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INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is one of the most 
common malignant tumors worldwide. Based on 2020 
global cancer statistics, HCC accounts for 8.3% of all 

cancer deaths [1]. While early-stage HCC patients have a 
5-year survival rate of 70% or higher, the 5-year survival 
rate of patients with advanced liver cancer is less than 5% 
[2–4] and most patients are diagnosed with intermediate- 
or advanced-stage disease, resulting in generally poor 
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ABSTRACT 
 
Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers 
for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the 
ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS 
subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor 
expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The 
Human Protein Atlas and immunohistochemistry. Kaplan–Meier, Cox regression, ROC curve, and nomogram 
analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of 
COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). 
Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers 
for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS 
and neighboring genes regulate ‘protein neddylation’, ‘protein deneddylation’, and ‘protein ubiquitination’. 
The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between 
COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, 
ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific 
tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. 
Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate 
and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and 
indicators of immune infiltration, tumorigenicity, and metastasis. 
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overall prognosis. One reason for this poor outcome  
is that patients diagnosed with advanced liver cancer  
are usually unsuitable for surgery. Recently developed 
molecularly targeted therapies and immunotherapies  
are better treatment options for advanced HCC. 
Nevertheless, the median overall survival is only about 
one year for patients treated with lenvatinib [5], 
regorafenib [6] or cabozantinib [7]. Numerous studies 
on HCC pathogenesis have identified potentially novel 
therapeutic targets [8, 9], but these findings have not yet 
translated into substantially prolonged OS. Therefore, 
the molecular mechanisms underlying HCC require 
further detailed elucidation. Modern genomics and 
proteomics techniques utilizing public datasets offer the 
possibility of identifying aberrantly expressed genes and 
tumor-related gene networks as prognostic biomarkers 
and new drug targets. 
 
The ubiquitin–proteasome system (UPS) controls 
multiple biological functions, including signal 
transduction, DNA repair, transcriptional regulation, 
and cell cycle progression, through targeted protein 
ubiquitination and ensuing degradation. In addition to 
ubiquitination, several related protein post-translational 
modification systems also function in eukaryotes  
such as SUMOylation and NEDDylation. Neddylation 
is a dynamic and reversible process regulated  
by deneddylases, of which the COP9 signalosome  
(COPS) complex is currently the most extensively 
studied. 
 
The COP9 signalosome is a highly conserved multi-
subunit protein complex [10] initially recognized in 
Arabidopsis as an inhibitor of photomorphogenesis 
and later found in other unicellular and multicellular 
eukaryotes [10–13]. The complex is composed of  
eight subunits (COPS1–COPS8) and the recently 
discovered ninth subunit CSNAP (COPS9) [14]. The 
COP9 signalosome shares homology with the 19S 
“lid” complex of the 26S proteasome, which is thought 
to function in recognizing ubiquitinated substrates  
and delivering them to the 20S proteasome core  
for proteolysis [15]. Thus, it is possible that COPS 
complexes function to regulate protein degradation. 
The recognized biological function of COPS is to 
serve as a deneddylase to remove NEDD8 from 
neddylated cullin in cullin-RING-E3 ligases (CRLs), 
which is further enhanced by linking with COPS9 
(CSNAP) [16, 17]. 
 
Specific COPS subunits are known to influence distinct 
cellular functions, such as DNA repair, DNA fidelity 
maintenance, angiogenesis, cell cycle regulation, and 
microenvironmental homeostasis, which are crucial for 
carcinogenesis. Indeed, mounting evidence suggests that 
COPS subunits are associated with the progress and 

development of cancer. For instance, COPS1 promotes 
HCC cell metastasis and proliferation by upregulating 
Cyclin A [18], while COPS2 suppresses degradation  
of the tumorigenic transcription factor Snail [19]. In 
contrast to COPS1 and -2, COPS3 inhibits the growth of 
lung tumors by blocking cell cycle progression [20]. 
Similar to COPS1 and -2, however, COPS5 promotes 
tumorigenesis via the degradation of several anti-
tumorigenic substrates, including p53 [21], p27 [22], 
p14ARF [23], Smad4 [24], and the WNT inhibitor 
DKK177 [25]. Finally, COPS6 assists in the degradation 
of tumor suppressor p53 via the stabilization of  
MDM2 [26, 27]. 
 
The COP9 signalosome has an emerging role in cancer, 
although the mechanisms of tumorigenic regulation  
are still uncharacterized. Therefore, we analyzed the 
expression levels and predictive values of COPS subunits 
in HCC by data mining and immunohistochemistry 
(IHC). We report that the expression levels of COPS 
subunits were significantly upregulated in HCC 
compared to normal tissues and that high expression 
was associated with poor prognosis. We also analyzed 
the predicted functions and pathways involving COPS 
and neighboring genes in HCC patients. Furthermore, 
we found significant correlations between COPS 
subunit expression levels and tumor immune cell 
infiltration rates. We suggest that the COPS6 and 
COPS9 subunits are potential therapeutic targets for 
HCC treatment. A schematic of this study is shown in 
Figure 1. 
 
