Network pharmacology and experimental evaluation strategies to decipher the underlying pharmacological mechanism of Traditional Chinese Medicine CFF-1 against prostate cancer

Yong Wei^{1,*}, Mingxia Zhu^{2,*}, Ye Chen^{3,*}, Qianying Ji⁴, Jun Wang⁴, Luming Shen¹, Xin Yang¹, Haibin Hu¹, Xin Zhou^{5,6}, Qingyi Zhu¹

¹Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China ²Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China ³The First Medicine College, Taizhou Campus of Nanjing University of Traditional Chinese Medicine, Taizhou 225300, China

⁴Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

⁵Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223812, China

⁶Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ^{*}Equal contribution

Correspondence to: Qingyi Zhu, Xin Zhou, Haibin Hu; email: drzhuqingy@126.com, https://orcid.org/0000-0002-0965-4700;zhouxin5523@jsph.org.cn, hob 002@163.com, https://orcid.org/0009-0005-1335-2704Keywords: prostate cancer, Traditional Chinese Medicine, CFF-1, network pharmacology, prognosisReceived: August 3, 2023Accepted: February 20, 2024Published: March 13, 2024

Copyright: © 2024 Wei et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution</u> <u>License</u> (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Prostate cancer (PCa) is a common malignancy in elderly men. We have applied Traditional Chinese Medicine CFF-1 in clinical treatments for PCa for several years. Here, we aimed to identify the underlying mechanism of CFF-1 on PCa using network pharmacology and experimental validation. Active ingredients, potential targets of CFF-1 were acquired from the public databases. Subsequently, protein-protein interaction (PPI) and the herbs-active ingredients-target network was constructed. A prognostic model for PCa was also constructed based on key targets. *In vitro* experiments using PCa cell lines CWR22Rv1 and PC-3 were carried out to validate the potential mechanism of CFF-1 on PCa. A total of 112 bioactive compounds and 359 key targets were screened from public databases. PPI and herbs-active ingredients-target network analysis determined 12 genes as the main targets of CFF-1 on PCa. Molecular docking studies indicated that the primary active ingredients of CFF-1 possess strong binding affinity to the top five hub targets. DNMT3B, RXRB and HPRT1 were found to be involved in immune regulation of PCa. *In vitro*, CFF-1 was found to inhibit PCa cell proliferation, migration, invasion and induce apoptosis via PI3K-Akt, HIF-1, TNF, EGFR-TKI resistance and PD-1 checkpoint signaling pathways. This study comprehensively elucidates the underlying molecular mechanism of CFF-1 against PCa, offering a strong rationale for clinical application of CFF-1 in PCa treatment.

INTRODUCTION

Prostate cancer (PCa) ranks as the second deadly malignancy among men worldwide [1]. While early

diagnosis, surgery and radiotherapy have enhanced survival rates in patients with PCa, therapeutic options for advanced stages, especially castration-resistant prostate cancer (CRPC), remain constrained [2–4]. Network pharmacology, a bioinformatics method, facilitates the enhancement of drug efficacy, minimization of adverse reactions, and development of new drugs by analyzing complex compositions and disease-related signaling pathways. It has also been instrumental in deciphering the intricate interplay between active components of natural products, diseases, and targets [5, 6].

Traditional Chinese Medicine (TCM), acting on multiple targets rather than a single target, is more systematic in treating corresponding diseases [7]. The efficacy of TCM lies in the synergistic effect of multiple targets and components, regulating diverse biological mechanisms. However, the action mechanism of TCM formulas, with their intricate components, is more complex than that of single medicines [8–10]. Traditional pharmacological studies of TCM, often focused on individual ingredients or medicines, struggle to elucidate the synergistic effects of various chemical constituents.

CFF-1, a TCM obtained from Fusong Xu, a renowned TCM practitioner from Jiangsu Province Hospital of Chinese Medicine, has been employed in clinical settings to treat PCa for several years. According to our previous reports, CFF-1 suppressed cell growth and promoted apoptosis through EGFR-related pathways in PCa [11]. It is also reported to counteract PCa through suppressing PD-1/PD-L1 checkpoint signaling via EGFR-related pathways [12]. Nevertheless, the comprehensive mechanism of CFF-1 in treating PCa has yet to be fully elucidated using robust methodologies. Network pharmacology, merging the advantages of TCM with the most advanced medical technology, has become a favorable approach for TCM research [13, 14].

We utilized a comprehensive network pharmacology and molecular docking approach to investigate the bioactives of CFF-1, predict their effective targets, and understand the underlying molecular mechanisms in PCa. A prognostic model based on key targets was also constructed. Finally, we verified the predicted results in PCa cell lines.

RESULTS

Active compounds in CFF-1 and target screening of CFF-1 on PCa

Initially, 78 active compounds in CFF-1, each with OB \geq 30% and DL \geq 0.1 in CFF-1, were collected from TCMSP platform. Subsequently, 70 active compounds with p < 0.05, score \geq 20 were obtained from BATMAN-TCM platform. After integrating these

findings, 112 active compounds were selected for further study (Table 1). The targets for the candidate compounds in CFF-1 were explored from TCMSP and BATMAN-TCM, identifying 131 and 848 putative targets, respectively. There were 41 overlapping targets among the two sets. Ultimately, 938 targets for CFF-1 active components were acquired by integrating the overlapping targets (Figure 1A). Additionally, 2682 target genes related to PCa were acquired from the Genecards by setting the correlation score >20 and 495 target genes were acquired from OMIM databases. A total of 3022 target genes acquired from the two sets after eliminating the overlaps (Figure 1B). Nine hundred and thirty-eight targets for drug active components and 3022 targets for PCa were screened out by Perl language program and R language software. In total, 359 overlapping target genes were recognized as key targets related to both CFF-1 and PCa for further analyses (Figure 1C).

Compound-target network and analysis

Upon entering the above 359 key targets into STRING, we obtained a key targets PPI network of CFF-1 on PCa. Subsequent analysis of this PPI network focused on "degree" was applied to select the target in the core position (Figure 2A). The top 30 target genes with high degree were shown in Figure 2B. The 53 core targets were further screened by setting interaction score ≥ 0.9 and degree ≥20. Cytoscape software was applied to construct the herbs-active ingredients-target network, containing 112 nodes (55 for candidate active ingredients and 53 for core targets) and 253 edges. In the network, the nodes with more edges might play essential roles in the pharmacological processes, and 12 nodes (edge ≥ 5) were determined as the main targets of CFF-1 on PCa for further analysis, including NCOA2, RXRA, ESR1, NCOA1, PPARG, IL1B, TNF, IKBKB, NR3C1, IL4, IL6 and PRKCA (Figure 2C).

Molecular docking verification

As previously mentioned, PIK3R1, AKT1, MAPK1, MAPK3 and SRC were the top five hub targets in PPI network. These targets were then docked with their respective active ingredients. The ligand-receptor binding energy values, indicative of binding stability, were presented in Figure 3A. Generally, a binding energy lower than -5 kcal/mol is considered indicative of stable binding. Notably, coryneine establishes two hydrogen bonds with GLU-17 and THR-18 in PIK3R1, while baicalein forms three hydrogen bonds with GLU-91, HIS-89 and HIS-13 in AKT1. Diosgenin forms one hydrogen bond with GLY-16 in AKT1. Coryneine and digitalis glycoside bound to MAPK1 with binding energy values of -5.6 kcal/mol and -9 kcal/mol, respectively.

Table 1. Active compounds in CFF-1.

Number	Active compounds	Number	Active compounds	Number	Active compounds
1	Isoliquiritigenin	2	DFV	3	baicalein
4	3'-Methoxydaidzein	5	beta-sitosterol	6	sitosterol
7	(Z)-1-(2,4-dihydroxyphenyl)-3-(4- hydroxyphenyl)prop-2-en-1-one	8	(2R)-7-hydroxy-2-(4- hydroxyphenyl)chroman-4-one	9	1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4- methylene-,(1aR-(1aalpha, 4aalpha,7beta,7abeta,7balpha))
10	4',5-Dihydroxyflavone	11	2-Acridinecarboxylic acid	12	(Z)-nonadec-6-enoic acid
13	Azetidine-2-Carboxylic Acid	14	Aspartic Acid	15	Digitalis Glycoside
16	Homoserine	17	Mannose	18	EIC
19	Aeginetic acid	20	jioglutin D	21	METHYL PALMITOLEATE
22	Stigmasterol	23	Uridine	24	DMEP
25	1,2-Dibenzoylethane	26	WLN: RVO2R	27	(-)-taxifolin
28	ELD	29	diosgenin	30	()-alpha-Longipinene
31	(+)-catechin	32	(-)-Caryophyllene oxide	33	(-)-alpha-cedrene
34	DBP	35	ent-Epicatechin	36	alpha-Longipinene
37	DIBP	38	()-Aromadendrene	39	beta-Cubebene
40	(-)-Epoxycaryophyllene	41	oleic acid	42	Hepanal
43	58870_FLUKA	44	()-alpha-Funebrene	45	phytol
46	8-Deoxy-14-Dehydro-Aconosine	47	1,2-Benzenedicarboxylicacid, mono(2-ethyl) hexylester	48	(−)-Alloaromadendrene
49	Procurcumenol	50	Tetradecanal	51	Cinnamaldehyde
52	5-Cinnamoyl-9-O- Acetylphototaxicin I	53	Anethole	54	Protocatechuic Acid
55	Coumarinic Acid	56	Gamma-Sitosterol	57	Camphor
58	Melilotocarpan A	59	Farnesol	60	Nerolidol
61	Trans-Cinnamic Acid	62	Styrene	63	11,14-eicosadienoic acid
64	Delphin_qt	65	Deltoin	66	Deoxyandrographolide
67	Karanjin	68	Talatisamine	69	Benzoylaconine
70	Aconitine	71	Delgrandine	72	Aconine
73	14-Deoxy-11,12- Didehydroandrographolide	74	Deltaline	75	Delavaconitine
76	Deltamine	77	Carmichaeline	78	Delsoline
79	Salsolinol	80	Crassicauline A	81	Delphamine
82	Bullatine B	83	Benzoylhypaconine	84	Bullatine C
85	Coryneine	86	Vilmorrianine C	87	3-Acetylaconitine
88	Deoxyaconitine	89	Delphatine	90	M-Aminophenol
91	Karakoline	92	Hypaconitine	93	Talatizamine
94	Neojiangyouaconitine	95	Ignavine	96	Ortho-Aminophenol
97	Para-Aminophenol	98	Neokadsuranic Acid B	99	Benzoylmesaconine
100	taxifolin	101	Delbrusine	102	Mescaline
103	Higenamine	104	Carnosifloside I	105	Mesaconitine
106	Isotalatizidine	107	Neoline	108	P-Aminophenol
109	Delcorine	110	Delbrusine	111	Karacoline
112	Delbruline				

Among these, the binding affinity of digitalis glycoside to MAPK3 was the strongest, with a value of -12.9 kcal/mol. Additionally, nerolidol forms one hydrogen bond with GLU40 in SRC (Figure 3B–3H).

Enrichment analysis

To ascertain the involved pathways of CFF-1 on PCa, we carried out KEGG pathway analysis of 359 key targets. A total of 172 involved pathways were identified (Supplementary Table 1). Figure 4A displayed the top 20 enriched pathways, suggesting that the anti-cancer effect of CFF-1 on PCa likely results from a relatively complex and multi-pathway synergistic effect.

To further explore the biological role of involved targets of CFF-1 against PCa, the GO process analysis of 359 key targets was performed. A total of 238 GO terms were found (Supplementary Table 2). Figure 4B displayed the top 20 enriched terms related to PCa, suggesting that CFF-1 may exhibit its therapeutic effects through the above biological processes.

