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INTRODUCTION 
 

AKI, characterized by a sudden and rapid decline  

in renal function, is a condition that is known to  
have high mortality rates. It has been observed that 
approximately 10–15% of hospitalized patients and over 

50% of patients in the intensive care unit develop AKI 
[1, 2]. The International Association of Nephrology 
reports that AKI affects around 13 million individuals 

worldwide annually, leading to approximately 1.7 
million deaths each year [3]. It is important to note that 
AKI survivors face a significantly increased risk of 

developing chronic kidney and end-stage renal diseases. 
Despite the increasing understanding of AKI and the 
improvement of clinical support and adjuvant treatment 

measures, the prognosis of AKI remains poor and  
the mortality rate remains high. Early detection and 
intervention in the treatment of AKI, along with early 
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ABSTRACT 
 

Background: Emerging evidence reveals the key role of ferroptosis in the pathophysiological process of acute 
kidney injury (AKI). Our study aimed to investigate the potential ferroptosis-related gene in AKI through 
bioinformatics and experimental validation. 
Methods: The AKI single-cell sequencing dataset was retrieved from the GEO database and ferroptosis-related 
genes were extracted from the GENECARD website. The potential differentially expressed ferroptosis-related 
genes of AKI were selected. Functional enrichment analysis was performed. Machine learning algorithms were 
used to identify key ferroptosis-related genes associated with AKI. A multi-factor Cox regression analysis was 
used to construct a risk score model. The accuracy of the risk score model was validated using receiver 
operating characteristic (ROC) curve analysis. We extensively explored the immune landscape of AKI using 
CIBERSORT tool. Finally, expressions of ferroptosis DEGs were validated in vivo and in vitro by Western blot, ICH 
and transfection experiments.  
Results: Three hub genes (BAP1, MDM4, SLC2A1) were identified and validated by constructing drug regulatory 
network and subsequent screening using experimentally determined interactions. The risk mode showed the 
low-risk group had significantly better prognosis compared to high-risk group. The risk score was independently 
associated with overall survival. The ROC curve analysis showed that the prognosis model had good predictive 
ability. Additionally, CIBERSORT immune infiltration analysis suggest that the hub gene may influence cell 
recruitment and infiltration in AKI. Validation experiments revealed that SLC2A1 functions by regulating 
ferroptosis. 
Conclusions: In summary, our study not only identifies SLC2A1 as diagnostic biomarker for AKI, but also sheds 
light on the role of it in AKI progression, providing novel insights for the clinical diagnosis and treatment of AKI. 
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control of the condition, can prevent irreversible  
kidney damage. Currently, the diagnosis of AKI 

primarily relies on blood creatinine and urine  
output. However, these traditional indicators do not 
effectively reflect early decline in renal function and  

are easily influenced by other factors. Although there 
are existing AKI-related biomarkers such as neutrophil 

gelatinase-associated lipocalin and cystatin C that can 
indicate changes in renal function during the early 
stages of AKI, their limited availability and detection 

methods have hindered widespread application in 
clinical practice. Therefore, it is urgent to identify 
novel diagnostic biomarkers and find personalized 

treatment strategies for AKI. 
 

Ferroptosis is an identified form of iron-dependent 
programmed cell death, distinct from apoptosis, 
necroptosis. It involves lipid peroxidation, reactive 

oxygen species production, and mitochondrial 
dysfunction. The kidney is especially vulnerable to 
redox imbalance. Multiple bodies of evidence indicate 

the potential involvement of ferroptosis in the 
pathophysiological mechanisms underlying AKI via 

diverse pathways [4]. For example, in folic acid 
induced AKI mice models, apoptosis inhibitor could 
not reduce the tubular epithelial cells injury, while 

Fer-1 could effectively reduce renal tubular cell death 
[5]. In IR-induced AKI mice models, ALR has been 
proven to prevent the damaged kidney by modulating 

Xc/GSH/GPX4 signaling and scavenging ROS to 
inhibit ferroptosis [6, 7]. In AKI mice models, ACSL4 
expression was upregulated in the renal tissues,  

and mechanistically, HIF-1α directly bound to the 
promotor of the ACSL4 gene and regulated ACSL4 

transcription. Knockout of ACSL4 mitigated renal 
damage by decreasing inflammatory response and 
suppressing immune cell infiltration and ferroptosis 

[8]. However, ferroptosis-related genes of AKI remain 
to be further explored. 
 