MATERIALS AND METHODS 
 
Differential expression analysis of COPS 
 
The UALCAN database (http://ualcan.path.uab.edu) 
(version 08/16/2022), which contains gene expression 
profiles and corresponding clinical information from 
The Cancer Genome Atlas (TCGA), was used to 
analyze the relationships between COPS subunit 
expression levels and clinicopathological features. 
Expression levels were compared between tumor and 
normal tissues by Student’s t-test, with a p<0.05  
(two-tailed) considered statically significant. 
 
The Human Protein Atlas (https://www.proteinatlas.org) 
(version 23.0), which contains more than 10 million 
single-cell protein expression profiles generated by 
immunocytochemistry and immunohistochemistry [28], 
was utilized to identify differences in protein expression 
between normal and HCC tissues and to retrieve  
the related literature. Here, we compared the  
protein expression levels of COPS subunits based  
on immunohistochemical images and quantitative 
proteomics analysis based on mass spectrometry [29–31]. 
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Prognostic value of COPS complex expression in 
HCC 
 
The diagnostic utility of COPS subunit expression 
level was evaluated by ROC curve analysis using the 
“pROC” R package. Prognostic data were obtained 
from a published study [32]. Kaplan–Meier, univariate, 
and multivariate Cox regression analyses were 
employed for prognosis. Overall survival (OS) was 
analyzed and plotted using the R “survival” and 
“survminer” packages, while the R (v3.6.3) package 
“rms” was used to construct nomograms and 
calibration plots. 
 
Genetic alteration analysis 
 
The cBioPortal (https://www.cbioportal.org) (v4.1.18) 
was used to examine the genomic profiles of  
COPS subunits in the TCGA and correlations among 
related genes. The search parameters included somatic 
mutations, DNA copy number changes (CNAS) from 
RNA-seq data identified using Genomic Identification 
of Significant Targets in Cancer (GISTIC), and mRNA 
expression z-scores generated using RNASeq V2 
RSEM. 

COPS-associated PPI network and functional 
enrichment analysis 
 
The STRING database (http://string-db.org) (version 
11.5) was used to construct 10 COPS subunit PPI 
networks. These networks included physical as well as 
functional associations, with interaction scores greater 
than 0.7 considered significant. The DAVID database 
(https://david.ncifcrf.gov/summary.jsp) (version 2021), 
which provides functional annotations for large-scale 
gene and protein lists, was used for function and 
pathway enrichment analysis of differentially expressed 
genes. 
 
Immune infiltration and microsatellite instability 
analysis 
 
The TIMER database (https://cistrome.shinyapps.io/timer/) 
[33] was used to assess the associations of COPS subunit 
expression levels with B cell, CD8+ T cell, CD4+ T cell, 
macrophage, neutrophil, and dendritic cell infiltration 
rates. The ssGSEA method from the R package “GSVA” 
[34] was used to present the infiltration enrichment  
of 24 common immune cells. Stromal, immune, and 
ESTIMATE scores of each HCC patient were calculated 

 

 
 

Figure 1. Schematic diagram of the study. 
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using the R package “estimate” [35]. Moreover, the 
TISIDB database (http://cis.hku.hk/TISIDB/index.php) 
was utilized to analyze the associations between COPS 
and immunomodulator expression levels in HCC.  
For microsatellite instability (MSI) analysis, Spearman’s 
correlation coefficients were calculated between COPS 
gene expression levels and MSI scores. 
 
Drug sensitivity analysis 
 
The Gene Set Cancer Analysis (GSCA, http://bioinfo. 
life.hust.edu.cn/GSCA/#/) (version 09/26/2022), which 
integrates over 10,000 genomic datasets of 33 cancer 
types from TCGA and over 750 small molecule drugs 
from Genomics of Drug Sensitivity in Cancer (GDSC), 
was used to investigate the correlations between COPS 
subunit expression levels and drug response. 
 
Patient samples and IHC 
 
For the analysis of COP9 subunits expression levels,  
we purchased the human HCC tissue microarray from 
Shanghai Outdo Biotech company (HLivH028PG01, 
Shanghai Outdo Biotech, China). All patients were 
completely informed before the collection of the  
tissue samples and written informed consent was 
provided as well. A total of 75 cancer-adjacent normal 
tissues and cancer tissues from patients with HCC were 
included. 
 
Tissues were hydrated, antigen repaired and circled. 
After blocking for 30 min in 10% normal goat serum, 
anti-MYEOV2 (Novus Biologicals, USA) were applied 
and incubated overnight at 4° C. After incubation in 
HRP-secondary antibody, sections were washed with 
phosphate-buffered saline (PBS) and the chromogen 
reaction was performed with diamino benzidine (DAB). 
The Image-Pro Plus 6.0 System, an image analysis 
system, was used for quantitative analysis. 
 
