (CNA) in cases of endometrial carcinoma, 

with an alteration frequency of approximately 2.5% 

(Figure 2B). Significantly, HPDL Deep Deletion (Figure 

2B) was observed in all PCPG cases with genetic 

mutations, accounting for approximately 2% of the 

overall occurrences. Generally, the occurrence of HPDL 

genetic alterations was not elevated, which may be 

associated with the highly conserved nature of HPDL. 

 

 
 

Figure 1. The workflow of the study. (A) Basic information of HPDL. (B) Clinical prognostic significance of HPDL in pancancer. (C) Gene 

set enrichment analysis of HPDL in pancancer. (D) Immune infiltration analysis of HPDL. (E) Identification of candidate drugs of HPDL. (F) 
The biological function of HPDL was verified by laboratory experiments. 
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HPDL protein localization, interaction, and 

expression 

 

To gain the HPDL protein, we obtained the immune-

fluorescence of HPDL protein images from the Human 

Protein Atlas (HPA), retrieved protein-protein 

interaction information from the ComPPI database. 

According to the information obtained from the HPA 

database (Figure 2D), analysis of immunofluorescence 

(IF) images revealed that the HPDL protein 

 

 
 

Figure 2. Basic information of HPDL. (A) The level of HPDL expression between tumor and normal tissues in each type of cancer based on 

the integrated data from TCGA and GTEx datasets. (B) Analysis of HPDL change frequency in pan-cancer research according to cBioPortal 
database. (C) The HPDL expression levels between HPDL-deletion and diploid OV patients. (D) The immunofluorescence images of HPDL 
protein, nucleus, endoplasmic reticulum (ER), microtubules and the incorporative images in MCF7, U20S, and CAC02 cell lines. (E) The protein-
protein interaction (PPI) network presents the proteins interacting with HPDL. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, nsP > 0.05. 
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predominantly resided in the nucleoplasm of the MCF7, 

U20S, and CAC02 cancer cell lines. Subsequently, the 

PPI network was built by utilizing the interaction data 

obtained from the ComPPI platform. Figure 2E 

demonstrates the distribution of proteins that have  

close interactions with HPDL in different cellular 

compartments, including the cytosol, mitochondria, 

nucleus, extracellular space, secretory pathway, and 

membrane. These findings suggest that the HPDL 

protein is aberrantly expressed and possesses potential 

functional significance in cancers. 

 

Clinical prognostic significance of HPDL in pan-

cancer 

 

Next, we carried out an extensive investigation into the 

predictive significance of HPDL in a comprehensive 

study encompassing various forms of malignancies. 

Individually, we assessed the rates of survival, 

including overall survival (OS, shown in Figure 3A), 

disease-free interval (DFI, illustrated in Figure 3B), 

disease-specific survival (DSS, depicted in Figure 3C), 

and progression-free interval (PFI, presented in Figure 

3D). To reduce the impact of perplexing prejudices, the 

researchers utilized univariate Cox regression. First, 

HPDL acted as an overall survival predictive gene for 

the survival of ACC, KIRC, LAML, UCEC, LGG, 

LIHC, SARC, SKCM, PAAD, OV, and THYM. Further 

evaluation of disease-free survival demonstrated HPDL 

to be a standalone prognostic gene in UCEC and 

READ. HPDL emerged as a standalone prognostic gene 

in the examination of disease-specific survival across 

KIRC, ACC, LGG, LIHC, UCEC, SKCM, PAAD, and 

OV. The analysis of PFI revealed that HPDL acted as a 

standalone prognostic gene in KIRC, UCEC, DLBC, 

LGG, LIHC, PAAD, SKCM, OV, and PRAD. When the 

hazard ratio is greater than one, HPDL acts as a 

prognostic risk factor for poor survival in most cancer 

instances. The complexity and diversity in the 

prediction of cancer outcomes using HPDL varied 

across different types of cancer. Further inquiries should 

prioritize examining the involvement of the HPDL 

protein in cancerous cells. 