Prognostic model construction based on key targets

A total of 359 key target genes were subjected to LASSO regression analysis to identify genes for construction of risk score model for PCa patients in the TCGA database. The risk score for predicting DFS of each PCa patient was calculated as follows: Risk score = NFATC1 \times 0.234 + ARG1 \times 0.001 + DNMT3B \times 0.315 - NR3C1 \times 0.025 + RXRB \times 0.105 + HPRT1 \times 0.033 + SI \times 0.037. A 7-gene signature was constructed. Patients were classified into high- and low-risk groups based on the median risk score (Figure 5A). A risk curve and a scatter plot were applied to show the risk score and the survival status of each PCa patient,

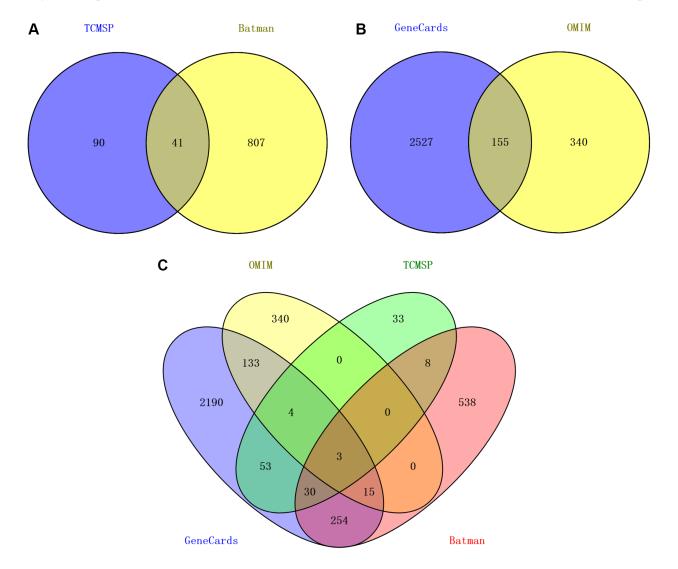
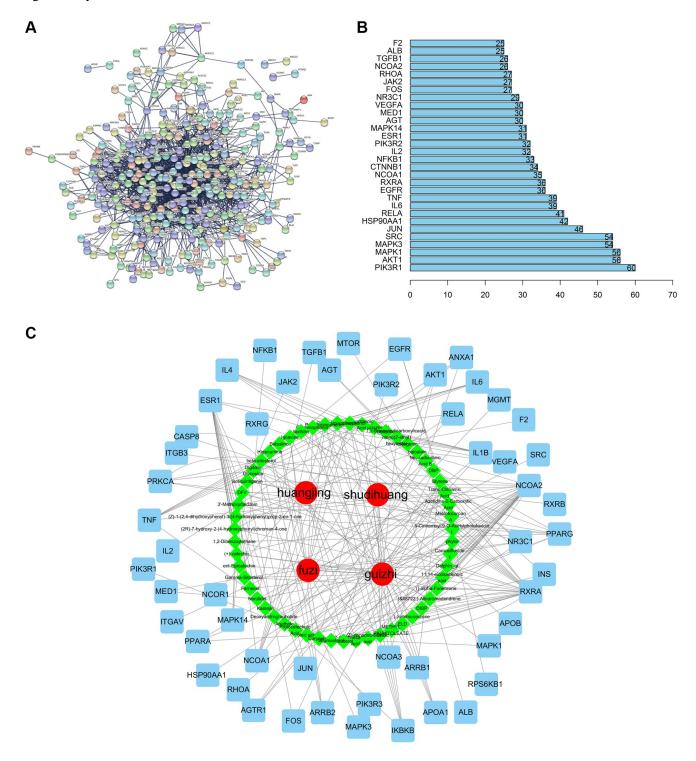



Figure 1. Target screening of CFF-1 on PCa. (A) Venn diagrams showing CFF-1 targets obtained from TCMSP and BATMAN-TCM. (B) Targets related to PCa acquired from Genecards and OMIM. (C) The intersection of targets for both CFF-1 and PCa.

respectively. Most recurrent cases were distributed in the high-risk group (Figure 5B). The expression profile of candidate genes indicated that NFATC1, ARG1, DNMT3B, NR3C1, RXRB, HPRT1 and SI were highly expressed in the high-risk group, except for NR3C1 (Figure 5C). PCa patients in the high-risk group had a significantly worse DFS than those in the low-risk group. AUC of ROC curve for the DFS prediction of risk score model was 0.867 (Figure 5D, 5E).

The risk score for predicting PFS was calculated as follows: Risk score =ALDOA \times 0.0003 + DNMT3B \times 0.222 + CSF2 \times 0.099 + DNMT1 \times 0.031 + EZH2 \times 0.054 + ARRB2 \times 0.019 - ESRRG \times 0.025 + APOA2 \times

Figure 2. Compound-target network and analysis. (A) Key targets PPI network of CFF-1 on PCa. (B) Bar graph showing the top 30 targets with high degree. (C) The herbs-active ingredients-target network of CFF-1 on PCa.

 $0.007 + RXRB \times 0.076 + HPRT1 \times 0.021 - RDH11 \times 0.0001$. A 11-gene signature was constructed (Figure 5F). Progression patients were mainly distributed in the high-risk group (Figure 5G). The expression profile showed that ALDOA, DNMT3B, CSF2, DNMT1, EZH2, ARRB2, APOA2, RXRB and HPRT1 were highly expressed in the high-risk group, except for ESRRG and RDH11 (Figure 5H). Kaplan–Meier curves showed that PFS was significantly worse in high-risk patients than low-risk patients. AUC of ROC curve for the PFS prediction was 0.773 (Figure 5I, 5J).

For OS, though few patients reached the endpoint (10 of 495 patients), the risk score model was also constructed. The risk score for predicting OS was calculated as follows: Risk score = $AR \times 0.048 + AGTR1 \times 0.062 + PPARD \times 0.427 + PHB \times 0.090 + RPS6KB1 \times 0.620 + FADD \times 0.821 - DNMT1 \times 0.667 + AKR1C3 \times 0.075$.

An 8-gene signature was constructed (Supplementary Figure 1A). More dead cases were found in the highrisk group (Supplementary Figure 1B). The heat map suggested that AR, AGTR1, PPARD, PHB, RPS6KB1, FADD, DNMT1 and AKR1C3 were overexpressed in the high-risk group, except for DNMT1 (Supplementary Figure 1C). Patients in the high-risk group had significantly shorter OS compared with those in the low-risk group. AUC of ROC curve for the OS prediction was 0.992 (Supplementary Figure 1D, 1E). Taken together, these gene signatures might effectively predict the prognosis of PCa and may act as potential targets for PCa therapy.

We then explored possible associations of risk scores with ESTIMATE score using the ESTIMATE algorithm. Using the CIBERSORT algorithm, the correlation between risk score and the infiltration of

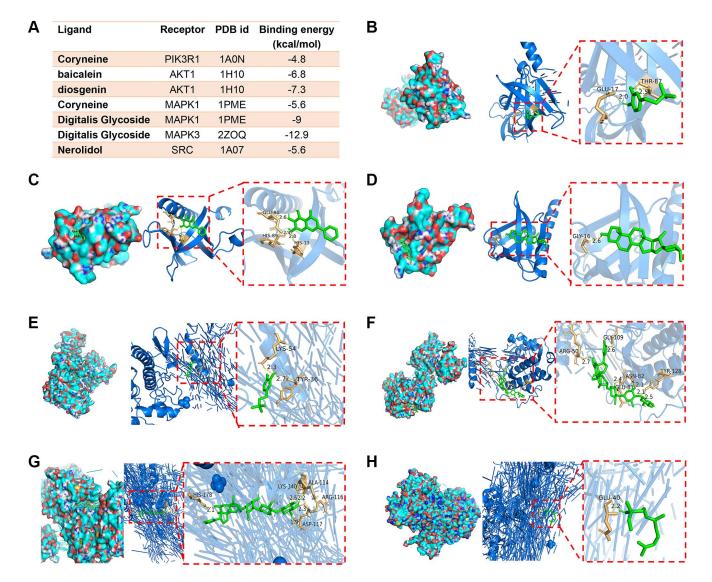


Figure 3. Representative images of molecular docking. (A) The results of ligand-receptor binding energy values. (B) Coryneine-PIK3R1. (C) Baicalein-AKT1. (D) Diosgenin-AKT1. (E) Coryneine-MAPK1. (F) Digitalis glycoside-MAPK1. (G) Digitalis glycoside-MAPK3. (H) Nerolidol-SRC.

22 immune cell subtypes were assessed. The risk score for predicting OS of PCa patient was negatively associated with stromal score, immune score, and ESTIMATE score, while positively with the infiltration of mast cells resting (Supplementary Figure 2A). The risk score for predicting DFS was negatively related to the infiltration of plasma cells, while positively Tregs and macrophages M2 (Supplementary Figure 2B). The risk score for predicting PFS was positively related to stromal score, immune score, ESTIMATE score, the infiltration of Tregs macrophages M1 and macrophages M2, while negatively with plasma cells and mast cells resting (Supplementary Figure 2C).

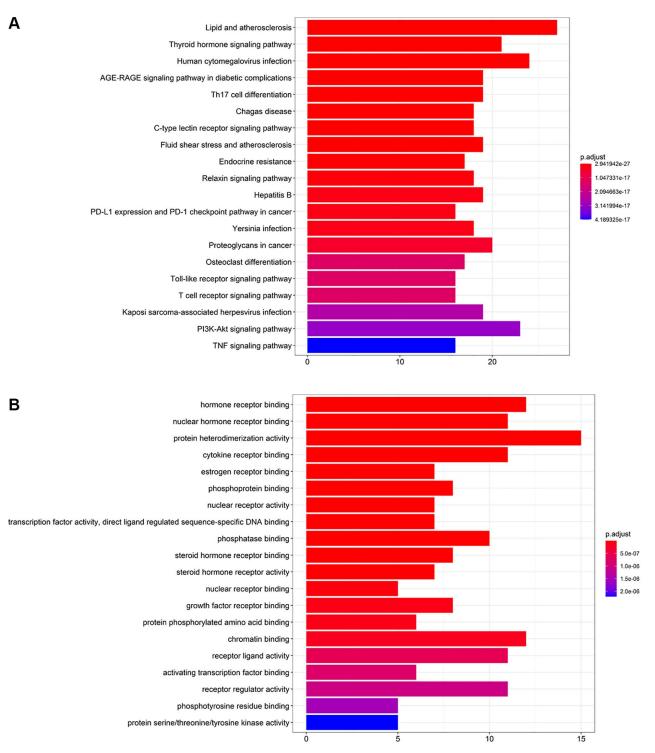


Figure 4. KEGG pathway enrichment and GO biological process analysis of key targets of CFF-1 on PCa. (A) The top 20 enriched pathways of KEGG pathway enrichment analysis. (B) The top 20 enriched terms of GO biological process analysis.

DNMT3B, RXRB and HPRT1 were the common target genes affecting both PFS and DFS in PCa patients. GO functional annotations and KEGG pathways enrichment were applied to evaluate the biological significance of DNMT3B, RXRB and HPRT1 in PCa. The results indicated that DNMT3B, RXRB and HPRT1 were widely involved in immune regulation (Supplementary Figure 3).

CFF-1 inhibited PCa cells proliferation and induced apoptosis

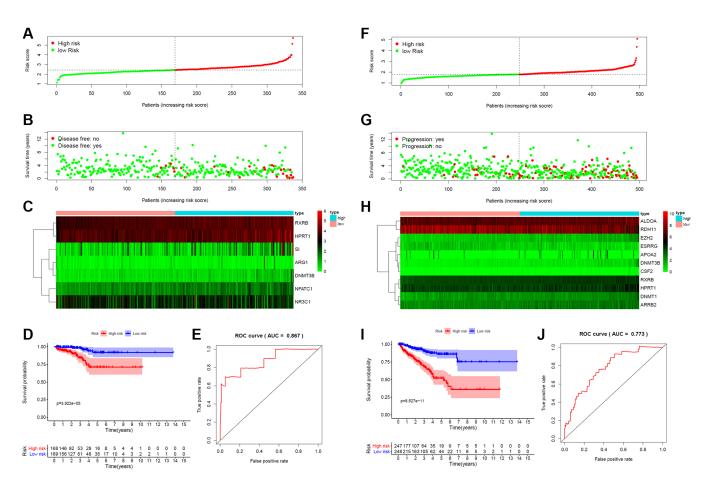
To evaluate the effect of CFF-1 on PCa as postulated from network pharmacology analysis, clonogenic assay, CCK8 and Edu assays were conducted in PC-3 cell line treated with different concentrations of CFF-1 (0, 2, 4, 6, 8 and 10 mg/ml). The cell colony formation efficiency of PC-3 cells was decreased dose dependently compared to the negative control (Figure 6A, 6C). Furthermore, a dose-dependent reduction in proliferation active cells was observed after 24 hours of CFF-1 treatment in the EdU assay (Figure 6B, 6D). The CCK8 assay confirmed a dose-dependent decrease in PCa cell viability (Figure 6E). In addition, CFF-1 treatment increased the percentage of apoptotic PC-3 cells dose dependently (Figure 7A–7H).

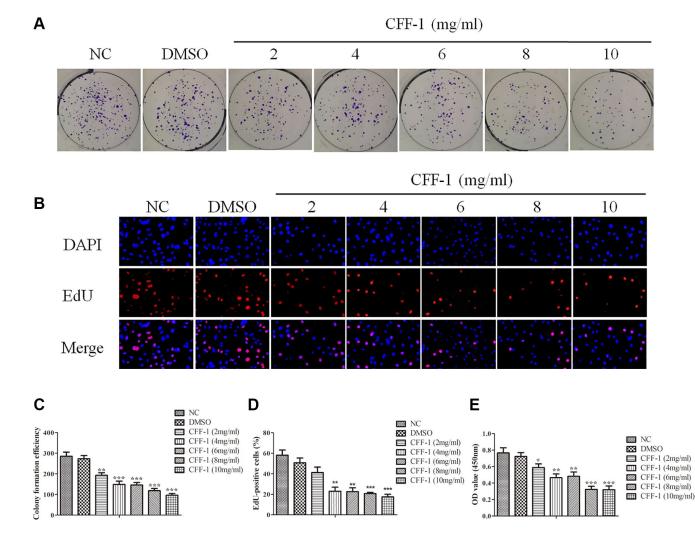
CFF-1 inhibited PCa cells migration and invasion

Subsequently, wound healing and transwell experiments were conducted to explore the migration and invasion abilities of PC-3 cells treated with CFF-1. We found that fewer cells migrated to the scratch site after 24 hours of CFF-1 treatment dose dependently (Figure 8A, 8C). Furthermore, the migration and invasion ability of PC-3 cells were significantly inhibited after treatment with increasing CFF-1 (Figure 8B, 8D, 8E).