Cell culture 
 
The SK-Hep-1 and Hep G2 cell lines were purchased 
from the Meisen Chinese Tissue Culture Collection  
and Cell Bank of Shanghai Academy of Chinese 
Sciences, respectively. Both lines were cultured at 37° 
C under a 5% CO2 atmosphere in DMEM (Gibco, USA) 
supplemented with 10% fetal bovine serum (Gibco, 
USA). 
 
Western blotting 
 
Western blotting was conducted as described [36] using 
primary antibodies against CyclinB1, CDK4, p18, p21, 
GAPDH, COPS6 and COPS9. Labeled bands were 
visualized using horseradish peroxidase (HRP)-linked 

anti-rabbit or anti-mouse IgGs. All antibodies were 
purchased from Cell Signaling Technology (USA). 
 
Cell proliferation analysis 
 
Cell viability was measured using colony formation 
assay and CCK8 kit (Dojindo, Japan) as described  
[36]. The inhibitory concentration 50% (IC50) of  
5-Fluorouracil was determined using a CCK8 assay. 
After allowing the cells to adhere overnight, complete 
medium was replaced with medium containing serially 
diluted 5-Fluorouracil reagent (0, 1, 2, 4, 8, 16, 32, 64, 
128, 256 and 512 μM). After incubating for 48 h, 10 μl 
of CCK8 solution was added to each well for 2 h at  
37° C. The optical density of each well at 450 nm was 
determined using a microplate reader (Thermo Fisher 
Scientific, USA). 
 
Transwell assay 
 
Transwell migration and Matrigel invasion assays were 
conducted to evaluate cell migration and invasion, 
respectively, using transwell chambers supplied by 
Corning (USA) as described [36]. 
 
Statistical analysis 
 
SPSS version 26 and GraphPad Prism 8 were utilized 
for statistical analyses. Results are presented as  
mean ± standard deviation (SD) of three independent 
experiments. Group means were compared by Student’s 
t-test or one-way ANOVA as indicated. Kaplan–Meier 
curves were constructed to assess OS and group 
differences were evaluated by log-rank test. A two-
tailed P < 0.05 was regarded as statistically significant. 
 
RESULTS 
 
Expression of COPS subunits in HCC: associations 
with clinical pathological parameters 
 
We first examined the expression levels of COPS 
subunits 1, 2, 3, 4, 5, 6, 7A, 7B, 8, and 9 at both mRNA 
and protein levels using the UALCAN database and The 
Human Protein Atlas. According to the UALCAN, the 
mRNA expression levels of all 10 COPS subunits were 
significantly upregulated in HCC tissues compared to 
adjacent non-cancerous tissues (Figure 2). Moreover, 
COPS subunit proteins were differentially expressed  
in HCC tissues according to immunohistochemistry 
results included in The Human Protein Atlas (Figure 
3A). To further validate the expression levels of COP9 
subunits in HCC, we purchased the human HCC tissue 
microarray from Shanghai outdo biotech company, 
consisting of 75 pairs of cancer and adjacent normal 
tissues. We performed IHC staining to detect COPS 
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Figure 2. Elevated expression levels of COPS subunit mRNAs in HCC tissue (from the UALCAN database). (A) Heatmap showing 
the differential expression levels of COPS subunit mRNAs between HCC and normal liver tissues. (B) Direct comparison of COPS subunit 
mRNAs between HCC and normal liver tissues. ***p < 0.001. 
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subunit expression in HCC and adjacent tissues. As 
expected, the result showed COPS subunit expression 
was upregulated in HCC tissues (Supplementary Figure 
2A–2C). However, considering the small number  
of samples tested, we further investigated additional 
proteomics data based on mass spectrometry. These 
results confirmed variable upregulation of COPS 
subunit proteins in HCC tissues relative to healthy 
adjacent tissues (Figure 3B [29], Supplementary Figure 
2D [30] and Supplementary Figure 2E [31]). 
 
Analysis of the UALCAN database also revealed that 
the expression levels of certain COPS subunits were 
significantly correlated with tumor stage. As shown in 

Supplementary Figure 1, late-stage HCC patients 
tended to show higher COPS expression levels. The 
mRNA expression levels of COPS1, -2, -6, and -9 were 
higher in late-stage HCC patients (grade 2/3) than 
grade 1 patients. Further, expression levels of COPS3, -
4, -7B, and -8 differed significantly between grade 1 
and grade 3 cases, and increased progressively with 
grade (although expression levels in grade 4 did  
not show significant variation owing to inadequate  
case numbers). Thus, COPS subunits are upregulated  
in HCC tissues at both protein and mRNA levels. 
Moreover, overexpression is associated with higher 
tumor grade, suggesting that expression levels may 
have prognostic value. 