To identify novel AKI diagnostic biomarkers, we  
used bioinformatics and machine learning methods to 

screen ferroptosis-related genes associated with AKI 
and verified through in vitro and in vivo experiments. 
This study will not only identify diagnostic biomarker 

for AKI, but also sheds light on the role of it in AKI 
progression, providing novel insights for the clinical 
diagnosis and treatment of AKI. 

 

RESULTS 
 

Cell clustering analysis based on scRNA-seq sample 

 
After the initial screening, logarithmic normalization 

and dimensionality reduction methods were employed 
on the scRNA-seq dataset. By utilizing the t-SNE 

approach, a total of 9 distinct cell subtypes were 
discovered (Figure 1A). The distribution of each cell 

subtype is visualized in the t-SNE plot shown in 
(Figure 1B). The 9 cell subtypes primarily comprise  
of Endothelial cells, Stromal cells, Podocytes,  

Proximal Tubules, Neurons, Proliferative cells, Distal  
Tubules, Melanocytes, and Muscle cells. In order  

to identify genes that are differentially expressed  
among these clusters, we employed the R package 
“FindVariableFeatures.” This methodology enabled 

the identification of genes that display significant 
variations across the distinct cell types. The heatmap 
in (Figure 1C) displays the most prominently expressed 

differentially regulated genes in each cellular cluster, 
with the stromal cell cluster showing notably elevated 

expression levels of COL3A1, MGP, PRRX1, LGALS1, 
and COL1A1 (Figure 1D) displays the 8 marker genes 
utilized for single cell clustering analysis. Furthermore, 

volcano plots were employed to illustrate the top 5 
highly expressed and lowly expressed genes in each  
of the nine cell subtypes (Figure 1E). (Figure 1F) 

illustrates the proportional distribution of cell sub-
types in the four examined samples, showcasing the 

prevailing presence of Endothelial cells, Podocytes, and 
Stromal cells within the tissue. Furthermore, (Figure 
1G) demonstrates the distribution of gene expression 

levels between the control and disease groups. Genes 
exhibiting a linear pattern on the diagonal line indicate 
consistent expression patterns in both groups.  

 
Analysis of genetic differences related to ferroptosis 

 

We acquired the GEO dataset and extracted ferroptosis-
associated genes from the GENECAED website to 

conduct an investigation. Specifically, our analysis 
focused on assessing the differential expression of genes 
implicated in iron-dependent cell death among patients 

diagnosed with AKI, when contrasting the cohorts  
of healthy individuals and those afflicted with the 
disease. The heat map presented in (Figure 2A) depicts 

the differential expression pattern of genes related  
to ferroptosis. It visually represents the distribution  

of these genes and their associated functions. (Figure 
2B) illustrates the correlation between the top 20 genes 
exhibiting differential expression. This analysis high-

lights a positive correlation between the gene USP35  
and AEBP2, while a negative correlation is observed 
between LIFR and YY1AP1. Additionally, the volcano 

plot depicted in (Figure 2C) presents supplementary 
evidence indicating the varied expression of genes 
implicated in ferroptosis. 