CFF-1 attenuated proliferation pathways in PCa cells

According to network pharmacology analysis, the PI3K-Akt, HIF-1, TNF, EGFR-TKI resistance and PD-1




Figure 5. Risk score for target gene signature and outcome in PCa patients. (A) Risk score of a 7-gene signature for predicting DFS. (B) Disease status and duration of cases. (C) Heatmap of the 7 gene expression in PCa patients. (D) Kaplan-Meier curve for DFS in the lowand high-risk groups. (E) ROC curve for the DFS prediction of risk score model. (F) Risk score of a 11-gene signature for predicting PFS. (G) Progression status and duration of cases. (H) Heatmap of the 11 gene expression in PCa patients. (I) Kaplan-Meier curve for PFS in the lowand high-risk groups. (J) ROC curve for the PFS prediction of risk score model.

checkpoint pathway might play a crucial role in regulating PCa cell proliferation and survival by CFF-1. Then, we evaluated the expressions level of the common key targets of the five pathways. Pretreatment of CWR22Rv1 and PC3 cells with CFF-1 (2, 6 and 10 mg/ml) resulted in apparent repression of P-ERK1, NF κ B1, RELA, P-mTOR, VEGFA, PD-L1, P-PI3K, P-AKT, TNF- α , P-EGFR and HIF-1 α in dose dependently (Figure 9A, 9B). ELISA assays indicated that the secretory IL-6 of CWR22Rv1 and PC3 cells was blocked by CFF-1 dose dependently (Figure 9C, 9D). These findings suggested that the above five pathways might be crucial for CFF-1 anti-cancer effect in PCa.

DISCUSSION

In our previous study, the administration of CFF-1 in patients with metastatic castration-resistant

prostate cancer (mCRPC) resulted in a significant reduction in Prostate-Specific Antigen (PSA) levels. This reduction is an important marker of CFF-1's therapeutic efficacy in slowing prostate cancer progression. Beyond this quantifiable impact on PSA levels, the study also recorded improvements in clinical symptoms associated with mCRPC. Patients undergoing CFF-1 treatment experienced alleviated symptoms, reflecting an improvement in their quality of life. Additionally, a notable decrease in fatigue was observed among patients receiving CFF-1. Our collective research has also shown that CFF-1 exerts potent anti-tumor immunity, effectively hindering tumor growth and metastasis in prostate cancer via the EGFR/JAK1/STAT3 pathway, subsequently inhibiting PD-1/PD-L1 checkpoint signaling. Additionally, CFF-1 promotes cell growth inhibition, autophagy, and apoptosis by targeting and inhibiting EGFR-related pathways in PCa [11–12]. Network pharmacology

Figure 6. CFF-1 inhibited PCa cells proliferation. (A) The colony formation efficiency of PC-3 cell lines with varying concentrations of CFF-1 (mg/mL). (B) The EdU assay of proliferation active cells after 24 hours of CFF-1 treatment. (C) Quantification of the colony formation efficiency with bar graph. (D) Quantitative results of the EdU assay with bar graph. (E) The cell viability was determined by CCK8 assay after CFF-1 administration. *p < 0.05, **p < 0.01, ***p < 0.001.

combined with molecular docking have been used as a valuable tool to explore the complex mechanisms of TCM [5]. In this study, the role of CFF-1 was comprehensively elucidated through a multifaceted approach encompassing network pharmacology, bioinformatics, and *in vitro* validation. This approach, transcending traditional single-target strategies, aligns with the emerging paradigm shift in oncology towards multi-targeted therapies.

In our study, 112 bioactives and 359 key targets were screened, thus unveiling an extensive molecular

framework for potential intervention in PCa. The herbs-active ingredients-target network demonstrated that NCOA2, RXRA, ESR1, NCOA1, PPARG, IL1B, TNF, IKBKB, NR3C1, IL4, IL6 and PRKCA could serve as main targets for CFF-1 on PCa. According to molecular docking results, the primary active ingredients exhibited a robust binding affinity to the top five hub targets, primarily through the formation of hydrogen bonds. This data not only enriches the current understanding of PCa but also opens new avenues for targeted therapy.

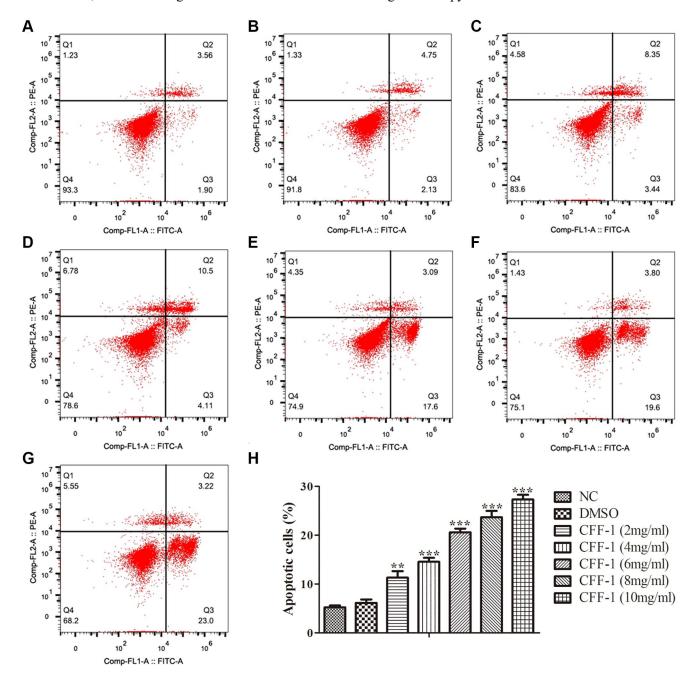
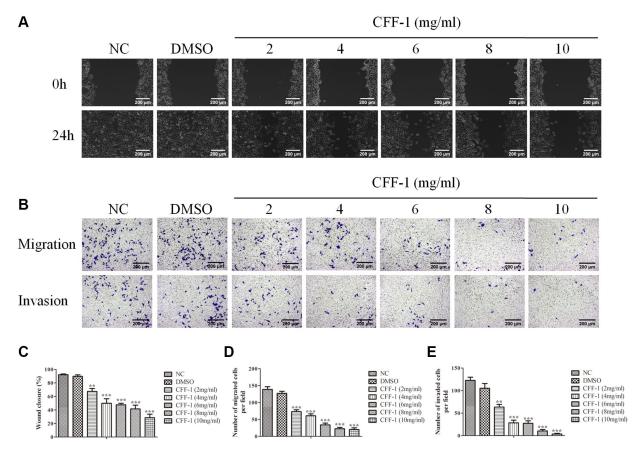
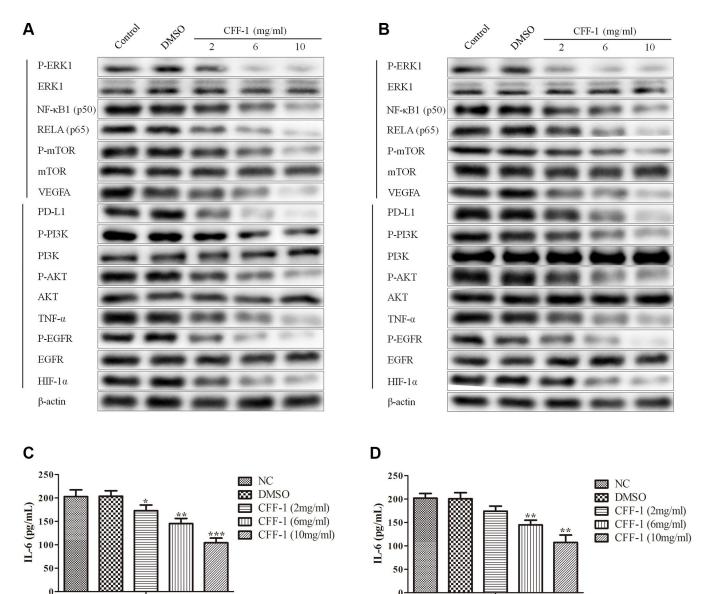



Figure 7. Apoptosis analysis of CFF-1-treated PC-3 cells by flow cytometry after 24 hours of treatment. Each panel corresponds to a different treatment condition: (A) NC, (B) DMSO, and (C–G) increasing concentrations of CFF-1 at 2, 4, 6, 8, and 10 mg/ml, respectively. (H) Quantitative analysis of the percentage of apoptotic cells across different treatment conditions. *p < 0.01, **p < 0.001.

The prognostic model we developed, anchored on these key targets, could be instrumental in tailoring personalized treatment regimens, a cornerstone of contemporary oncology. According to KEGG analysis, CFF-1 could have anti-cancer effects against PCa by regulating cancer cell proliferation and survival through PI3K-Akt, HIF-1, TNF, EGFR-TKI resistance and PD-1 checkpoint signaling pathways. This multi-pathway approach underlines the complexity and synergy of TCM in treating diseases. We carried out a series of biological function assays in diverse PCa cell lines to validate the anti-PCa ability of CFF-1. The observed inhibition of cell proliferation, migration, invasion, and induction of apoptosis in PCa cell lines are congruent with our network pharmacology predictions. This is also in line with our previous studies of PCa [11, 12].


The PI3K/Akt signaling pathway, a vital intracellular pathway, involved in tumor progression of various malignant tumors [15]. This pathway emerges as a central oncogenic axis in PCa, orchestrating a spectrum of cellular activities including proliferation, apoptosis, cell cycling, metastasis, and drug resistance [16–20].

The modulation of PI3K/Akt by CFF-1, as evidenced in our findings, could thus represent a significant stride in targeting these fundamental oncological processes. Further, our study sheds light on the role of tumor necrosis factor (TNF), predominantly produced by activated macrophages and T lymphocytes. TNF- α , the macrophage-derived variant, is known to bind to its receptor TNFR1, triggering pathways that not only elicit inflammatory responses but also induce cellular death [21, 22]. Notably, in the context of PCa, TNF- α has been implicated in promoting cell migration via the upregulation of CCR7, particularly in cases of lymph node metastasis [23]. This finding underscores the potential of targeting TNF- α as a means to impede the metastatic progression of PCa. The HIF-1 signaling pathway, another focus of our study, is critically involved in tumor pathogenesis. Activated under hypoxic conditions, this pathway is linked to tumor development, progression, and resistance to therapy, especially in PCa [24-28]. Overexpression of HIF- 1α , a key component of this pathway, has been associated with poor prognoses in PCa patients [29]. Consequently, inhibiting HIF-1, as indicated by our

Figure 8. CFF-1 inhibited PCa cells migration and invasion. (A) Wound healing abilities of PC-3 cells in the presence of NC, DMSO and varying concentrations of CFF-1, with images captured at 0 and 24 hours post-wounding. (B) Representative images showing transwell migration and invasion assay of PC-3 cells treated with NC, DMSO and varying concentrations of CFF-1. (C) Quantitative analysis of the wound healing assay with different treatment conditions. (D) Quantitative analysis of the transwell migration assay. (E) Quantitative analysis of the transwell invasion assay. **p < 0.01, ***p < 0.001.

study's results, may provide therapeutic benefits, corroborating findings previous from genetic and pharmacological studies [30–32]. IL-6, а major inflammatory factor within the tumor microenvironment, is intricately involved in tumor progression, immune modulation, and inflammatory responses [33]. Its overexpression in PCa is linked to tumor proliferation, invasion, metastasis, and the development of castration resistance [34-36]. Our research identifies IL-6 as a primary target of CFF-1, emphasizing its potential role in mitigating these malign processes. Additionally, our study delves into the realm of immune checkpoint inhibitors (ICIs), particularly targeting the PD-1/PD-L1 axis, a novel

therapeutic avenue in PCa management, especially in

metastatic CRPC [37]. The overexpression of PD-L1

in PCa has been correlated with poor clinical outcomes

[38], highlighting the potential of ICIs in combination

with other treatments as a breakthrough in PCa

therapy. EGFR, a transmembrane receptor tyrosine

kinase, is known for its role in activating a range of

signaling pathways that contribute to tumorigenesis

and progression in PCa [39-40]. Our verification of

protein expression levels of key targets, including P-

ERK1, NFκB1, RELA, P-mTOR, VEGFA, PD-L1, P-PI3K, P-AKT, TNF-α, P-EGFR, HIF-1α, and IL-6 in

CWR22Rv1 and PC3 cell lines, reveals that CFF-1 can

markedly downregulate these proteins, demonstrating

its multifaceted therapeutic efficacy. This multitarget approach of CFF-1 suggests its potential as a comprehensive treatment option, addressing various biological processes and pathways implicated in PCa.

CONCLUSION

We demonstrated the underlying mechanism of CFF-1 against PCa based on network pharmacology and experimental evaluation. The findings may provide a strong rationale for clinical application of CFF-1 in PCa treatment.

METHODS

Screening for active ingredients of CFF-1

All ingredients of four main compounds (guizhi, fuzi, shudihuang, huangjing) in CFF-1 were acquired from TCM Systems Pharmacology Database and Analysis Platform (TCMSP, <u>http://tcmspw.com/tcmsp.php</u>) and a Bioinformation Analysis Tool for Molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM, <u>http://bionet.ncpsb.org/batman-tcm/</u>). The criteria to screen for active ingredients were set as the oral bioavailability (OB) \geq 30% with the drug similarity (DL) \geq 0.1, and *p* < 0.05 with score >20, respectively.

Target prediction related to CFF-1 and PCa

The potential targets of active ingredients in CFF-1 were obtained from TCMSP and BATMAN-TCM. Targets related to PCa were acquired from Gene Cards database (<u>https://www.genecards.org/</u>) and Online Mendelian Inheritance in Man database (OMIM, <u>http://www.omim.org/</u>) with a keyword "prostate cancer". The UniProt database (<u>https://www.uniprot.org/</u>) was applied to standardize all target information, and genes without UniProt ID from human samples were eliminated. Perl software was applied to screen intersecting key targets related to both CFF-1 and PCa.