 

 
 

Figure 3. Elevated expression levels of COPS subunit proteins in HCC tissues as evidenced by immunohistochemistry (from 
The Human Protein Atlas). (A) Representative images of tissues immunostained with the indicated HPA antibodies. (B) Mass 
spectrometry-based quantitative proteomics analysis of COPS subunit proteins in HCC. **p < 0.01, ***p < 0.001. 
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Predictive values of COPS subunits for HCC 
diagnosis and prognosis 
 
To assess the clinical values of COPS subunit 
expression levels for HCC diagnosis, we conducted 
ROC curve analysis and found that COPS complex 
expression (any subunit configuration) discriminated 

HCC from non-HCC with high sensitivity and 
specificity (area under the curve [AUC]=0.996)  
(Figure 4A). Moreover, relatively accurate discrimination 
was also achieved using only expression of COPS1 
(AUC=0.969), COPS2 (AUC=0.822), COPS3 (AUC= 
0.810), COPS4 (AUC=0.772), COPS5 (AUC=0.971), 
COPS6 (AUC=0.963), COPS7A (AUC=0.900), COPS7B 

 

 
 

Figure 4. Prognostic values of COPS subunits for HCC. ROC analysis of (A) COPS complex and (B) individual COPS subunits for the 
diagnosis of HCC. (C) Kaplan–Meier survival curves comparing the overall survival (OS) between HCC patients with high or low expression of 
the indicated COPS subunit (data from the TCGA database). 
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(AUC=0.952), COPS8 (AUC=0.923), or COPS9 
(AUC=0.929) (Figure 4B). Kaplan–Meier analysis also 
indicated that shorter OS was associated with elevated 
tumoral expression of COPS subunits (Figure 4C). 
 
In addition, we performed a multivariate Cox 
proportional hazards regression analysis to further 
analyze the predictive value of COPS subunits on 
clinical outcomes (Figure 5). We identified expression 
levels of COPS5 (HR=2.118, 95%CI: 1.194–3.759, 
p=0.010), COPS7B (HR=2.453, 95%CI: 1.480–4.066, 
p<0.0.001), and COPS9 (HR=2.311, 95%CI: 1.396–
3.826, p=0.001) as independent predictors of OS (see 
forest plots in Figure 5A), suggesting high utility as 
prognostic biomarkers. We also found that Tumor 
Mutation Burden (TMB), an emerging biomarker to 
independently predict immunotherapy response, was  
an independent risk factor for OS (p<0.01). This 
association is explained by the high mutation loads in 
tumors, which leads to the formation of new antigens, 
greater immunogenicity, and improved clinical response 
to immunotherapy. 
 
All prognostic factors deemed significant by 
multivariate Cox regression analysis (clinical stage, N 
stage, M stages, TMB, COPS5, COPS7B, and COPS9) 
were then used to construct prognostic nomograms for 
predicting OS, and a calibration curve was drawn to test 
nomogram efficiency. In the first prognostic model, 
clinical M stage was the strongest contributor to 1-, 3- 
and 5-year OS, followed closely by COPS5 expression. 
In the second prognostic model, COPS7B expression 
was the strongest contributor to 1-, 3- and 5-year OS, 
followed closely by TMB. In the third and fourth 
models, clinical stage was the strongest contributor  
to 1-, 3- and 5-year OS, followed closely by COPS9 
expression. These prognostic nomograms yielded C-
index values of 0.689, 0.701, and 0.679. Moreover, the 
calibration curves showed that nomogram-predicted 
probabilities were close to the ideal reference line for  
1-, 3- and 5-year OS (Figure 6). Thus, these user-
friendly graphical tools allowed us to easily determine 
the one-, three- and five-year OS probabilities for each 
HCC patient. 
 
Genetic mutations of COPS subunits in HCC 
 
Next, cBioPortal was utilized to evaluate COPS subunit 
gene mutations and copy number alterations in HCC. 
Seventy percent (260/372) of HCC patients in the 
database carried COPS subunit gene alterations, with 
highest rates in COPS5 (38%), COPS1 (20%), and 
COPS3/7A (12%) (Figure 7A, 7B). Upregulation of 
mRNA expression was the most common COPS subunit 
gene alteration in HCC patients. Moreover, significant 
correlations between mRNA expression levels and copy 

numbers were observed for COPS1, COPS5, COPS6, 
and COPS9, suggesting that overexpression resulted 
from gene duplication (Figure 7C). 
 