 
Construction of predictive models 

 
The GSE98320 dataset was employed to develop a 
predictive model. Lasso Cox regression analysis was 
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utilized to identify a selection of 11 genes associated 
with iron-induced mortality. These genes were then 

used for the construction of the prediction model, as 
shown in (Figure 3A, 3B). The support vector machine 
(SVM) algorithm was subsequently employed for the 

development of a prediction model for AKI, utilizing a 
set of 10 genes associated with iron-induced mortality 

(Figure 3C, 3D). In order to ensure the precision of the 
genes utilized for model development, the intersection 
of genes derived from both models was determined, 

resulting in the identification of 8 shared genes (Figure 
3E). The predictive diagnostic results of the eight  
target genes for AKI in the validation set are displayed 

in (Figure 3F). The area under the curve (AUC) value 
was computed for each individual gene and for the 

comprehensive diagnosis. The AUC values for the 
individual genes were as follows: BAP1: AUC = 0.729; 
AEBP2: AUC = 0.966; MDM4: AUC = 0.974; CIRBP: 

AUC = 0.718; AKR1C1: AUC = 0.766; NR4A1: AUC 
= 0.840; GLRX5: AUC = 0.829; SLC2A1: AUC = 

0.729. The ROC curve analysis indicated that the AUC 
value for the comprehensive diagnosis utilizing the 
eight target genes was 1, with a 95% confidence interval 

of 1–1 (Figure 3G). 
 

Pathway enrichment analysis 

 
The DEGs related to ferroptosis were determined using 

an adjusted p-value less than 0.01 and a |logFC| greater 
than or equal to 1.5, between the normal and AKI 
groups. In this manner, duplication rates are reduced. 

The possible involvement of these DEGs AKI was 
investigated using GO and KEGG enrichment analyses. 

The GO enrichment analysis demonstrated a significant 
enrichment of immune-related biological processes 
among the DEGs identified (Figure 4A). The KEGG 

 

 
 

Figure 1. Single-cell clusters were identified based on scRNA data from AKI patients. (A) The tSNE diagram shows 9 clusters and 
the expression of iron-related marker genes associated with iron-induced cell death. (B) The tSNE diagram illustrates the distribution of 8 
cell subsets after clustering. (C) The heat map shows the expression levels of the top 5 marker genes in each subpopulation. (D) The tSNE 
map displays the distribution of 8 marker genes. (E) The volcano map demonstrates the expression patterns of the first 5 marker genes 
within each subpopulation. (F) Subgroup proportions and cell counts are depicted in 4 sample groups. (G) The distribution of gene 
expression is compared between the two groups. 
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enrichment analysis further revealed a notable enrichment 
of various pathways associated with cell proliferation 

and the cell cycle in the DEGs (Figure 4B–4E). 
 
Immune analysis 

 
After examining the distribution of immune and 

stromal cell infiltration within both normal and 
diseased cohorts, a notable disparity was observed, 
with the disease group demonstrating a greater 

prevalence of immune and stromal cell infiltration 
compared to the normal group (Figure 5A). Moreover, 
the study revealed a greater prevalence of CD8  

T cells, Tregs cells, CD4 naïve cells, and memory  
B cells within the disease group. Furthermore, an 

investigation was conducted to assess the correlation 
between model genes and immune cell populations.  
In (Figure 5B, 5C), a strong correlation was observed 

between several genes, including NR4A1, CIRBP, 
MDM4, GLRX5, and immune cells. Specifically,  
gene NR4A1 exhibited positive correlations with  

Mast cells resting, RMSE, and Tregs, but negative 
correlations with Mast cells resting and Neutrophils. 

Additionally, the comparison of 22 immune-related 

cells between the two groups revealed that the normal 
group had a higher abundance of Macrophages M2 

cells, while Monocytes and Macrophages M0 cells 
were more prevalent in the disease group (Figure  
5D). These findings suggest significant relationships 

between specific genes and immune cell popula- 
tions, highlighting potential implications in disease 

mechanisms [9]. M0 macrophages, characterized as 
unactivated and immature, perform the crucial 
function of phagocytosing and clearing cellular debris, 

initiating inflammatory responses [10]. Conversely, 
M2 macrophages are primarily anti-inflammatory and 
involved in the reparative and regenerative processes 

[11], generating anti-inflammatory mediators like  
IL-10 and TGF-β, thus alleviating inflammation  

and promoting tissue repair and regeneration [12].  
In summary, M2 macrophages have distinctive roles  
in immune responses and inflammation, while M0 

macrophages remain in an undifferentiated state with 
neutral characteristics [13]. Manipulating the ratio  
of M2 macrophages offers potential for regulating 

immune and inflammatory responses, providing a 
foundation for potential treatment strategies for 

AKI [14]. 
 