Protein-protein interaction analysis and network construction

STRING database (<u>https://string-db.org/</u>) is used to construct the relationship between multiple proteins. We put the key targets of CFF-1 and PCa into the STRING database Version 11.0, selecting the Homo sapiens for the species to perform the PPI network with Cytoscape software Version 3.9.1. Targets with interaction score ≥ 0.9 and degree ≥ 20 were regarded as core targets. In order to study the relationship among CFF-1, the core targets and PCa, main herbs, active ingredients and core targets were imported into the Cytoscape software to construct the herbs-active ingredients-target network.

Molecular docking

Molecular docking was carried out to evaluate the interaction between the top five targets, which exhibited high degree, and their respective active ingredients. Using the PubChem database, we acquired the 3D molecule structures of ingredients. The protein crystal structures of the targets were retrieved from the RCSB PDB database. The PyMOL software facilitated the removal of water molecules and the separation of ligands. For the conversion of small molecules and target proteins into pdbqt format, AutoDock Tools 1.5.6 was utilized. Molecular docking was performed using AutoDock Vina software. Visualization and analysis of the docking results were achieved using the PyMOL tool.

Enrichment analyses

The Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out through gene set enrichment analysis (GSEA) in R Version 3.7.0. Biological significance was defined as p < 0.05, and Q < 0.05.

Prognostic model construction based on key targets

RNA sequencing datasets and survival information for PCa were obtained from TCGA data portal. LASSO Cox regression was performed to screen genes with prognostic values from the key targets using R package "glmnet". A risk score formula for predicting prognosis was established as follows: risk score = expgenel × β gene1 + expgene2 × β gene2 + ... expgenen × β gene. Kaplan–Meier method was used to assess the prognostic significance of the risk score model on PCa by the R package "survival". Receiver operating characteristic (ROC) curve analysis was performed to explore the predictive power of risk score using the R package "timeROC".

We applied the CIBERSORT algorithm to assess the correlation between risk score and the infiltration of 22 immune cell subtypes [41]. Based on the ESTIMATE algorithm, we evaluated the relationship between risk score and immune score, stromal score and ESTIMATE score [42].

Cell culture and drug preparation

The human PCa cell lines CWR22Rv1 and PC-3 were cultured in RPMI-1640 medium, enriched with 10%

fetal calf serum (Gibco, Waltham, MA, USA) and maintained in a humidified atmosphere with 5% CO_2 at 37°C. CFF-1, a TCM herbal mixture, has been detailed in our previously published study [11]. A final concentration of 0, 2, 4, 6, 8 and 10 mg/mL of CFF-1 was used to treat cells.

Cell viability assay

PCa cell viability was detected by Cell Counting Kit-8 (CCK8) assay kit (Beyotime, Guangzhou, China) based on the manufacturer's instructions. PC-3 cells were seeded into 96-well plates at a density of 2×10^3 cells/well. Each well was measured at 450 nm for its absorbance.

EdU assay

In order to further evaluate cell proliferation ability, PC-3 cells were measured using the BeyoClick[™] EdU-555 assay according to the manufacturer's protocol (Beyotime, Guangzhou, China). The signals were measured by fluorescence microscopy Olympus CKX53.

Clonogenic assay

PC-3 cells were transplanted into 6-well plates with a density of 2×10^3 cells/well and then the cells were treated with or without CFF-1 incubated for 10 days at 37°C. Cells were fixed in 4% paraformaldehyde and stained with crystal violet. The numbers of visible colonies were counted under an optical microscope.

Apoptosis assay

PC-3 cells were treated with various concentrations of CFF-1. After 24 h, apoptosis was detected by the annexin V-FITC apoptosis detection kit (cat. #640932, Biolegend, USA) adhering to the manufacturer's protocol.

Wound healing assay

PC-3 cells were added into 6-well plates and incubated until 100% confluence. After scraping in a straight line using a 200 μ l pipette tip, the cells were rinsed thrice with PBS. Varying concentration of CFF-1 was administered to each well. The cell migration data were acquired with an inverted microscope Olympus IX51 at 0 and 24 h incubation and assessed using Image-Pro Plus 7.0 software.

Transwell migration and invasion assay

The transwell migration and invasion assay was performed using a transwell chamber system with

an 8-µm pore polycarbonate membrane (Thermo Fisher Scientific, Waltham, MA, USA). For migration assay, 1×10^5 cells containing different concentrations of CFF-1 intervention and medium supplemented with 2% serum were plated onto 24-well chambers. For invasion assay, we diluted the Matrigel 1:4 with serum-free medium and seeded it to the upper chambers. Then, the cells were placed onto the upper chambers. Both assays were conducted as previously described [43].

Western blot

Total protein was extracted using RIPA buffer containing proteinase inhibitor (Best Biological, Jiangsu, China). Western blot was conducted as previously described [12]. The primary antibodies for P-ERK1, ERK1, NF- κ B1, RELA, P-mTOR, mTOR, VEGFA, PD-L1, P-P13K, P13K, P-AKT, AKT, TNF- α , P-EGFR, EGFR and HIF-1 α were purchased from Bioss (Beijing, China). Total protein level was normalized to β -actin.

ELISA

PC3 and CWR22Rv1 cells treated with different concentration of CFF-1 were cultured for 48 h. The supernatant of cell culture was collected and centrifuged at 1,000 g for 20 min. ELISA kits (Mlbio, Shanghai, China) were used to examine levels of IL-6 following the manufacture's instruction. We measured the absorbance at 450 nm with a microplate reader.

Statistical analysis

Statistical analyses of the *in vitro* PCa cell assays were conducted using SPSS 20.0 software. Oneway univariate analysis of variance (ANOVA) was employed to analyze data obtained from at least three independent experiments, which are presented as the mean \pm standard deviation. Statistical significance was defined as p < 0.05.

Availability of data and materials

All data included in this study are available by contacting the corresponding authors.

AUTHOR CONTRIBUTIONS

HBH, XZ and QYZ conceived and designed this study. XZ, YW and MXZ analyzed the data. QYJ, JW, LMS and Xin Yang helped discuss the results. YW, MXZ and YC drafted the manuscript. YW, MXZ and YC performed experiments mentioned in the study. All authors contributed to the article and approved the submitted version.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest related to this study.

FUNDING

This work was supported by the National Natural Science Foundation of China (Grant Number: 81772732; 81702364), the Natural Science Foundation of Jiangsu Province (Grant Number: BK20171085), the Science and Technology Development Fund project of Nanjing Medical University (Grant Number: NMUB20220003), and BOXI Natural Science Cultivation Foundation of the First Affiliated Hospital of Soochow University (Grant Number: BXQN202241).

REFERENCES

- Genkinger JM, Wu K, Wang M, Albanes D, Black A, van den Brandt PA, Burke KA, Cook MB, Gapstur SM, Giles GG, Giovannucci E, Goodman GG, Goodman PJ, et al. Measures of body fatness and height in early and midto-late adulthood and prostate cancer: risk and mortality in The Pooling Project of Prospective Studies of Diet and Cancer. Ann Oncol. 2020; 31:103–14. <u>https://doi.org/10.1016/j.annonc.2019.09.007</u> PMID:<u>31912782</u>
- Berg KD, Thomsen FB, Mikkelsen MK, Ingimarsdóttir IJ, Hansen RB, Kejs AM, Brasso K. Improved survival for patients with de novo metastatic prostate cancer in the last 20 years. Eur J Cancer. 2017; 72:20–7. <u>https://doi.org/10.1016/j.ejca.2016.11.025</u> PMID:<u>28024263</u>
- Marra G, Valerio M, Heidegger I, Tsaur I, Mathieu R, Ceci F, Ploussard G, van den Bergh RCN, Kretschmer A, Thibault C, Ost P, Tilki D, Kasivisvanathan V, et al, and EAU-YAU Prostate Cancer Working Party. Management of Patients with Node-positive Prostate Cancer at Radical Prostatectomy and Pelvic Lymph Node Dissection: A Systematic Review. Eur Urol Oncol. 2020; 3:565–81. https://doi.org/10.1016/j.oug.2020.08.005

https://doi.org/10.1016/j.euo.2020.08.005 PMID:<u>32933887</u>

 Freedland SJ, Aronson WJ. Commentary on "Integrative clinical genomics of advanced prostate cancer". Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, Beltran H, Abida W, Bradley RK, Vinson J, Cao X, Vats P, Kunju LP, Hussain M, Feng FY, Tomlins SA, Cooney KA, Smith DC, Brennan C, Siddiqui J, Mehra R, Chen Y, Rathkopf DE, Morris MJ, Solomon SB, Durack JC, Reuter VE, Gopalan A, Gao J, Loda M, Lis RT, Bowden M, Balk SP, Gaviola G, Sougnez C, Gupta M, Yu EY, Mostaghel EA, Cheng HH, Mulcahy H, True LD, Plymate SR, Dvinge H, Ferraldeschi R, Flohr P, Miranda S, Zafeiriou Z, Tunariu N, Mateo J, Perez-Lopez R, Demichelis F, Robinson BD, Schiffman M, Nanus DM, Tagawa ST, Sigaras A, Eng KW, Elemento O, Sboner A, Heath El, Scher HI, Pienta KJ, Kantoff P, de Bono JS, Rubin MA, Nelson PS, Garraway LA, Sawyers CL, Chinnaiyan AM.Cell. 21 May 2015;161(5):1215-1228. Urol Oncol. 2017; 35:535.

https://doi.org/10.1016/j.urolonc.2017.05.010 PMID:28623072

5. Zhang D, Wang Z, Li J, Zhu J. Exploring the possible molecular targeting mechanism of Saussurea involucrata in the treatment of COVID-19 based on bioinformatics and network pharmacology. Comput Biol Med. 2022; 146:105549. https://doi.org/10.1016/j.compbiomed.2022.105549

PMID:35751193

 Zhou X, Hong Y, Zhan Y. Karacoline, identified by network pharmacology, reduces degradation of the extracellular matrix in intervertebral disc degeneration via the NF-κB signaling pathway. J Pharm Anal. 2020; 10:13–22. https://doi.org/10.1016/j.jpha.2019.07.002

PMID:32123596

 Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, Zhang XB, Zhang W, Li ZY, Zhou RR, Yang HJ, Wang XJ, Huang LQ. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019; 47:D976–82.

https://doi.org/10.1093/nar/gky987 PMID:<u>30365030</u>

- Li H, Liu Z, Liu L, Li W, Cao Z, Song Z, Yang Q, Lu A, Lu C, Liu Y. Vascular Protection of TPE-CA on Hyperhomocysteinemia-induced Vascular Endothelial Dysfunction through AA Metabolism Modulated CYPs Pathway. Int J Biol Sci. 2019; 15:2037–50. <u>https://doi.org/10.7150/ijbs.35245</u> PMID:<u>31592228</u>
- 9. Wang N, Li P, Hu X, Yang K, Peng Y, Zhu Q, Zhang R, Gao Z, Xu H, Liu B, Chen J, Zhou X. Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network. Comput Struct Biotechnol J. 2019; 17:282–90. <u>https://doi.org/10.1016/j.csbj.2019.02.002</u> PMID:<u>30867892</u>
- Xu L, Liu Y, Wu H, Wu H, Liu X, Zhou A. Rapid identification of chemical profile in Gandou decoction by UPLC-Q-TOF-MS(E) coupled with novel informatics UNIFI platform. J Pharm Anal. 2020; 10:35–48. <u>https://doi.org/10.1016/j.jpha.2019.05.003</u> PMID:<u>32123598</u>

- Wu Z, Zhu Q, Yin Y, Kang D, Cao R, Tian Q, Zhang Y, Lu S, Liu P. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer. Cancer Med. 2018; 7:1546–59. <u>https://doi.org/10.1002/cam4.1419</u> PMID:<u>29533017</u>
- Zhang Y, Wei Y, Jiang S, Dang Y, Yang Y, Zuo W, Zhu Q, Liu P, Gao Y, Lu S. Traditional Chinese medicine CFF-1 exerts a potent anti-tumor immunity to hinder tumor growth and metastasis in prostate cancer through EGFR/JAK1/STAT3 pathway to inhibit PD-1/PD-L1 checkpoint signaling. Phytomedicine. 2022; 99:153939. https://doi.org/10.1016/j.phymed.2022.153939

PMID:35172257

- Huang S, Mu F, Li F, Wang W, Chen H, Lei L, Ma Y, Ding Y, Wang J. A Network-Based Approach to Explore the Mechanism and Bioactive Compounds of Erzhi Pill against Metabolic Dysfunction-Associated Fatty Liver Disease. J Diabetes Res. 2020; 2020:7867245. <u>https://doi.org/10.1155/2020/7867245</u> PMID:32724826
- 14. Wu W, Zhang Z, Li F, Deng Y, Lei M, Long H, Hou J, Wu W. A Network-Based Approach to Explore the Mechanisms of Uncaria Alkaloids in Treating Hypertension and Alleviating Alzheimer's Disease. Int J Mol Sci. 2020; 21:1766. https://doi.org/10.3390/ijms21051766 PMID:32143538
- Tortorella E, Giantulli S, Sciarra A, Silvestri I. AR and PI3K/AKT in Prostate Cancer: A Tale of Two Interconnected Pathways. Int J Mol Sci. 2023; 24:2046. <u>https://doi.org/10.3390/ijms24032046</u> PMID:36768370
- Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH, Landström M. TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Sci Signal. 2017; 10:eaal4186. <u>https://doi.org/10.1126/scisignal.aal4186</u> PMID:28676490
- Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal. 2023; 17:423–43. <u>https://doi.org/10.1007/s12079-022-00702-1</u> PMID:36367667
- 18. Li G, Kanagasabai T, Lu W, Zou MR, Zhang SM, Celada SI, Izban MG, Liu Q, Lu T, Ballard BR, Zhou X,