COPS subunit gene network construction and 
functional enrichment analysis 
 
We then examined the correlations among expression 
levels of the ten COPS subunits using the TCGA 
database, and a positive correlation was found between 
each individual subunit component (see chord diagram 
in Figure 8A). To predict the functions of these COPS 
subunits in humans, a PPI network was constructed with 
the 40 nearest-neighbor genes using STRING. The final 
network included 60 nodes, 926 edges, and particularly 
strong interactions with TP53, CUL1/2/3/4, and JUN 
(Figure 8B). According to GO enrichment analysis 
(Figure 8C), COPS subunit genes and 40 nearest-
neighbor genes are involved predominantly in ‘protein 
neddylation’, ‘regulation of protein neddylation’, ‘protein 
deneddylation’, ‘ubiquitin-dependent protein catabolic 
process’, and ‘protein ubiquitination’. The proteins 
encoded by these genes are located primarily in ‘COP9 
signalosome’, ‘Cul4-RING E3 ubiquitin ligase complex’, 
‘nucleoplasm’, ‘Cul4A-RING E3 ubiquitin ligase 
complex’, and ‘Cul4B-RING E3 ubiquitin ligase 
complex’, and are enriched in the molecular function 
annotations ‘cullin family protein binding’, ‘ubiquitin 
protein ligase binding’, and ‘protein binding’. 
According to KEGG enrichment analysis, these genes 
are involved in ‘Ubiquitin mediated proteolysis’, 
‘Pathways in cancer’, ‘Nucleotide excision repair’, 
‘HIF-1 signaling pathway’, ‘Cell cycle’, and ‘Wnt 
signaling pathway’ (Figure 8C). 
 
COPS subunit expression levels were associated with 
HCC tumor immune cell infiltration 
 
Mounting evidence suggests that tumor-infiltrating 
immune cells regulate tumor development and 
progression [37], but it is unclear whether elevated 
expression of COPS subunit genes affects immune cell 
recruitment in HCC. Analysis using the TIMER database 
revealed that COPS3, COPS4, COPS8, and COPS9 
expression levels were positively correlated with the 
numbers of infiltrating B cells, CD8+ T cells, CD4+  
T cells, macrophages, neutrophils, and dendritic cells 
(Figure 9A). Application of the “GSVA” and “estimate” 
R packages further revealed that COPS3, COPS4, 
COPS8, and COPS9 expression levels were positively 
correlated with the infiltration rates of most immune cells 
(Figure 9B). We also found that elevated expression 
levels of COPS4 and COPS8 were associated with higher 
stromal score, an index of immune infiltration. Moreover, 
the expression levels of COPS3 and COPS9 were 
positively correlated with immune score and COPS4 
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Figure 5. COPS subunits with prognostic significance. (A, B) Forest plots showing the results of univariate analysis (A) and multivariate 
Cox regression analyses (B) for the associations between COPS subunit expression levels and OS probabilities. Bars represent the 95% 
confidence intervals of the hazard ratios. *p < 0.05, **p < 0.01, ***p < 0.001. 
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expression level with ESTIMATE score (Figure  
9C). Also, COPS subunit expression levels were 
associated with immunostimulators, immunoinhibitors, 
MHC molecules, chemokines, and chemokine receptors 
of infiltrating immune cells in HCC (Figure 9D). These 
results thus identify additional prognostic biomarkers 
and therapeutic targets for HCC. 

The microsatellite stability index has been reported  
to predict immunotherapy response [38], and the  
results presented here revealed that COPS subunit 
expression levels are predictive of tumor immune cell 
infiltration. To examine if COPS subunits can also serve 
as biomarkers for drug screening, we analyzed the 
correlations with MSI and found positive correlations 

 

 
 

Figure 6. Construction and validation of nomograms based on COPS subunit expression. (A–C) Nomograms constructed to 
establish the prognostic efficacy of COPS subunits 5 (A), 7B (B), and 9 (C) for predicting 1-, 3-, and 5-year overall survival (OS). Calibration 
plots are also shown validating the efficiency of nomograms for OS prediction. 
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with the expression of COPS1 (p=3.49e-5), COPS6 
(p=0.014), COPS7A (p=0.006), and COPS9 (p=0.012) 
(Figure 10A), while there were no significant 
correlations between MSI and expression levels of 
COPS2, -3, -4, -5, -7B, and -8 (Figure 10A). In 
addition, we examined the relationships between COPS 
subunits levels and sensitivities to various drugs using 
the GSCA database and found COPS subunit expression 
levels were negatively correlated with some or  
most drugs in the GDSC database (Figure 10B). We 
further validated the correlation between 5-Fluorouracil 
sensitivity and COPS6 expression level in HCC. As 
shown in Figure 10C, IC50 value for 5-Fluorouracil 
increased in COPS6-overexpressing Hep G2 and SK-
HEP1 cells, which is consistent with the predicted 
results of the GSCA database (Figure 10B). This has 
reference significance for conducting clinical research 
studies and guiding the clinical medication of HCC 
treatment. 
 