 

Gene set enrichment analysis of HPDL reveals its 

association with cancer immune response 

 

To uncover the biological mechanisms associated with 

HPDL expression in cancer, we conducted a 

comparative examination of gene expression. The 

examination involved comparing the subset that 

exhibited elevated HPDL levels to the subset that 

displayed low HPDL levels, with a particular emphasis 
on distinct forms of cancer. Supplementary Table 1 

provides an overview of the genes showing differential 

expression (DEGs) in every type of cancer. Using the 

DEGs between the high and low-HPDL subgroups, we 

carried out GSEA analysis across 33 cancer types to 

assess HPDL-associated cancer hallmarks. A significant 

decrease in immune-related pathways, such as TNFA-

signaling-via-NFKB, IFN-alpha response, IFN-gamma 

response, allograft rejection pathways, and inflam-

matory response, was observed, especially in different 

types of tumors, including BLCA, HNSC, KIRP, 

LUSC, OV, SKCM, and THCA. The results indicate a 

potential robust association between HPDL and the 

immune microenvironment of the tumor, along with the 

interplay between malignant cells and immune cells 

through ligand-receptor interactions. Furthermore, it 

was discovered that HPDL was linked to the transition 

from epithelial to mesenchymal in various types of 

tumors and displayed a notable inverse relationship with 

CESC, COAD, ESCA, GBM, HNSC, KIRP, LUSC, 

MESO, OV, READ, and STAD. This implies that 

HPDL could play a crucial role in the infiltration and 

mobility of cancerous growth. Additionally, oxidative 

phosphorylation, MYC targets, E2F targets, and G2M 

checkpoint exhibited a close association to HPDL 

expression in cancers (Figure 4A). To summarize, these 

findings provide proof that abnormal HPDL expression 

might have a role in the immune response toward 

tumors. Considerable studies have been carried out 

regarding the participation of HPDL in the growth and 

advancement of cancer, leading to subsequent 

exploration of its function in the immune response and 

the microenvironment of cancer. 

 

GSEA was conducted to further explore the relationship 

between different pathways, specifically those related to 

the immune system, and HPDL in pancancer. Displayed 

in a mountain map format, Figure 4B–4I showed the top 

20 associated pathways of GSEA, with immune-related 

pathways highlighted in red. HPDL was linked to the 

handling and exhibition of external peptide antigens, 

triggering T cells in the immune reaction, antigen 

processing-presentation, B-cell receptor signaling 

pathways, and reactions to chemokines in BLCA. The 

significance of HPDL in immune regulation is 

emphasized by these discoveries. 

 

Immune cell infiltration analyses of HPDL across 

cancers  

 

Following the analysis of the aforementioned findings, 

we explored the correlations between HPDL expression 

and the level of immune cell infiltration in different 

types of cancer. We utilized the TIMER2.0 database, 

which encompasses various quantitative platforms for 

investigating immune infiltration in cancer research, to 
exhibit the association between HPDL and the 

infiltration of immune cells. The findings indicate the 

levels of infiltration of various cell types, including 
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CD4+ T cells, cancer-associated fibroblasts (CAFs), 

lymphoid progenitors, myeloid progenitors, endothelial 

cells (Endo), eosinophils (Eos), hematopoietic stem 

cells (HSCs), follicular helper T cells (Tfhs), gamma 

delta T cells (g/dT), natural killer T cells (NKTs), 

regulatory T cells (Tregs), myeloid-derived suppressor 

cells (MDSCs), neutrophils, monocytes, B cells, 

dendritic cells, macrophages, mast cells, NK cells, and 

CD8+ T cells, in pancancer (Figure 5). 

 

Overall, the expression of HPDL showed a negative 

correlation with the level of immune infiltration from 

different types of infiltrating cells, including CAFs, 

lymphoid progenitors, myeloid progenitors, endo cells,  

 

 
 

Figure 3. Univariate Cox regression analysis of HPDL. The results were shown with a forest map for (A) OS; (B) DFI; (C) DSS; (D) PFI. 
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HSCs, macrophages, mast cells, CD8+ T cells, CD4+ T 

cells, NKT cells, and g/dT cells, in various cancer 

forms. We observed a notable correlation between 

HPDL expression and a variety of infiltrating immune 

cells, including macrophages, B cells, cancer-associated 

fibroblasts (CAFs), and CD8+ T cells, in lung 

adenocarcinoma (LUAD), thymic carcinoma (THYM), 

and testicular germ cell tumors (TGCTs). Nevertheless, 

 