Adunyah SE, Matusik RJ, et al. KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis. Cancer Res. 2020; 80:4633–43. https://doi.org/10.1158/0008-5472.CAN-20-0505 PMID:<u>32868382</u>

- Won YS, Seo KI. Sanggenol L Induces Apoptosis and Cell Cycle Arrest via Activation of p53 and Suppression of PI3K/Akt/mTOR Signaling in Human Prostate Cancer Cells. Nutrients. 2020; 12:488. <u>https://doi.org/10.3390/nu12020488</u> PMID:32075054
- 20. Yu J, Qi H, Wang Z, Zhang Z, Song E, Song W, An R. RAB3D, upregulated by aryl hydrocarbon receptor (AhR), promotes the progression of prostate cancer by activating the PI3K/AKT signaling pathway. Cell Biol Int. 2022; 46:2246–56. https://doi.org/10.1002/cbin.11910 PMID:36153645
- Atretkhany KN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol. 2020; 107:893–905. <u>https://doi.org/10.1002/JLB.2MR0120-510R</u> PMID:<u>32083339</u>
- 22. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016; 12:49–62. <u>https://doi.org/10.1038/nrrheum.2015.169</u> PMID:26656660
- Maolake A, Izumi K, Natsagdorj A, Iwamoto H, Kadomoto S, Makino T, Naito R, Shigehara K, Kadono Y, Hiratsuka K, Wufuer G, Nastiuk KL, Mizokami A. Tumor necrosis factor-α induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci. 2018; 109:1524–31. <u>https://doi.org/10.1111/cas.13586</u> PMID:<u>29575464</u>
- 24. Cowman SJ, Koh MY. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. 2022; 8:28–42. https://doi.org/10.1016/j.trecan.2021.10.004 PMID:<u>34743924</u>
- 25. Bao L, Chen Y, Lai HT, Wu SY, Wang JE, Hatanpaa KJ, Raisanen JM, Fontenot M, Lega B, Chiang CM, Semenza GL, Wang Y, Luo W. Methylation of hypoxiainducible factor (HIF)-1α by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic Acids Res. 2018; 46:6576–91. https://doi.org/10.1093/nar/gky449

PMID:29860315

26. Chen Y, Zhang B, Bao L, Jin L, Yang M, Peng Y, Kumar A, Wang JE, Wang C, Zou X, Xing C, Wang Y, Luo W.

ZMYND8 acetylation mediates HIF-dependent breast cancer progression and metastasis. J Clin Invest. 2018; 128:1937–55. https://doi.org/10.1172/JCI95089 PMID:29629903

- 27. Sun X, Huang Q, Peng F, Wang J, Zhao W, Guo G. Expression and Clinical Significance of HKII and HIF-1α in Grade Groups of Prostate Cancer. Front Genet. 2021; 12:680928. <u>https://doi.org/10.3389/fgene.2021.680928</u> PMID:34220956
- 28. Ucaryilmaz Metin C, Ozcan G. The HIF-1α as a Potent Inducer of the Hallmarks in Gastric Cancer. Cancers (Basel). 2022; 14:2711. <u>https://doi.org/10.3390/cancers14112711</u> PMID:<u>35681691</u>
- Huang M, Du H, Zhang L, Che H, Liang C. The association of HIF-1α expression with clinicopathological significance in prostate cancer: a meta-analysis. Cancer Manag Res. 2018; 10:2809–16. <u>https://doi.org/10.2147/CMAR.S161762</u> PMID:<u>30174456</u>
- Mazurakova A, Koklesova L, Csizmár SH, Samec M, Brockmueller A, Šudomová M, Biringer K, Kudela E, Pec M, Samuel SM, Kassayova M, Hassan STS, Smejkal K, et al. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapyresistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine. J Adv Res. 2024; 55:103–18. <u>https://doi.org/10.1016/j.jare.2023.02.015</u> PMID:36871616
- Ouyang C, Zhang J, Lei X, Xie Z, Liu X, Li Y, Huang S, Wang Z, Tang G. Advances in antitumor research of HIF-1α inhibitor YC-1 and its derivatives. Bioorg Chem. 2023; 133:106400. <u>https://doi.org/10.1016/j.bioorg.2023.106400</u> PMID:<u>36739684</u>
- 32. Ozcan G. The hypoxia-inducible factor-1α in stemness and resistance to chemotherapy in gastric cancer: Future directions for therapeutic targeting. Front Cell Dev Biol. 2023; 11:1082057. <u>https://doi.org/10.3389/fcell.2023.1082057</u> PMID:36846589
- 33. Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol. 2023; 23:666–81. <u>https://doi.org/10.1038/s41577-023-00856-y</u> PMID:<u>37069261</u>
- 34. Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol. 2018; 462:25–30.

https://doi.org/10.1016/j.mce.2017.03.012 PMID:28315704

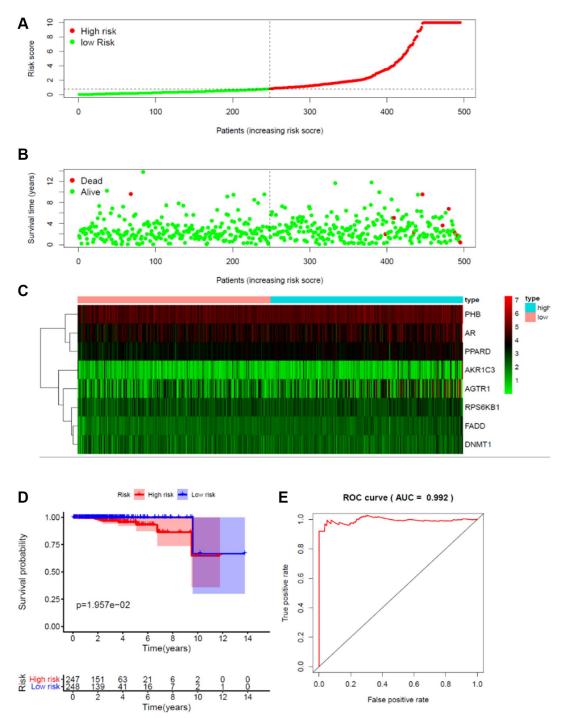
35. Yamaguchi M, Hashimoto K, Jijiwa M, Murata T. The inflammatory macrophages repress the growth of bone metastatic human prostate cancer cells via TNF-α and IL-6 signaling: Involvement of cell signaling regulator regucalcin. Cell Signal. 2023; 107:110663.
https://doi.org/10.1016/j.cellsig.2023.110663.

https://doi.org/10.1016/j.cellsig.2023.110663 PMID:<u>37001596</u>

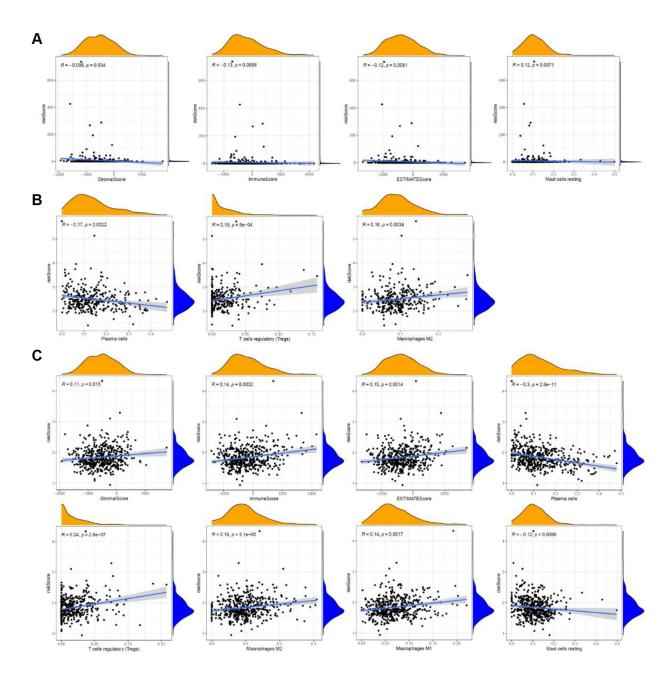
- 36. Yang F, Yuan C, Wu D, Zhang J, Zhou X. IRE1α Expedites the Progression of Castration-Resistant Prostate Cancers via the Positive Feedback Loop of IRE1α/IL-6/AR. Front Oncol. 2021; 11:671141. <u>https://doi.org/10.3389/fonc.2021.671141</u> PMID:<u>34295814</u>
- 37. Xu Y, Song G, Xie S, Jiang W, Chen X, Chu M, Hu X, Wang ZW. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer. Mol Ther. 2021; 29:1958–69. <u>https://doi.org/10.1016/j.ymthe.2021.04.029</u> PMID:<u>33932597</u>
- Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T, Majores M, Stein J, Uhl B, Müller S, Ellinger J, Stephan C, Jung K, et al. The Immune Checkpoint Regulator PD-L1 Is Highly Expressed in Aggressive Primary Prostate Cancer. Clin Cancer Res. 2016; 22:1969–77.

https://doi.org/10.1158/1078-0432.CCR-15-2042 PMID:26573597

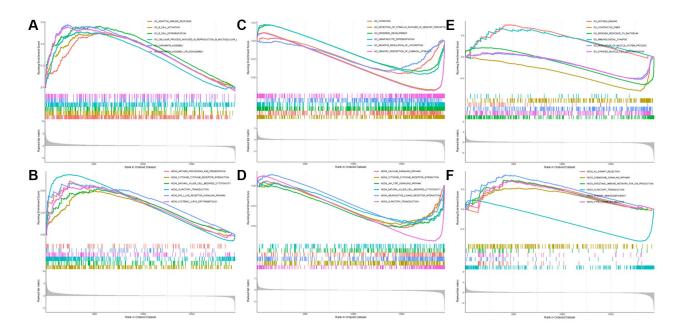
- 39. Shostak K, Chariot A. EGFR and NF-κB: partners in cancer. Trends Mol Med. 2015; 21:385–93. <u>https://doi.org/10.1016/j.molmed.2015.04.001</u> PMID:<u>25979753</u>
- 40. Liao Y, Guo Z, Xia X, Liu Y, Huang C, Jiang L, Wang X, Liu J, Huang H. Inhibition of EGFR signaling with Spautin-1 represents a novel therapeutics for prostate cancer. J Exp Clin Cancer Res. 2019; 38:157. <u>https://doi.org/10.1186/s13046-019-1165-4</u> PMID:<u>30975171</u>
- Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015; 12:453–7. <u>https://doi.org/10.1038/nmeth.3337</u> PMID:<u>25822800</u>
- 42. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013; 4:2612.


https://doi.org/10.1038/ncomms3612 PMID:24113773

43. Wei G, Yang X, Lu H, Zhang L, Wei Y, Li H, Zhu M, Zhou X. Prognostic value and immunological role of FOXM1 in human solid tumors. Aging (Albany NY). 2022; 14:9128–48. https://doi.org/10.18632/aging.204394


PMID:<u>36435510</u>

SUPPLEMENTARY MATERIALS


Supplementary Figures

Supplementary Figure 1. Risk score for target gene signature and OS in PCa patients. (A) Risk score of an 8-gene signature for predicting OS. (B) Survival status and duration of cases. (C) Heatmap of the 8 gene expression in PCa patients. (D) Kaplan-Meier curve for OS in the low- and high-risk groups. (E) ROC curve for the OS prediction of risk score model.

Supplementary Figure 2. The significant associations of the risk scores with immune score, stromal score, ESTIMATE score, and the infiltration of 22 immune cell subtypes. (A) The associations of risk score for predicting OS of PCa patients with immune score, stromal score, ESTIMATE score, and the infiltration of immune cell subtypes. (B) The associations of risk score for predicting DFS of PCa patients with the infiltration of immune cell subtypes. (C) The associations of risk score for predicting PFS of PCa patients with immune score, stromal score, ESTIMATE score, and the infiltration of 22 immune cell subtypes.

Supplementary Figure 3. (A, B) DNMT3B correlation with signaling pathways in GO (A) and KEGG (B) collection. (C, D) HPRT1 correlation with signaling pathways in GO (C) and KEGG (D) collection. (E, F) RXRB correlation with signaling pathways in GO (E) and KEGG (F) collection.