COPS6 and COPS9 are essential for cell 
proliferation and metastasis of HCC cells 
 
To examine the biological function of COPS6  
and COPS9 in HCC, Hep G2 and SK-HEP-1 cells  
were transfected separately with COPS6 and COPS9 
overexpression or knockdown vectors (Supplementary 
Figure 3). Both COPS6 knockdown and COPS9 knock-
down significantly suppressed while overexpression 
significantly increased colony formation (Figure 11A). 
Both COPS6 and COPS9 knockdown also reduced 

viable HCC cell number after several days in culture  
as estimated by CCK8 assay, while overexpression 
significantly increased (Figure 11B), suggesting that 
COPS6 and COPS9 accelerate HCC tumor growth. 
Both COPS6 and COPS9 overexpression promoted 
HCC cell migration and Matrigel invasion in transwell 
assays, while COPS6 siRNA transfection or COPS9 
siRNA transfection repressed transwell migration  
and Matrigel invasion (Figure 11C). Further, COPS6  
or COPS9 overexpression enhanced the expression 
levels of cell cycle regulators CyclinB1 and CDK4,  
but downregulated the expression of cyclin-dependent 
kinase inhibitors p18 and p21 according to western blot 
analysis (Figure 11D). Collectively, these results indicate 
that COPS6 and COPS9 regulate the tumorigenicity and 
metastasis of HCC. 
 
DISCUSSION 
 
The COP9 signalosome is a highly conserved multi-
subunit complex localized mainly in the nucleus of 
eukaryotic cells. The individual subunits of COPS  
are highly homologous to the lid complex (19S) of the 
26S proteasome, suggesting functions in ubiquitin- and 
proteasome-dependent protein degradation. Tumor cells 
carry a high unfolded protein burden due to mutations  
in protein-coding sequences and concomitant abnormal 
ubiquitination [39]. Thus, aberrant expression of COPS 
subunits may contribute to cancer development and 
progression. Indeed, COPS subunit overexpression has 
been detected in breast cancer [40–42], HCC [18, 43], 

 

 
 

Figure 7. Alterations of COPS subunit genes (from cBioPortal). (A) Summary of COPS subunit gene mutation rates. (B) Genetic 
alteration summary of the COPS complex in HCC. (C) COPS subunit gene mutation types. 
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colorectal cancer [44], gastric cancer [23, 45], pancreatic 
cancer [46, 47], myeloma [48], non-small cell lung 
cancer [49], prostate cancer [50], and osteosarcoma [51]. 
Overexpression of COPS5 has also been implicated in 
lymph node metastasis [52] and histological tumor 

progression [53]. In addition, high expression levels  
of COPS5 and COPS6 were found to predict poorer 
prognosis in cancer patients [44, 47, 54, 55]. Thus, 
COPS subunit genes may be valuable biomarkers and 
therapeutic targets for HCC. 

 

 
 

Figure 8. Functional enrichment analyses of COPS subunit genes and neighboring genes in HCC (from STRING and DAVID).  
(A) Associations among COPS complex components in HCC revealed by Spearman correlation analysis. (B) Biological interaction network of 
COPS subunit genes and neighboring genes. (C) GO and KEGG enrichment analysis showing biological processes, cellular components, 
molecular functions, and molecular pathways of COPS subunits and neighboring network genes. 
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COPS subunits have been reported to play a dual role in 
tumor development. For instance, COPS2 is considered 
a putative tumor suppressor gene. Carvalho and 
colleagues identified COPS2 as a possible candidate 
target gene for miR-15a-3p to inhibit the progression  
of colorectal adenoma [56]. Alternatively, COPS3 may 
promote clear cell renal cell carcinoma progression  
by regulating phospho-AKT (Thr308), Cyclin D1, and 
Caspase-3 expression [57], while COPS5, -6, and -8 

overexpression enhanced cellular proliferation [23, 45, 
46, 58, 59], EMT [42, 55, 60, 61], and vascular invasion 
[62]. Zheng and colleagues also found that KRT19P3 
suppressed gastric tumor growth and metastasis through 
a COPS7A-regulated NF-κB pathway, suggesting that 
COPS7A acts as a suppressor of gastric cancer [63]. 
COPS9 is a newly discovered subunit of COP9 with 
limited research currently, and it has potential research 
significance. The lack of COPS9 yields a cellular 

 

 
 

Figure 9. Correlations between COPS subunit gene expression levels and immune cell infiltration rates. (A) Correlations of COPS 
subunit expression levels with infiltration rates of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC 
(from the TIMER2.0 database). (B) Relationships among the infiltration levels of 24 immune cell types and COPS subunit expression profiles 
(based on the ssGSEA R package). (C) Relationships between COPS subunit expression levels and stromal score, immune score, and ESTIMATE 
score. (D) Heatmaps showing the correlations between COPS subunit expression levels and immunostimulators, immunoinhibitors, MHC 
molecules, chemokines, and chemokine receptors in HCC (TISIDB). 
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phenotype characterized by reduced cell proliferation 
and a flattened and enlarged morphology [14]. COPS 
functions as a molecular platform for proteolysis  
and signal transduction, and is involved in regulating 
multiple intracellular signal transduction pathways 
promoting the occurrence and development of tumors. 
To assess the functions of COPS subunits and 
associated regulatory networks in HCC, we conducted 

a series of bioinformatics analyses and experiments on 
cultured HCC cells overexpressing or underexpressing 
COPS subunits. 
 