 
 

Figure 4. Gene Set Enrichment Analysis of HPDL. (A) The hallmarks gene set enrichment analysis (GSEA) of HPDL in pan-cancer. The 

size of the circle represents the false discovery rate (FDR) value of each cancer enrichment item, and the color represents the normalized 
enrichment score (NES) of each enrichment item. (B–I) HPDL’s GSEA results in TCGA pan-cancer. The most 20 related pathways of GSEA are 
presented in the form of a mountain map, and immune-related pathways are marked in red. 
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the association among these variables exhibited slight 

variances, possibly due to the varying degrees of 

immune infiltration in different tumors. 

 

The results emphasize the intricate connection between 

HPDL expression and the infiltration of immune cells in 

various types of cancer, indicating that HPDL might 

have a role in regulating the immune microenvironment 

of tumors. This further emphasizes the significance of 

conducting additional research on the function of HPDL 

in the infiltration of immune cells and its potential 

consequences for cancer treatment and immunotherapy. 

 

Correlations between HPDL and 

immunomodulators, TMB, and MSI 

 

Spearman correlation analysis was used in Figure 6A to 

depict the investigation of the connections between 

HPDL expression and 47 immunomodulatory genes, 

encompassing immune checkpoint genes and immune 

 

 
 

Figure 5. The correlations of HPDL expression and the infiltration levels of CD4+ T cells, CAF, progenitor, Endo, Eos, HSC, 
Tfh, gdT, NKT, regulatory T cells (Tregs), B cells, neutrophils, monocytes, macrophages, dendritic cells, NK cells, Mast cells 
and CD8+ T cells in cancers. Positive correlation in red and negative correlation in blue. 
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cell marker genes, across various cancer types. In 

THYM, TGCT, SKCM, COAD, LUAD, THCA, OV, 

UCEC, GBM, LUSC, BLCA, CESC, KIRP, and STAD, 

we observed a negative correlation between HPDL and 

the majority of immunomodulatory factors. However, 

HPDL showed a positive correlation with most of these 

 

 
 

Figure 6. Influence of HPDL expression on anti-tumor immunity and immunotherapy response. (A) The Spearman correlation 

heatmap shows the correlation between the expression of HPDL and 47 kinds of immune regulators in pan-cancer. Red represents positive 
correlation and blue represents negative correlation. (B) The correlation between HPDL expression and the ENHsi, DMPsi, EREG-mDNAsi, 
mDNAsi, EREG-mRNAsi, and mRNAsi. (C) Kaplan-Meier curve of low and high-HPDL subgroup in IMvigor210 cohort (anti-PD-L1), and the 
proportion of tumors (including kidney cancer) in the low-HPDL and high-HPDL subgroups in the IMvigor210 cohort who responded to PD-1 
therapy. (D) Kaplan-Meier curve of GSE78220 (anti-PD-1 melanoma) in the low and high-HPDL patient groups, and the proportion of melanoma 
patients in the GSE78220 low and high-HPDL subgroups that responded to anti-PD-1 therapy. (E, F) The correlation between HPDL expression 
and the TMB (E), and MSI (F). The labelled asterisk indicated the statistical p-value (*p < 0.05, **p < 0.01, ***p < 0.001). 
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factors in BRCA, PRAD, and LIHC. Furthermore, HPDL 

exhibited a robust correlation with mRNAsi and 

mDNAsi in cases of LUAD, LUSC, SARC, BLCA, 

BRCA, PAAD, COAD, HNSC, SKCM, and STAD 

(Figure 6B). Conversely, it exhibited a negative 

relationship with mDNAsi in THYM, ACC, and PCPG. 

For BLCA, increased HPDL expression may cause a 

reduced response to immune checkpoint blockade 

therapy, while for PCPG, elevated HPDL expression may 

lead to increased vulnerability to immune checkpoint 

blockade treatment. It is worth mentioning that in PRAD, 

HPDL exhibited a favorable association with mRNAsi 

while displaying an unfavorable association with 

mDNAsi. The discrepancy between mRNAsi and 

mDNAsi, which could be attributed to DNA hyper-

methylation, may have led to this outcome [26]. 