Supplementary Tables

Supplementary Table 1. KEGG pathway analysis of 359 key targets.

atterosciences-AGE-RAGE signaling pathway6.00E-20HIF-1 signaling pathway8.91E-20Prostate cancer1.73E-Porteoglycans in cancer8.59E-19Hepatitis B1.68E-18Human cytomegalovirus4.75E-Non-alcoholic fatty liver5.33E-18Thyroid hormone signaling pathway1.71E-17TNF signaling pathway1.19E-Th17 cell differentiation2.61E-16Colorectal cancer4.38E-16EGPR tyrosine kinase inhibitor resistance4.38E-Ll-17 signaling pathway4.61E-16PJSK-Akt signaling pathway8.65E-16Gastric cancer1.27E-Kaposi ascoma-associated3.27E-15African trypanosomiasis8.33E-15Endocrine resistance1.9E-Human inmunodeficiency virus infection3.59E-13Tuberculoxis3.67E-13Tol-like receptor signaling pathway4.16E-Human inmunodeficiency virus 1 infection5.20E-13Acute myeloid leukemia8.91E-12Appensis6.46E-Human polllomavirus infection1.73E-11Prolactin signaling pathway1.88E-11Propolsis6.46E-Human pollomavirus infection1.73E-11Prolactin signaling pathway1.88E-11Parathyraid hormone signaling pathway1.84E-10Human residence2.88E-11Inflammatory howel disease4.00E-11Platinum drug resistance4.06E-Human residence2.88E-11Inflammatory howel disease4.00E-10Versinia infection1.32E-Antiolate resistance1.82E-10Diabetic cardiomyopathy1.96E-10 </th <th>Pathway</th> <th><i>p</i>-value</th> <th>Pathway</th> <th><i>p</i>-value</th> <th>Pathway</th> <th><i>p</i>-value</th>	Pathway	<i>p</i> -value	Pathway	<i>p</i> -value	Pathway	<i>p</i> -value
in diabetic complications 0.007-20 intr-1 signaling pathway 5.717-20 invisue cancer 1.735- Proteoglycams in cancer 8.59E-19 Hepatitis B 1.68E-18 Human cytomegalovirus 4.75E- Non-alcoholic fatty liver 5.33E-18 pathway 1.71E-17 TNF signaling pathway 1.96E- Th17 cell differentiation 2.61E-16 Colorectal cancer 4.38E-16 ECFR tyrosine kinase inhibitor resistance 1.27E- Resistance 1.28E-11 Inflammatory boved disease 4.00E- Resistance 1.28E-10 Diabetic ardiomyopathy 1.96E-10 Versinia infection 1.18E- Resistance 1.28E-10 Diabetic ardiomyopathy 1.96E-10 Versinia infection 1.18E- Resistance 1.28E-10 Diabetic ardiomyopathy 1.96E-10 Versinia infection 1.18E- Resistance 1.28E-10 Resistance 2.39E-10 Resistance 4.35E-10 Eristensis 3.33E- Resistanting pathway 2.3E-02 Small cell lung cancer 4.35E-10 Eristensistance 4.35E- Resistanting infection 1.43E- Resistanting pathway 3.70E-08 Relaxin signaling pathway 4.14E-08 Redownial cancer 2.91E- Resistanting pathway 3.70E-08 Relaxin signaling pathw	Lipid and atherosclerosis	3.72E-25		1.38E-22	Chagas disease	9.58E-2
Protectop/cans in cancer8.59E-19Inepatitis B1.68E-18infection4.75E-Non-alcoholic fatty liver5.33E-18Thyroid hormone signaling pathway1.71E-17TNF signaling pathway1.19E-Stasse2.61E-16Colorectal cancer4.38E-16EGFR tyrosine kinsse inhibitor resistance4.38E-LL-17 signaling pathway4.61E-16P13K-Akt signaling pathway8.65E-16Gastric cancer1.27E-Rapes virus infection3.27E-15African trypanosomiasis8.33E-15Endocrine resistance1.19E-Breast cancer3.77E-14Pancreatic cancer1.68E-13Hepatitis C2.51E-Induenza A5.20E-13Acute myeloid leukemia8.91E-13Toxoplasmosis2.49E-PD-11 expression and PD-15.28E-12MAPK signaling pathway5.81E-12Apoptasis6.46E-Insulin resistance6.90F-12Oxecolata differentiation8.63E-14Measles1.05E-Human papilomavirus1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-14Human ricetion1.73E-11Prolactin signaling pathway1.88E-10Parathyroid hormone synthesis, sectron and action1.82E-Human ricetion1.82E-10Diabetic cardiomyopathy1.96E-10Yersinia infection2.13E-Pathogenit Escherichia coli meterion4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09 <t< td=""><td></td><td>6.00E-20</td><td>HIF-1 signaling pathway</td><td>8.91E-20</td><td>Prostate cancer</td><td>1.73E-1</td></t<>		6.00E-20	HIF-1 signaling pathway	8.91E-20	Prostate cancer	1.73E-1
tisease 5.35E-18 pathway 1.2 1.71E-17 TrV signaling pathway 1.29E- Th17 cell differentiation 2.61E-16 Colorectal cancer 4.38E-16 resistance kinase inhibitor examples the preserving infection 2.61E-16 PI3K-Akt signaling pathway 8.65E-16 Gastric cancer 1.27E- Kaposi asroma-associated 3.27E-15 African trypanosominsis 8.33E-15 Endocrine resistance 1.19E- Breast cancer 3.77E-14 Pancreatic cancer 1.68E-13 Hepatitis C 2.51E- Human intrunodofficiency 3.59E-13 Tuberculosis 3.67E-13 Tol-like receptor signaling pathway (1.40E- ring tinection 5.20E-13 Acute mycloid leukemia 8.91E-13 Tool-like receptor signaling pathway in cancer 5.28E-12 MAPK signaling pathway 5.81E-12 Apoptosis 6.46E- Human papillomavirus 1.73E-11 Prolactin signaling pathway 5.81E-12 Apoptosis 6.46E- Human papillomavirus 1.73E-11 Prolactin signaling pathway 1.88E-11 Pathway for receptor signaling infection 1.73E-11 Prolactin signaling pathway 1.88E-11 Pathway in cancer 5.28E-12 MAPK signaling pathway 1.88E-11 Pathway for receptor signaling infection 2.13E- Human papillomavirus 1.73E-11 Prolactin signaling pathway 1.88E-11 Pathway for receptor signaling infection 2.13E- Pathway 1.24E-10 Secretion and action 2.13E- Pathway 2.33E-09 Small cell lung cancer 2.90E-09 Amoebiasis 3.03E- Pathway 3.03E-09 MicroRNAs in cancer 4.35E-09 Estrogen signaling pathway 6.48E- Nearotrophin signaling pathway 7.00E-09 Amoebiasis 3.03E- Pathway 3.03E-09 MicroRNAs in cancer 4.35E-09 Estrogen signaling pathway 5.5E- FocG signaling pathway 2.03E-08 Shigellosis 2.14E-08 AMFK signaling pathway 5.5E- Focd signaling pathway 2.28E-07 Coronavirus disease - Coronavirus disease 1.63E-07 Pertussis 1.93E-07 Chronic mycloid leukemia 1.93E- Focal adhesion 1.63E-07 Pertussis 1.93E-07 Chronic mycloid leukemia 1.93E- Focal adhesion 1.63E-07 Pertussis 1.93E-07 Chronic mycloid leukemia 1.93E- Focal adhesion 1.63E-07 Pertussis 1.93E-07 Chronic mycloid leukemia 1.93E- Sphing-Juhway 3.04E-07 Salmonella infection 3.04E-07 regulation of TRP channels 2.97E-3 Coronavirus disease - C	Proteoglycans in cancer	8.59E-19	Hepatitis B	1.68E-18		4.75E-1
Int / cell differentiation2.012-10Contrest all cather4.382-10resistance4.382-0IL-17 signaling pathway4.61E-16P13K-Akt signaling pathway8.65E-16Gastric cancer1.27E-Breast cancer3.27E-15African trypanosomiasis8.33E-15Endocrine resistance1.19E-Breast cancer3.77E-14Pancreatic cancer1.68E-13Hepatitis C2.51E-Influenza A5.20E-13Tuberculosis3.67E-13Totoplasmosis2.49E-PD-L1 expression and PD-15.28E-12MAPK signaling pathway5.81E-12Apoptosis6.46E-Insulin resistance6.90E-12Osteoclast differentiation8.63E-12Mesales1.05E-Human papillomavirus1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-11Human T-cell leukemia virus 1 rafection7.71E-11T cell receptor signaling pathway1.24E-10Parathyroid hormone synthesis, secretion and action1.32E-10Pathogenic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Pathogenic Escherichia coli infection3.03E-09MicroRNAs in cancer2.90E-09Arnoebiasis3.03E-Pathogenic Escherichia coli infection3.03E-09MicroRNAs in cancer2.90E-09Arnoebiasis3.03E-Pathogenic Escherichia coli infection3.03E-09MicroRNAs in cancer2.90E-09Arnoebiasis3.03E-Pathogenic Escherichia coli infection<	-	5.33E-18		1.71E-17	TNF signaling pathway	1.19E-1
Kaposi survorus3.27E-15African trypanosomiasis8.33E-15Endocrine resistance1.19E-Breast cancer3.77E-14Pancreatic cancer1.68E-13Hepatitis C2.51E-Human immunodeficiency3.59E-13Tuberculosis3.67E-13Toll-like receptor signaling pathway4.16E-PD-L1 cayression and PD-1 checkpoint pathway in cancer5.28E-12MAPK signaling pathway5.81E-12Apoptosis6.46E-Insultin resistance6.90E-12Ostoclast differentiation8.63E-12Measles1.05E-Human papillomavirus1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-Infection1.73E-11Prolactin signaling pathway1.88E-11Pathumardur drug resistance4.06E-Human T-cell leukemia virus 1 infection7.71E-11T cell receptor signaling pathway1.24E-10Secretion and action2.13E-Pathogenic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adjoocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-Foco Signaling pathway7.00E-8Bradl regression3.03E-3.03E-3.03E-Pathogenic Escherichia coli infection3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway6.48E-VEGF signaling pathway7.09E-08Thal ance2.90E-09mTOR signaling pathway6.48E-VEGF signaling pathwa	Th17 cell differentiation	2.61E-16	Colorectal cancer	4.38E-16		4.38E-1
nerpesvirus infection3.27E-13Affician trypanosomissis8.35E-13Endocrini resistance1.19E-Breast cancer3.7FE-14Panceratic cancer1.68E-13Hepatitis C2.51E-Influenza A5.20E-13Tuberculosis3.67E-13Totol-like receptor signaling pathway4.16E-DPL-L expression and PD-15.28E-12MAPK signaling pathway5.81E-12Apoptosis6.46E-Insulin resistance6.90E-12Osteoclast differentiation8.63E-12Measles1.05E-Insulin resistance1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-11Antifolate resistance2.88E-11Inflammatory bowel disease4.00E-11Plantany pathonoom synthesis, secretion and action1.82E-Hepatocellular carcinoma1.82E-10Diabetic carcinoma9.24E-10Versinia infection2.13E-Pathogenic Excherichia coli anfection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-FoxO signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-FoxO signaling pathway3.70E-08Singlelosis2.14E-08Amoebiasis3.03E-FoxO signaling pathway3.70E-08Shigellosis2.14E-08AMPK signaling pathway1.41E-Adivoay3.35E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-FoxO signaling pathway7.00E-08Kelzon9.92E-07Chrone incloolin	L-17 signaling pathway	4.61E-16	PI3K-Akt signaling pathway	8.65E-16	Gastric cancer	1.27E-1
Human immunodeficiency virus I infection3.59E-13Tuberculosis3.67E-13Tubery and provide the signaling pathway1.6E pathwayPD-L1 expression and PD-1 checkpoint pathway in cancer5.28E-12MAPK signaling pathway5.81E-12Apoptosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis6.46E- toxoplasmosis1.88E- toxoplasmosis6.46E- toxoplasmosis1.88E- toxoplasmosis6.46E- toxoplasmosis1.88E- toxoplasmosis1.88E- toxoplasmosis1.88E- toxoplasmosis1.88E- toxoplasmosis1.82E-		3.27E-15	African trypanosomiasis	8.33E-15	Endocrine resistance	1.19E-1
virus 1 infection3.59E-131 uberculosis3.67E-13pathway1.4.10E-Influenza A5.20E-13Acute myeloid leukemia8.91E-13Toxoplasmosis2.49E-Checkpoint pathway in cancer5.28E-12MAPK signaling pathway5.81E-12Apoptosis6.46E-Insulin resistance6.90E-12Osteoclast differentiation8.63E-12Meales1.05E-Human papillomavirus1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-AntiFolate resistance2.88E-11Inflammatory bowel disease4.00E-11Platinum drug resistance4.06E-Human 7-cell leukemia virus 17.71E-11T cell receptor signaling pathway1.24E-10Parathyroid hormone synthesis, secretion and action1.82E-Pathogenic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adipocytokine signaling pathway9.24E-10Non-small cell lung cancer1.95E-1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer4.35E-09Estrogen signaling pathway6.48E-Pathway3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway1.41E-VEGF signaling pathway3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway1.41E-VEGF signaling pathway3.03E-08Shigellosis2.14E-08AMPK signaling pathway1.41E-VEGF signaling pathway7.09E-08Th1 and Th2 cell9.39E	Breast cancer	3.77E-14	Pancreatic cancer	1.68E-13	Hepatitis C	2.51E-1
PD-L1 expression and PD-1 checkpoint pathway in cancer5.28E-12MAPK signaling pathway5.81E-12Apoptosis6.46E- theckpoint pathway in cancerInsulin resistance6.90E-12Osteoclast differentiation8.63E-12Measles1.05E- C-type lectin receptor signaling pathway1.88E-11 pathwayC-type lectin receptor signaling pathway1.88E- Parathyroid hormone synthesis, secretion and action1.88E- Parathyroid hormone synthesis, secretion and action1.82E- Parathyroid hormone synthesis, secretion and action1.82E- 		3.59E-13	Tuberculosis	3.67E-13		4.16E-1
checkpoint pathway in cancer5.26E-12MARK signaling pathway5.01E-12Approposits0-06EInsulin resistance6.90E-12Osteoclast differentiation8.63E-12Measles1.05E-Human papillomavirus1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-Antifolate resistance2.88E-11Inflammatory bowel disease4.00E-11Platinum drug resistance4.06E-Human T-cell leukemia virus7.71E-11T cell receptor signaling pathway1.24E-10Parathyroid hormone synthesis, secretion and action1.82E-Hepatocellular carcinoma1.82E-10Diabetic cardiomyopathy1.96E-10Yersinia infection2.13E-Pathogonic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-FoxO Signaling pathway2.33E-09Small cell lung cancer2.90E-09Monebiasis3.03E-FoxO Signaling pathway0.35E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-4Alzheimer disease1.63E-08Shigellosis2.14E-08AMDek signaling pathway5.55E-Foca signaling pathway3.07E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway1.29E-Foca dahesion1.63E-07Pertussis9.93E-07Malaria2.39E-07Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-Sphingolipid signaling pathway3.04E-0	Influenza A	5.20E-13	Acute myeloid leukemia	8.91E-13	Toxoplasmosis	2.49E-1
Human papillomavirus infection1.73E-11Prolactin signaling pathway1.88E-11C-type lectin receptor signaling pathway1.88E-11Antifolate resistance2.88E-11Inflammatory bowel disease4.00E-11Platinum drug resistance4.06E-Human T-cell leukemia virus 17.71E-11T cell receptor signaling pathway1.24E-10Parathyroid hormone synthesis, secretion and action1.82E-Pathogenic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adipocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-FoxO signaling pathway2.33E-09Small cell lung cancer4.35E-09Estrogen signaling pathway1.41E-0Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-04Alzheimer disease1.63E-07Relaxin signaling pathway4.14E-08AMPK signaling pathway1.29E-06Focal adhesion1.63E-07Pertussis1.93E-07Chornei mycloid leukemia1.93E-07Choline metabolism in cancer2.47E-07Fe epsilon R1 signaling pathway2.39E-07Chornei mycloid leukemia2.39E-07Choline metabolism in cancer2.47E-07Fe epsilon R1 signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-47Choline metabolism in ca		5.28E-12	MAPK signaling pathway	5.81E-12	Apoptosis	6.46E-1
Infection1.73E-11Protactin signaling pathway1.88E-11pathway1.88E-11pathway1.88E-11Antifolate resistance2.88E-11Inflammatory bowel disease4.00E-11Platinum drug resistance4.06E-Human T-cell leukemia virus 17.71E-11receptor signaling1.24E-10Parathyroid hormone synthesis, infection1.82E-Hepatocellular carcinoma1.82E-10Diabetic cardiomyopathy1.96E-10Yersinia infection2.13E-Pathogenic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adipocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway7.09E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Choline metabolism in cancer2.47E-07Ferpislon RI signaling pathway2.47E-07Malaria2.39E-07Choline metabolism in cancer2.47E-07 <td>Insulin resistance</td> <td>6.90E-12</td> <td>Osteoclast differentiation</td> <td>8.63E-12</td> <td>Measles</td> <td>1.05E-1</td>	Insulin resistance	6.90E-12	Osteoclast differentiation	8.63E-12	Measles	1.05E-1
Human T-cell leukemia virus 1 infection7.71E-11T cell receptor signaling pathway1.24E-10Parathyroid hormone synthesis, secretion and action1.82E-Hepatocellular carcinoma1.82E-10Diabetic cardiomyopathy1.96E-10Yersinia infection2.13E-Pathogenic Escherichia coli infection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adipocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-Pstein-Barr virus infection3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway6.48E-Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.24E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Focal adhesion1.63E-07Pertussis1.93E-07Malaria2.39E-07Choline metabolism in cancer2.47E-07Fe epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-Choline metabolism in cancer3.04E-07Salmonella infection3.04E-07Certral carbon metabolism in cancer3.04E-07B cell receptor signaling pathway5.05E-07Thyroid cancer5.05E-0		1.73E-11	Prolactin signaling pathway	1.88E-11		1.88E-1
InfectionI.12E-10pathwayI.24E-10secretion and actionI.32E-10Hepatocellular carcinoma1.82E-10Diabetic cardiomyopathy1.96E-10Yersinia infection2.13E-Pathogenic Escherichia coli4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adipocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-ZoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-Foxton signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Ras signaling pathway7.09E-08differentiation9.93E-07Chronic myeloid leukemia1.93E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-Choline metabolism in cancer2.47E-07Fe epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - acacer3.04E-07Aldosterone-regulated sodium eabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-Aldosterone-regulated sodium eabsorption5.07E-07Gioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-Aldosterone-regulated sodium<	Antifolate resistance	2.88E-11	Inflammatory bowel disease	4.00E-11	Platinum drug resistance	4.06E-1
Pathogenic Escherichia coli nfection4.06E-10ErbB signaling pathway7.10E-10Leishmaniasis8.45E-Adipocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-FoxD signaling pathway9.59E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway6.48E-Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-6Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-6Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-0Choline metabolism in cancer2.47E-07Fe epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - cancer2.97E-1Aldosterone-regulated sodium eabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-3B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels <t< td=""><td></td><td>7.71E-11</td><td></td><td>1.24E-10</td><td></td><td>1.82E-1</td></t<>		7.71E-11		1.24E-10		1.82E-1
infection4.00E-10EFBS signaling pathway7.10E-10Letismaniasis8.43E-Adipocytokine signaling pathway9.24E-10Renal cell carcinoma9.24E-10Non-small cell lung cancer1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-Epstein-Barr virus infection3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway6.48E-Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-4Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-4Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-4Choline metabolism in cancer2.47E-07Fe epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - cancer2.97E-4Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-4B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-4A		1.82E-10	Diabetic cardiomyopathy	1.96E-10	Yersinia infection	2.13E-1
bathway9.24E-10Renarcent actinization9.24E-10Non-small cell fung cancer1.95E-FoxO signaling pathway2.33E-09Small cell lung cancer2.90E-09Amoebiasis3.03E-Epstein-Barr virus infection3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway6.48E-Neurotrophin signaling bathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-07Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-4Aldosterone-regulated sodium5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-4B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-Aldosterone-regulated sodium5.07E-06CAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-<	nfection	4.06E-10	ErbB signaling pathway	7.10E-10	Leishmaniasis	8.45E-1
Epstein-Barr virus infection3.03E-09MicroRNAs in cancer4.35E-09Estrogen signaling pathway6.48E-Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-07Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-1Aldosterone-regulated sodium eabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-1B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-Rap 1 signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-Rap 1 signaling pathway1.22E-06RAPP signaling pathway2.10E-06Chemokine signaling pathway2.91E-Pathway1.22E-06RAPP signaling pathway2.84E-06Longevity regulating pathway <td></td> <td>9.24E-10</td> <td>Renal cell carcinoma</td> <td>9.24E-10</td> <td>Non-small cell lung cancer</td> <td>1.95E-0</td>		9.24E-10	Renal cell carcinoma	9.24E-10	Non-small cell lung cancer	1.95E-0
Neurotrophin signaling pathway9.59E-09Type II diabetes mellitus9.61E-09mTOR signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-07Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-1Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-07B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-Rap1 signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-		2.33E-09	Small cell lung cancer	2.90E-09	Amoebiasis	3.03E-0
bathway9.39E-09Type II diabetes mentus9.61E-09mTOK signaling pathway1.41E-Alzheimer disease1.63E-08Shigellosis2.14E-08Endometrial cancer2.91E-VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-Aldosterone-regulated sodium eabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-Rap1 signaling pathway1.22E-06CAMP signaling pathway2.10E-06Chemokine signaling pathway - 2.91E-2.91E-		3.03E-09	MicroRNAs in cancer	4.35E-09	Estrogen signaling pathway	6.48E-0
VEGF signaling pathway3.70E-08Relaxin signaling pathway4.14E-08AMPK signaling pathway5.55E-1Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-1Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-1Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-1Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-1Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-1Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-1B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-1Rap 1 signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway - 2.82E-062.91E-1	pathway	9.59E-09	Type II diabetes mellitus	9.61E-09		1.41E-0
Ras signaling pathway7.09E-08Th1 and Th2 cell differentiation9.93E-08NF-kappa B signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-B cell receptor signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-Franscriptional misregulation2.82E-06Rheumatoid arthritis2.84E-06Longevity regulating pathway - 2.91E-2.91E-			e			2.91E-0
Ras signaling pathway7.09E-08differentiation9.93E-08NF-kappa B signaling pathway1.29E-Focal adhesion1.63E-07Pertussis1.93E-07Chronic myeloid leukemia1.93E-Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-Aldosterone-regulated sodium eabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-B cell receptor signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-Franscriptional misregulation2.82E-06Rheumatoid arthritis2.84E-06Longevity regulating pathway - 2.91E-2.91E-07	VEGF signaling pathway	3.70E-08		4.14E-08	AMPK signaling pathway	5.55E-0
Sphingolipid signaling pathway2.28E-07Coronavirus disease - COVID-192.39E-07Malaria2.39E-17Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-1Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-1Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-1B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-1Rap1 signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-1Iranscriptional misregulation2.82E-06Rheumatoid arthritis2.84E-06Longevity regulating pathway -2.91E-1			differentiation			1.29E-0
Springolipid signaling pathway2.28E-07COVID-192.39E-07Malaria2.39E-07Choline metabolism in cancer2.47E-07Fc epsilon RI signaling pathway2.47E-07Pathways of neurodegeneration - multiple diseases2.97E-1Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-1Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-1B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-1Rap1 signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-1Iranscriptional misregulation2.82E-06Beumatoid arthritis2.84E-06Longevity regulating pathway -2.91E-1	Focal adhesion	1.63E-07		1.93E-07	Chronic myeloid leukemia	1.93E-(
Choine metabolism in carcer2.47E-07pathway2.47E-07multiple diseases2.97E-1Longevity regulating pathway3.04E-07Salmonella infection3.04E-07Central carbon metabolism in cancer3.54E-1Aldosterone-regulated sodium reabsorption5.05E-07Thyroid cancer5.05E-07Melanoma5.07E-1B cell receptor signaling pathway5.07E-07Glioma8.77E-07Inflammatory mediator regulation of TRP channels1.21E-1Rap1 signaling pathway1.22E-06cAMP signaling pathway2.10E-06Chemokine signaling pathway2.82E-1Iranscriptional misregulation2.82E-06Bheumatoid arthritis2.84E-06Longevity regulating pathway -2.91E-1	Sphingolipid signaling pathway	2.28E-07	COVID-19	2.39E-07		2.39E-0
Longevity regulating pathway 3.04E-07 Salmonella infection 3.04E-07 cancer 3.34E-07 Aldosterone-regulated sodium 5.05E-07 Thyroid cancer 5.05E-07 Melanoma 5.07E-07 B cell receptor signaling pathway 5.07E-07 Glioma 8.77E-07 Inflammatory mediator regulation of TRP channels 1.21E-06 Rap1 signaling pathway 1.22E-06 cAMP signaling pathway 2.10E-06 Chemokine signaling pathway 2.82E-1 Iranscriptional misregulation 2.82E-06 Beumatoid arthritis 2.84E-06 Longevity regulating pathway - 2.91E-1	Choline metabolism in cancer	2.47E-07		2.47E-07	multiple diseases	2.97E-0
reabsorption 5.05E-07 Inyroid cancer 5.05E-07 Melanoma 5.07E-17 B cell receptor signaling pathway 5.07E-07 Glioma 8.77E-07 Inflammatory mediator regulation of TRP channels 1.21E-1 Rap1 signaling pathway 1.22E-06 cAMP signaling pathway 2.10E-06 Chemokine signaling pathway 2.82E-16 Franscriptional misregulation 2.82E-06 Repumatoid arthritis 2.84E-06 Longevity regulating pathway - 2.91E-1	Longevity regulating pathway	3.04E-07	Salmonella infection	3.04E-07		3.54E-0
5.07E-07 Onoma 8.77E-07 regulation of TRP channels 1.21E- Rap1 signaling pathway 1.22E-06 cAMP signaling pathway 2.10E-06 Chemokine signaling pathway 2.82E- Franscriptional misregulation 2.82E-06 Recumatoid arthritis 2.84E-06 Longevity regulating pathway - 2.91E-		5.05E-07	Thyroid cancer	5.05E-07	Melanoma	5.07E-0
Transcriptional misregulation 282E-06 Rheumatoid arthritis 284E-06 Longevity regulating pathway - 291E-1		5.07E-07	Glioma	8.77E-07		1.21E-0
		1.22E-06	cAMP signaling pathway	2.10E-06		2.82E-0
		2.82E-06	Rheumatoid arthritis	2.84E-06		2.91E-0