We first found that the expression levels of multiple 
COPS subunits were upregulated at both mRNA  
and protein levels in HCC tissue samples compared  
to normal liver tissue samples according to archived 

 

 
 

Figure 10. Microsatellite stability (MSI) and drug-sensitivity analysis of COPS subunits in HCC. (A) Correlations between COPS 
subunit expression levels and MSI in HCC. (B) Correlations between COPS subunit expression levels and GDSC drug sensitivity in pan-cancer. 
(C) The effect of COPS6 overexpression on IC50 value of 5-Fluorouracil in Hep G2 and SK-HEP1cells. 
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results in the UALCAN database, Human Protein Atlas 
and IHC assay. The mRNA expression levels of COPS 
were also associated with clinicopathologic parameters, 
and both Kaplan–Meier and Cox regression analyses 
further identified elevated expression levels of specific 
COPS subunits as independent risk factors for shorter 
OS. We also found several alterations in COPS subunit 
genes, including mutations and gene duplications. 
Therefore, COPS subunit expression levels may be 
useful for HCC diagnosis and prognosis, a notion that 
merits further clinical verification. 
 
To further analyze the tumorigenic functions of  
COPS subunits, we constructed PPI networks with 

neighboring genes and found that TP53, CUL1/2/3/4, 
and JUN had higher combined scores with COPS. 
Further, these proteins all shared the GO biological 
process ‘protein neddylation’ and the KEGG pathway 
‘Ubiquitin mediated proteolysis’. Consistent with these 
in silico results, the COP9 signalosome serves two 
principal functions in eukaryotic cells, deneddylation 
and phosphorylation. The cycling between neddylation  
and deneddylation is a dynamic process effectively 
regulated by COPS. The 19S lid complex of the 
proteasome functions in recognizing and funneling ubi-
quitinated substrates to the proteolytic core complex for 
degradation. However, the COP9 signalosome is highly 
structurally and functionally homologous with the 19S 

 

 
 

Figure 11. Role of COPS6 and COPS9 in the proliferation, migration, invasion, and cell cycle progression regulation of HCC 
cells. (A) Colony formation assays showing the role of COPS6 and COPS9 on HepG2 and SK-HEP-1 cell proliferation. (B) Cell viability of HepG2 
and SK-HEP-1 cell lines were determined by CCK-8 assays. (C) The effects of COPS6 and COPS9 on cell migration and invasion were 
determined by transwell assays in Hep G2 and SK-HEP-1 cell lines. (D) The relative expression levels of cyclin B1, CDK4, p18, and p21 were 
examined by Western blotting in Hep G2 and SK-HEP-1 cells. *p < 0.05, **p < 0.01, ***p < 0.001. 
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lid complex. Further, COPS5 is at the enzymatic  
core of COPS and functions to remove NEDD8 from  
cullin proteins. Similarly, the lid sub-complex subunit  
RPN11 removes ubiquitin from proteasome substrates. 
Therefore, the COPS complex may substitute for the 
lid complex to coordinate the activity of SCF E3 
ubiquitin ligases and the 26S proteasome in proteolysis 
[15]. In fact, COPS promoted the cleavage of the 
NEDD8–CUL1 conjugate (deneddylation), which in 
turn inhibited the E3 ubiquitin ligase activity of  
CRLs [64]. In the absence of COPS, the E3 ubiquitin 
ligase SCFTIR1 had a significantly reduced ability  
to degrade its substrates [65]. Therefore, cullin-based 
E3 ubiquitin ligase–mediated responses are likely 
regulated by COPS. The COP9complex is also 
involved in the phosphorylation of p53/TP53, c-
Jun/JUN, and I-kappa-B-alpha/NFKBIA. COPS-
specific phosphorylation targets intracellular p53 for 
ubiquitin-26S proteasome-dependent degradation by 
interacting with the N-terminus of p53 [66]. COPS 
also phosphorylated c-Jun at Ser63 and Ser73 of the 
N-terminal transactivation domain, which prevented 
degradation by the ubiquitin-like system [67]. These 
results suggest that COPS complexes may suppress  
or promote cancer-related signaling pathways by 
regulating protein degradation. 
 