 

The results offer valuable perspectives on the intricate 

connection between HPDL expression and different 

immunomodulatory factors, including TMB, MSI, and 

the index of tumor stemness. Understanding the 

function of HPDL in tumor immunity and its impact on 

the advancement of cancer immunotherapies can be 

facilitated by these valuable data. 

 

HPDL predicts the response to cancer immunotherapy 

 

The use of immune checkpoint inhibitors (ICIs), 

including antibodies that specifically target PD-L1, PD-

1, and CTLA-4 [27], has resulted in a substantial 

revolution in the field of cancer immunotherapy. After 

analyzing the previous results, we assessed the 

prognostic significance of HPDL in cancer patients who 

underwent ICI treatment. 

 

Figure 6C displays the findings that suggest a robust 

correlation between HPDL expression and the response to 

treatment with anti-PD-L1. Patients exhibiting reduced 

HPDL expression demonstrate a superior rate of positive 

survival and longer duration compared to individuals with 

low HPDL expression. Individuals in the IMvigor210 

group who had tumors in the urinary system and showed 

low HPDL levels had a response rate of 33.33% to anti-

PD-L1 treatment, which was higher than the 19.28% 

response rate seen in individuals with high HPDL levels. 

 

Similarly, melanoma patients treated with anti-PD-1 

showed similar results. In the melanoma group 

GSE78220 (depicted in Figure 6D), individuals 

exhibiting reduced HPDL levels had a higher likelihood 

of survival than those with elevated HPDL expression. 

Moreover, among the individuals demonstrating 

reduced HPDL levels, PD-1 treatment proved to be 
effective in 72.22% of cases, whereas only 20% of 

patients with elevated HPDL expression responded 

positively to PD1 therapy. We also explored the 

relationship between HPDL and tumor mutation load 

and microsatellite instability. The results showed that 

the HPDL expressions of LUAD, LUSC, STAD, and 

UCEC were positively correlated with the TMB value 

and were negatively correlated with the TMB of BRCA, 

PAAD, PRAD, THCA, ACC, and THCA (Figure 6E). 

In addition, a positive correlation was found between 

the expressions of HPDL and MSI in BRCA, UCEC, 

SARC, READ, PRAD, HNSC, ESCA, COAD, and 

KICH (Figure 6F). 

 

The data validate HPDL’s capacity to anticipate the 

response to immunotherapy and propose that HPDL may 

serve as a valuable marker for cancer immunotherapy. 

Nevertheless, considering the comprehensive outcomes, 

additional clinical and mechanistic research is needed to 

explore the prognostic significance of HPDL in various 

cancer types. Enhancing our comprehension of the 

function of HPDL in cancer immunotherapy holds the 

possibility of enhancing patient outcomes. 

 

Potential targeted drugs for HPDL expression 

 

On the basis of the aforementioned clues, we 

investigated the ability of HPDL to predict 

chemotherapy reactions in LUAD. Our research 

revealed that the High-HPDL group showed increased 

vulnerability to eight frequently used chemotherapy 

drugs, gefitinib, erlotinib, docetaxel, lapatinib, MK-

1775, podophyllotoxin bromide, dihydrorotenone, and 

AZD7762 (Figure 7A). 

 

To further elaborate on this analysis, we utilized gene 

expression and drug sensitivity information obtained 

from the CTRP and PRISM datasets to generate 

forecasts concerning potential drugs. A total of 1670 

compounds remained after eliminating duplicates and 

excluding NA values. To select compounds, we 

established the threshold by considering the disparity in 

AUC values (log2FC > 0.1) between the high-HPDL 

and low-HPDL groups, along with the existence of 

negative correlation coefficients (r < −0.4) between 

HPDL expression and AUC. Figure 7B, 7C show that 

the examination of the CTRP database produced 8 drugs 

(SR-I-138A, CR-1-31B, BI-2536, vincristine, 

GSK461364, KX2-391, SB-743921, and paclitaxel), 

while the PRISM database revealed 5 medications 

(docetaxel, cabazitaxel, vincristine, gemcitabine, 

epothilone-b). LUAD can potentially be inhibited from 

HPDL activation by these medications. 