Oxytocin signaling pathway	3.20E-06	TGF-beta signaling pathway	3.20E-06	Signaling pathways regulating	3.79E-06
Oxytoeni signaniig patriway	3.20E-00		3.20E-00	pluripotency of stem cells	5.791-00
Hippo signaling pathway	4.28E-06	Phospholipase D signaling pathway	6.43E-06	Insulin signaling pathway	7.72E-06
Apoptosis - multiple species	9.85E-06	Cellular senescence	1.42E-05	Basal cell carcinoma	2.02E-05
GnRH secretion	2.37E-05	Viral carcinogenesis	2.45E-05	JAK-STAT signaling pathway	2.45E-05
PPAR signaling pathway	2.80E-05	Platelet activation	2.82E-05	Cholinergic synapse	3.35E-05
NOD-like receptor signaling pathway	3.74E-05	Regulation of lipolysis in adipocytes	3.97E-05	Allograft rejection	4.16E-05
Cushing syndrome	4.27E-05	Natural killer cell mediated cytotoxicity	5.59E-05	Necroptosis	6.05E-05
Adherens junction	6.42E-05	Vascular smooth muscle contraction	6.65E-05	Bladder cancer	7.62E-05
Ovarian steroidogenesis	7.83E-05	Type I diabetes mellitus	0.000112	Progesterone-mediated oocyte maturation	0.00012
Regulation of actin cytoskeleton	0.000185	Legionellosis	0.000206	Neutrophil extracellular trap formation	0.000215
Growth hormone synthesis, secretion and action	0.000217	Calcium signaling pathway	0.000274	Prion disease	0.000288
Autophagy - animal	0.000313	Fc gamma R-mediated phagocytosis	0.000328	cGMP-PKG signaling pathway	0.000339
p53 signaling pathway	0.000362	Leukocyte transendothelial migration	0.000463	Melanogenesis	0.00048
Graft-versus-host disease	0.000534	Dopaminergic synapse	0.000646	GnRH signaling pathway	0.000796
Cytokine-cytokine receptor interaction	0.000886	Renin secretion	0.000936	RIG-I-like receptor signaling pathway	0.001046
Adrenergic signaling in cardiomyocytes	0.002414	Wnt signaling pathway	0.002467	Neuroactive ligand-receptor interaction	0.003181
Arginine biosynthesis	0.003267	Epithelial cell signaling in Helicobacter pylori infection	0.004089	Herpes simplex virus 1 infection	0.004216
Serotonergic synapse	0.004913	Viral myocarditis	0.005566	Gap junction	0.005838
Axon guidance	0.006027	Steroid hormone biosynthesis	0.006061	Intestinal immune network for IgA production	0.006578
Cocaine addiction	0.006578	Hypertrophic cardiomyopathy	0.006663	Cholesterol metabolism	0.007292
Autoimmune thyroid disease	0.010071	Retinol metabolism	0.011432	Amphetamine addiction	0.012406
Asthma	0.014127	Insulin secretion	0.014819	Tight junction	0.016568
Long-term depression	0.019059	Bile secretion	0.019386	Biosynthesis of amino acids	0.019535
Carbohydrate digestion and absorption	0.020249	Arachidonic acid metabolism	0.020299	Bacterial invasion of epithelial cells	0.022309
Cytosolic DNA-sensing pathway	0.023738	Tyrosine metabolism	0.024982	Oocyte meiosis	0.027646
Apelin signaling pathway	0.041067				