Infiltrating immune cells in the tumor microenvironment 
have been shown to regulate tumor development and 
metastasis, and thereby to critically impact patient 
prognosis [37]. Currently, immunotherapy has been 
reported to be effective for cancer patients, including 
HCC [68]. Therefore, we examined if COPS subunit 
expression is associated with altered expression of 
immune biomarkers and potential immunotherapeutic 
targets. Indeed, elevated COPS subunit expression  
was associated with greater immune cell infiltration. 
Meanwhile, we revealed positive correlations between 
COPS1, -6, -7A, and -9 expression and MSI in  
HCC, implying that patients with elevated COPS 
expression may be more responsive to immunotherapy. 
Activation of PD-1/PD-L1 signaling allows tumors to 
evade antigen-specific T-cell immunologic responses. 
However, studies have indicated a close relationship 
between COPS and PD-L1. COPS5 and COPS6 can 
prevent PD-L1 from degrading, thereby maintaining 
PD-L1 stability in cancer cells [69, 70]. In addition, 
inhibition of COPS5 by curcumin reduced the 
expression of PD-L1 and sensitized cancer cells to 
anti-CTLA4 treatment. Therefore, the relationship 
between COPS and PD-L1 provides important clues  
to the regulatory mechanisms of immune evasion, 
suggests that COPS may modulate anti-tumor immunity 
and sensitivity to immunotherapy, and identifies COPS 
subunits a potential biomarker of immune infiltration 
in HCC. 

Finally, we conducted a series of gain- and loss-of-
function assays in vitro to verify the functions of 
COPS6 and COPS9 in HCC. Overexpression of COPS6 
or COPS9 increased HCC cell proliferation, migration, 
and invasion while knockdown suppressed these pro-
tumorigenic and metastatic properties. In addition,  
we observed increased p18 and p21 expression levels 
after COPS6 or COPS9 overexpression and substantial 
decreases in p18 and p21 expression levels after COPS6 
or COPS9 knockdown. It has been demonstrated that 
COPS-mediated regulation of cell cycle regulators is 
essential for a variety of tumor types. For instance, 
COPS5 accelerated the degradation of p27 and over-
came p27-mediated cell cycle arrest in the G1 phase 
[71]. Mechanistically, COPS5/COPS6 induced the 
cytoplasmic translocation and subsequent degradation 
of p27 [71, 72]. In nasopharyngeal cancer cells, Jab1 
and p27 were shown to interact directly, with Jab1 
facilitating proteasome-dependent p27 degradation [22]. 
COPS subunits also regulate the expression of other  
cell cycle-associated genes. COPS3 knockdown induced 
cell cycle arrest at G0/G1 phase by upregulating p21 
and downregulating CDK4 and cyclin B1 in lung 
adenocarcinoma cells [20], while COPS5 expression 
facilitated MDM2-mediated p53 ubiquitination, nuclear 
export, and degradation [73]. Similarly, COPS6 
facilitated cancer cell growth through p53 ubiquitination 
and degradation [26, 27]. Here, we suggested that 
COPS6 and COPS9 were able to downregulate the 
expression of p18 and p21. Therefore, aberrant 
overexpression of COPS6/COPS9 in HCC cells 
facilitated cancer cell growth, which may be attributed 
to the ubiquitination and degradation of p18 and p21. 
 
These analyses identified several COPS subunits as 
independent predictive biomarkers of HCC clinical 
outcome and revealed several potential mechanisms by 
which COPS subunits may promote HCC tumorigenesis, 
including aberrant protein degradation and promotion  
of tumor infiltration by immune cells. Nonetheless,  
this study has several limitations. First, most of these 
findings were derived from bioinformatics analyses  
of public databases and thus require verification by  
in vivo experiments and clinical trials. Second, the 
pathogenic mechanisms underlying COPS subunit-
mediated tumorigenesis were not investigated. We 
demonstrated that COPS6 and COPS9 promote cell 
cycle progression, but it is unknown whether these 
effects are dependent on p21 and p18 degradation  
via a ubiquitin-mediated process. Future studies should 
focus on COPS subunits such as COPS6 and COPS9  
as potential targets for HCC therapy. 
 
These findings suggest that the COP9 signalosome is a 
potential biomarker for HCC diagnosis and prognosis as 
well as a promising treatment target for preventing HCC 
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progression and metastasis. We propose that this data 
mining and bioinformatics strategy can provide clues to 
HCC pathogenesis and potentially effective treatment 
targets. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 
 

 
 

Supplementary Figure 1. Greater COPS subunit mRNA expression levels are associated with higher HCC tumor stage (from 
UALCAN). (A) Heatmap showing the differential expression of COPS subunits in HCC patients with different tumor grades. (B) Expression 
levels of COPS subunits in HCC patients with different tumor grades. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 2. COPS subunits were upregulated in HCC. (A, B) IHC analysis of COPS9 protein levels in adjacent tissues and 
HCC tissues. (C) COPS9 expression in paired adjacent tissues and HCC tissue samples. (D, E) Mass spectrometry-based quantitative 
proteomics analysis of COPS subunit proteins in HCC. **p < 0.01, ***p < 0.001. ns, no significance. 

5286



www.aging-us.com 24 AGING 

 
 

Supplementary Figure 3. Efficiencies of COPS6/9 overexpression and knockdown in Hep G2 and SK-HEP1 cells following plasmid and siRNA 
transfection, respectively, as confirmed by Western blotting (A) and qPCR (B). **p < 0.01, ***p < 0.001. 

5287