 

HPDL promote tumor growth, migration, and cell 

cycle in LUAD cells 

 

To investigate the role of HPDL, we utilized specific 

siRNAs to suppress gene expression in A549 and PC9 
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cells. Two siRNAs targeting the coding region of HPDL 

were tested for their knockdown efficiency (Figure 8A). 

According to WB analysis, the reduction in HPDL 

resulted in an increase in the expression of cyclin E1 

while also causing a decrease in the expression of cyclin 

B1 (Figure 8B). From our prior analysis of gene sets, 

we observed a significant enrichment of the pathway 

associated with cell division. The abovementioned 

results validated that HPDL has the potential to regulate 

the cell cycle pathway in LUAD (Figure 8B). 

 

 
 

Figure 7. Identification of candidate drugs based on the expression of HPDL. (A) Estimated IC50 of the indicated molecular 

targeted drugs in High-HPDL and Low-HPDL group. (B, C) The results of correlation analysis and differential drug response analysis of CTRP 
(B) and PRISM (C) derived drugs in LUAD. The labelled asterisk indicated the statistical p-value (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Subsequently, we conducted colony formation and sphere 

formation experiments to assess the impact of HPDL on 

the proliferation of LUAD cells. According to the 

analysis of the colony, the ability to produce copies was 

significantly reduced following the inhibition of HPDL 

(Figure 8C). In line with these findings, the Transwell 

assay validated that inhibiting HPDL led to a decrease in 

the invasion of A549 and PC9 cells (Figure 8D). 

 

 
 

Figure 8. HPDL promote tumor growth, migration, and cell cycle in LUAD cells. (A) The level of HPDL transfection with siRNA were 

analyzed by WB. (B) The expression of Cyclin B1, Cyclin E1, and HPDL was analyzed by WB. (C) Colony formation assays showed that 
knockdown of HPDL inhibited LUAD cell growth. (D) Transwell assay showed that HPDL silencing inhibited the migrating of A549 and PC9 
cells. (E) CCK8 assay was performed to determine the proliferation of HPDL knockdown. The labelled asterisk indicated the statistical 
p-value (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Afterwards, we examined the influence of HPDL on the 

progression of LUAD using CCK8. The results of our 

study showed that suppressing HPDL expression led to 

a decrease in the proliferation of A549 and PC9 cells 

(Figure 8E). The results suggest that HPDL may have a 

significant effect on the proliferation and invasion of 

LUAD cells. 

 

DISCUSSION 
 

HPDL, a protein situated in the mitochondrial inter-

membrane space, mechanistically influences the three-

dimensional growth of pancreatic ductal adeno-

carcinoma (PDAC) cell lines and promotes the 

proliferation of MIAPACA2 orthotopic xenografts [6, 

7]. Additionally, overexpression of HPDL expedites 

PDAC growth in vitro [3]. However, our study focuses 

HPDL on immunotherapy, seeking new discoveries. 

 

Initially, the levels of HPDL expression in pancancer 

were examined by utilizing the GTEx and TCGA 

databases. Figure 2A demonstrates that HPDL displayed 

abnormal upregulation in twenty-one cancer types and 

downregulation in six cancer types. Nevertheless, there 

was no correlation observed between HPDL and genetic 

mutations in tumors, as the proportion we observed was 

below 5% (Figure 2B). Based on our analysis, the 

increase in HPDL led to an increase in HPDL 

occurrences in OV patients, despite the limited genetic 

changes detected in other cancer forms (Figure 2C). The 

reason behind the uneven expression of HPDL in cancers 

remains unresolved. Overexpression of HPDL facilitates 

the development of tumors in pancreatic ductal 

adenocarcinoma (PDAC) cells [3]. The irregularity in the 

progression of the cell cycle is a vital process that drives 

the development of tumors, highlighting the significance 

of directing attention toward regulators of the cell cycle 

machinery for anticancer treatments [28]. The results 

obtained from GSEA indicate a strong association 

between HPDL expression and the G2M checkpoint in 

cancer, which aligns with this finding. Further 

investigation is needed to explore the abnormal 

expression of HPDL in cancer and its role in the process 

of cellular division. Afterwards, we assessed the 

correlation between HPDL and the clinical outcome of 

individuals diagnosed with cancer. The analysis findings 

of the operating system, DFI, DSS, and PFI in Figure 2A 

reveal a strong consensus among individuals with cancer, 

indicating a significant correlation between HPDL and 

the prognosis of cancer patients. To clarify, HPDL posed 

a risk to nine categories of people with cancer while 

offering protection against four types of cancer. 