Supplementary Table 2. GO process analysis of 359 key targets.

Pathway	<i>p</i> -value	Pathway	<i>p</i> -value	Pathway	<i>p</i> -value
		transcription factor activity, direct			
nuclear receptor activity	8.09E-21	ligand regulated sequence-specific DNA binding	8.09E-21	steroid hormone receptor activity	1.07E-2
eceptor ligand activity	2.30E-20	receptor regulator activity	5.25E-20	cytokine receptor binding	2.70E-1
protein heterodimerization activity	9.69E-16	cofactor binding	1.06E-15	proximal promoter sequence-specific DNA binding	1.60E-1
RNA polymerase II proximal promoter equence-specific DNA binding	1.60E-14	steroid binding	4.04E-14	chromatin binding	1.07E-1
cytokine activity	1.58E-13	heme binding	5.32E-11	hormone binding	5.33E-1
arboxylic acid binding	1.87E-10	phosphatase binding	1.98E-10	organic acid binding	2.09E-1
etrapyrrole binding	2.09E-10	growth factor activity	2.30E-10	growth factor receptor binding	4.09E-1
ormone receptor binding	4.89E-10	coenzyme binding	1.01E-08	nuclear hormone receptor binding	1.14E-0
ıbiquitin-like protein ligase binding	1.79E-08	oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen	2.35E-08	ubiquitin protein ligase binding	2.44E-0
vitamin binding	5.45E-08	monocarboxylic acid binding	8.89E-08	DNA-binding transcription activator activity,	1.56E-0
NADP binding	1.56E-07	G protein-coupled receptor binding	4.22E-07	RNA polymerase II-specific protein phosphatase binding	5.23E-0
e					
tau protein binding	6.14E-07	transcription coregulator activity	6.14E-07	histone deacetylase binding oxidoreductase activity, acting on the CH-CH	7.36E-0
protease binding	9.45E-07	nuclear receptor binding	9.59E-07	group of donors	1.29E-0
bhosphoprotein binding	1.29E-06	enzyme activator activity	2.02E-06	chemoattractant activity	2.02E-0
ntioxidant activity	2.02E-06	estrogen receptor binding	2.70E-06	histone kinase activity	3.83E-0
nonooxygenase activity	4.54E-06	amide binding	4.85E-06	steroid hormone receptor binding	5.53E-0
caffold protein binding	5.53E-06	tumor necrosis factor receptor superfamily binding	5.53E-06	insulin-like growth factor receptor binding	5.53E-0
ron ion binding	6.67E-06	protein serine/threonine kinase activity	6.67E-06	E-box binding	1.11E-0
oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor	1.14E-05	RNA polymerase II transcription factor binding	1.14E-05	integrin binding	1.14E-0
leath receptor binding	1.14E-05	adrenergic receptor binding	1.14E-05	transcription coactivator activity	1.18E-0
cinase regulator activity	1.37E-05	protein serine/threonine/tyrosine kinase activity	2.01E-05	enhancer binding	2.28E-0
neat shock protein binding	3.90E-05	protein phosphorylated amino acid binding	4.11E-05	transcription coactivator binding	4.15E-0
oxidoreductase activity, acting on paired donors, with incorporation or eduction of molecular oxygen, VAD(P)H as one donor, and ncorporation of one atom of oxygen	5.53E-05	electron transfer activity	7.64E-05	ammonium ion binding	7.64E-0
eurotransmitter binding	8.02E-05	protein tyrosine kinase activity	0.000105456	alcohol dehydrogenase (NADP+) activity	0.0001
JADPH binding	0.00010771	hormone activity oxidoreductase activity, acting on the	0.000125943	transcription cofactor binding	0.00013
oxygen binding	0.000176291	CH-OH group of donors, NAD or NADP as acceptor	0.00019025	fatty acid binding	0.0002
cinase activator activity cholesterol transporter activity	0.000254366 0.00034585	tumor necrosis factor receptor binding disordered domain specific binding	0.000318127 0.00037338	insulin receptor substrate binding insulin receptor binding	0.00034 0.00044
oxidoreductase activity, acting on CH- DH group of donors	0.000460999	growth factor binding	0.000491722	activating transcription factor binding	0.00052
peptide binding	0.000532798	tau-protein kinase activity	0.00053822	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as	0.00059
lioxygenase activity	0.000661983	sterol transporter activity	0.000661983	acceptor flavin adenine dinucleotide binding	0.0006
sulfur compound binding	0.000680429	protein kinase activator activity	0.000748104	cysteine-type endopeptidase regulator activity	0.0007
do kato reductore (NADB) activity	0.000700104	phoenhotyrosina residua hir dir a	0 000005501	involved in apoptotic process protein kinase A catalytic subunit binding	0.0009
Aldo-keto reductase (NADP) activity retinoic acid receptor binding	0.000788194 0.000948814	phosphotyrosine residue binding Hsp90 protein binding	0.000895584 0.001013403	SMAD binding	0.0009
FAD binding	0.001131296	oxidoreductase activity, acting on the aldehyde or oxo group of donors	0.001142252	protein kinase regulator activity	0.00114
translation repressor activity, mRNA regulatory element binding	0.001148329	platelet-derived growth factor receptor binding	0.001148329	long-chain fatty acid binding	0.00114
protein self-association	0.001206353	oxidoreductase activity, acting on peroxide as acceptor	0.00124775	protein C-terminus binding	0.00125
retinoid X receptor binding	0.001484449	chromatin DNA binding	0.001513989	cholesterol binding	0.00157

portidaça regulator activity 0.0	001614389	avtracellular matrix hinding	0.001735213	protein kinase C activity	0.001801
receptor serine/threonine kinase	001014389	extracellular matrix binding NF-kappaB binding	0.001733213	heparin binding	0.001801
binding	002128739	nuclear receptor transcription	0.002128739	glycosaminoglycan binding	0.002137
		coactivator activity			
e e	002634546	sterol binding	0.002643398	enhancer sequence-specific DNA binding	0.002716
transmembrane receptor protein tyrosine kinase activity 0.0	003269562	steroid hydroxylase activity	0.00336663	transforming growth factor beta receptor binding	0.004106
	.00427316	alcohol binding	0.00427316	fibroblast growth factor binding	0.00484
translation regulator activity, nucleic 0.0 acid binding	004840122	peptidase activator activity	0.004971609	insulin-like growth factor I binding	0.00524
Toll-like receptor binding 0.0	005240093	NADP-retinol dehydrogenase activity	0.005240093	transmembrane receptor protein serine/threonine kinase binding	0.00524
RNA polymerase II activating transcription factor binding	005373752	peroxidase activity	0.005373752	non-membrane spanning protein tyrosine kinase activity	0.005374
mitogen-activated protein kinase 0.0 binding	005455186	DNA-binding transcription repressor activity, RNA polymerase II-specific	0.005567454	oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen	0.006361
translation repressor activity 0.0	006361033	folic acid binding	0.006577534	protein kinase B binding	0.006578
platelet-derived growth factor binding 0.0	006577534	I-SMAD binding	0.006577534	fibronectin binding	0.007213
oxidoreductase activity, acting on single donors with incorporation of 0.0	007212618	transcription corepressor activity	0.007460244	catalytic activity, acting on DNA	0.007549
molecular oxygen			0.0000500000		0.000251
1 1 0	007899398	interleukin-1 receptor binding	0.008250906	catecholamine binding	0.008251
00	008952296 009974901	lipoprotein particle receptor binding serine-type endopeptidase activity	0.009383432 0.009974901	serine-type peptidase activity MAP kinase kinase activity	0.009677 0.010172
		G protein-coupled amine receptor		-	
<i>.</i>	010272915	activity	0.010318019	bHLH transcription factor binding	0.010318
activator activity	010318019	neurotransmitter receptor activity	0.010348568	RNA polymerase II distal enhancer sequence- specific DNA binding	0.010897
transmembrane receptor protein kinase activity 0.0	01089714	protein kinase A binding	0.01089714	protein kinase C binding	0.011877
1 1 0	011876902	retinol dehydrogenase activity	0.011945223	actinin binding	0.012818
1 1 1 0	012817505	cation channel activity	0.013691175	translation regulator activity	0.013929
opsonin binding 0.0	014210904	lipase inhibitor activity	0.014210904	steroid dehydrogenase activity	0.015944
, ,	015944247	cysteine-type endopeptidase activator activity involved in apoptotic process	0.01666463	chloride channel regulator activity	0.016665
	.01666463	apolipoprotein binding	0.01666463	oxidoreductase activity, acting on NAD(P)H	0.017216
	018832345	hijacked molecular function	0.018832345	ion gated channel activity cysteine-type endopeptidase inhibitor activity	0.019364
	019400305 019649029	gated channel activity cytokine binding	0.019649029 0.02057876	lipoprotein particle binding	0.019649 0.020579
	.02057876	channel regulator activity	0.021625653	ATPase binding	0.021712
		cyclin-dependent protein		e	
RNA polymerase II basal transcription 0.0 factor binding	021784633	serine/threonine kinase regulator activity	0.021784633	retinoid binding	0.022287
channel activity 0.0	022469788	passive transmembrane transporter	0.022923969	cysteine-type endopeptidase activity	0.023506
isoprenoid binding 0.0	.02412412	activity voltage-gated ion channel activity	0.02412412	voltage-gated channel activity	0.024124
peptidase activator activity involved in apoptotic process 0.0	024380968	cysteine-type endopeptidase inhibitor activity involved in apoptotic process	0.024380968	protein tyrosine kinase binding	0.024618
	025914078	receptor tyrosine kinase binding	0.026221153	L-ascorbic acid binding	0.02771
protein N-terminus binding 0.0	029624628	RNA polymerase II core promoter sequence-specific DNA binding	0.031383956	neuropeptide hormone activity	0.031384
				oxidoreductase activity, acting on paired	
collagen binding 0.0	031583969	endopeptidase activity	0.032267629	donors, with incorporation or reduction of molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors	0.032873
lyase activity 0.0	03316175	double-stranded RNA binding	0.03316175	phospholipid binding	0.03808
	03807999	core promoter binding	0.03807999	ion channel binding	0.038386
-	038386203	R-SMAD binding	0.038386203	fatty acid derivative binding	0.038386
p53 binding 0.0	038802999	chaperone binding	0.041073421	pyridoxal phosphate binding	0.043332
endopeptidase inhibitor activity 0.0	045706496	vitamin B6 binding	0.046377378	fibroblast growth factor receptor binding	0.046883
MHC protein complex binding 0.0	046883431				