According to the results, HPDL plays a vital role in 

predicting the future prospects of cancer patients and is 

expected to become a powerful indicator for the 

prognosis of cancer patients in the future. 

In our analysis, the GSEA findings reveal a strong 

association between HPDL and immune response-related 

processes, including TNFA signaling via NFKB, IFN-

alpha response, IFN-gamma response, and inflammatory 

response. Prior research has also emphasized that 

individuals with elevated HPDL levels in PDAC 

encounter unfavorable outcomes in terms of their overall 

survival. Consequently, treatments aimed at HPDL could 

provide advantages for these patients. However, 

understanding the variety of tumor dependence on HPDL 

is essential before these therapies can be advantageous 

[7]. The majority of these procedures experienced a 

notable reduction in the cancer subcategories exhibiting 

elevated HPDL levels, except for BRCA, CHOL, DLBC, 

ESCA, KIRC, LGG, PCPG, PRAD, and UVM. The 

results suggest that HPDL might have different roles in 

different types of cancer. In cancers, interferon (IFN)-γ-

related mRNA profiles have been identified as predictive 

markers for chemotherapy resistance and the response  

of primary refractory/relapsed AML to flotetuzumab 

immunotherapy [29]. Similarly, a novel combination 

strategy involving IFNα and anti-PD-1 has shown 

efficacy in treating patients with Hepatocellular 

Carcinoma [30]. In the realm of immune response, TNF-

α stands out as a major inflammatory factor, with anti-

TNF-α antibodies revolutionizing the treatment landscape 

for numerous autoimmune disorders [31]. Furthermore, 

our study has shown that the inflammatory response, 

TNFA-signaling via NFKB, the IFN-a response, and the 

IFN-g response were closely related to the HPDL’s 

expression, providing a direction for further exploration 

of the role of HPDL in tumors. Our research yielded a 

noteworthy finding regarding the robust correlation 

between HPDL expression and the infiltration of immune 

cells in cancer, as depicted in Figure 4. HPDL showed a 

negative correlation with the infiltration of cancer-

associated fibroblasts (CAFs), lymphoid progenitors, 

myeloid progenitors, endothelial cells (Endo cells), 

hematopoietic stem cells (HSCs), macrophages, mast 

cells, CD8+ T cells, CD4+ T cells, natural killer T cells 

(NKT cells), and gamma/delta T cells (g/dT cells) in the 

majority of tumors. This suggests that HPDL could 

impact the development and perspective of tumors 

through its influence on the surrounding tumor 

environment. In addition, the correlation analysis 

between HPDL and the pan-cancer immunomodulatory 

factors indicates that the HPDL expression was highly 

correlated to the expression of specific immuno-

modulatory genes (Figure 5), especially in CHOL, UVM, 

MESO, PCPG, and DLBC. The findings suggest that 

HPDL is likely involved in the advancement and outlook 

of cancer through its interaction with the micro-

environment of the disease. 
 

We next investigated the correlation between HPDL 

expression levels and the response to anti-PD-L1 
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immunotherapy in a pan-cancer cohort, including bladder 

cancer and the expression levels of anti-PD1 in 

melanoma (Figures 6C, 6D). In the IMvigor210 cancer 

cohort, it was found that a decrease in HPDL expression 

was associated with a favorable prognosis and improved 

response to anti-PD-L1 immunotherapy. Similar findings 

were observed in individuals with melanoma who 

received anti-PD-1 treatment (GSE78220 group). The 

group exhibiting elevated HPDL levels had a poorer 

prognosis and showed insensitivity to anti-PD-1 

treatment. Nevertheless, the outcomes of the treatment 

for both individuals corresponded to their respective 

survival patterns. The findings indicate that HPDL acts as 

a reliable indicator for anticipating the reaction to 

immune checkpoint inhibition in different types of 

cancer. As a result, we speculated that HPDL might serve 

as a potent and encouraging indicator for forecasting the 

efficacy of cancer immunotherapy. During the antitumor 

immune response, the therapeutic efficacy largely 

depends on the functional status of tumor-specific 

effector immune cells [32–34]. Immune checkpoint 

costimulation and coinhibition signals regulate the 

multiplication and functioning of effector cells [35–37]. 

Consequently, the oncogenic immune response is often 

enhanced by promoting the costimulatory signal as 

positive or blocking the inhibitory signal of negative 

regulation [38]. Currently, numerous immune checkpoint 

molecules have been discovered to be applicable in 

medication treatment. PD-L1, PD-1, CTLA4, TIGIT, 

HAVCR2 (TIM-3 alias), and LAG-3 are the proteins that 

have been described [39–43]. The primary finding and 

thorough investigation have concentrated on CTLA4 and 

PD-L1/PD-1; the treatment of different cancers with 

immunotherapy frequently includes the combined 

utilization of anti-PD-1/PD-L1 and anti-CTLA-4. 

Nevertheless, the therapeutic outcome of this 

amalgamation lacks significance in numerous cancer 

patients and induces severe adverse reactions in patients. 

Hence, it is imperative to investigate novel immune 

checkpoints [44, 45] and methods for anticipating the 

efficacy of cancer immunotherapy. During this 

investigation, we discovered that HPDL exhibited great 

potential as a biomarker for predicting the outlook of 

various types of cancer. Furthermore, it has been shown 

to be a reliable measure for evaluating the effectiveness 

of immunotherapy in cancer treatment. The obtained 

findings offer crucial indications for future investigations 

into the possible involvement of HPDL in the immune 

response to tumors and immunotherapeutic strategies. 

 

In summary, we have identified distinct barriers in the 

exploration of molecular targets that could result in 

novel anticancer inhibitors (Figure 7A–7C). Lapatinib, a 

tyrosine kinase inhibitor that targets EGFR and HER2 

[46], enhances response rates and extends disease 

progression in patients with prior exposure to 

anthracycline-based and taxane-based chemotherapy 

and resistant tumors to trastuzumab [47]. Additionally, 

it improves the efficacy of capecitabine. Research has 

shown that dihydroartemisinin (DHA) has various 

molecular pathways that contribute to its anticancer 

properties. Several of these activities include restraining 

cell growth, triggering cell death, impeding the spread 

of tumors and formation of new blood vessels, 

enhancing the body's defense system, promoting self-

degradation of cells, and causing stress to the 

endoplasmic reticulum [48]. Nevertheless, the specific 

process by which puromycin, lapatinib, DHA, and 

similar drugs related to HPDL impact the pancancer 

tumor microenvironment is still not understood. Further 

investigation is needed to explore the involvement of 

HPDL in the anticancer properties of these constituents. 

It is important to take into account the various 

constraints of our study. The exact relationship between 

HPDL and the elements identified through GDSC, 

CTRP, and PRISM datasets, as well as the potential 

mechanisms involved, is still unclear. 
 

Moreover, the majority of our pancancer research data 

were acquired from publicly accessible online 

databases, potentially resulting in systematic bias due 

to the absence of comprehensive clinical cohort data 

for validation. Further experiments are necessary to 

clarify the HPDL mechanism’s impact on tumor 

occurrence and progression simultaneously. Further-

more, additional mechanistic studies are needed to 

elucidate and validate the potential medications that can 

be used in conjunction with HPDL and examined using 

CTRP and PRISM datasets. 
 

CONCLUSION 
 

To summarize, we performed an extensive analysis of 

HPDL in various forms of cancer, demonstrating its 

capacity as a biomarker for cancer prognosis and its 

effectiveness in forecasting the reaction to 

immunotherapy. The unusual presentation of HPDL 

was linked to the immune regulation, infiltration of 

immune cells, tumor surroundings, TMB, and MSI of 

different tumor varieties. Our study establishes HPDL 

as a significant prognostic marker in clinical settings, 

indicating its utility not only in predicting cancer 

prognosis but also the efficacy of immunotherapies, 

thereby highlighting its potential as a target for 

immunotherapy. Suppression of HPDL expression 

resulted in reduced growth and movement of LUAD 

cells. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differentially expressed genes (DEGs) between the low-HPDL subgroup and the high-
HPDL subgroup in Pancancer. 
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