 
 

Figure 2. Analysis of genetic variations associated with iron-related mortality. (A) Heatmap shows distribution of gene 
differences related to iron-related mortality between the control group and the disease group. (B) Analysis of differential gene correlations. 
(C) The volcano map depiction of differential gene expression in ferroptosis. 
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Figure 3. Construction of the prediction model. (A, B) Trajectories and distributions of each independent variable for lambda. (C, D) 
Reverse cumulative distribution of absolute residual for the SVM model. (E) Intersection of two model genes. (F) ROC curve showing the 
prediction results of the model genes. (G) Accuracy of the SVM model demonstrated by the ROC curves. 

 

 
 

Figure 4. Analysis of the differentially expressed genes (DEGs) related to AKI. (A) Circular plot illustrating the Gene Ontology (GO) 
analysis, highlighting the potential gene functions of the DEGs associated with ferroptosis and its influence on the occurren ce and 
progression of AKI. (B–D) Bubble plot representing the GO analysis in terms of biological processes (BP), cellular components (CC), and 
molecular functions (MF). (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs associated with ferroptosis and AKI.  
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Gene set enrichment analysis (GSEA) of model genes 

 

Gene Set Enrichment Analysis (GSEA) was conducted 
to investigate variances in gene function among  
the KEGG pathways of the selected target genes.  

Notably, AEBP2 displayed significant associations with  
the following pathways: neuroactive ligand receptor 

interaction, valine leucine isoleucine degradation, and 
oxidative phosphorylation (Figure 6A). The involvement 
of AKR1C1 was demonstrated in vesicular transport 

snare interactions, autoimmune thyroid disease, and 
olfactory transduction pathways (Figure 6B). In (Figure 
6C), BAP1 appeared to be significantly enriched in the 

lysosome, endocytosis, and neuroactive ligand signaling 
pathways. In (Figure 6D), CIRBP exhibited connections 

with vesicular transport involving SNARE interactions, 
the calcium signaling pathway, and neuroactive ligand 
receptor interactions. GLRX5 displayed enrichment  

in pathways related to olfactory transduction, ascorbate 

and aldarate metabolism, and starch and sucrose 
metabolism (Figure 6E). MDM4 was found to be 

associated with pathways such as neuroactive ligand 
receptor interaction, calcium signaling and proteasome 
pathways (Figure 6F). NR4A1 exhibited enrichment  

in pathways such as ribosome, lysosome, and oxidative 
phosphorylation (Figure 6G). SLC2A1 was identified to 

be enriched in pathways related to protein export, retinol 
metabolism, and olfactory transduction (Figure 6H). An 
examination was carried out to determine the levels of 

expression of these 8 selected genes in both the disease 
group and the normal group (Figure 7A–7H). The 
findings indicated that SLC2A1 (Figure 7A), AEBP2 

(Figure 7C), BAP1 (Figure 7D), CIRBP (Figure 7E),  
and GLRX5 (Figure 7F) exhibited significantly higher 

expression levels in the disease group. Conversely, 
MDM4 (Figure 7B), AKR1C1 (Figure 7G), and NR4A1 
(Figure 7H) demonstrated elevated expression levels in 

the normal group. 
 

 
 

Figure 5. Analysis of immune infiltrations. (A) Heatmap showing the results of immune cell infiltration in the tumor microenvironment 
(TME) in AKI using multiple algorithms, including data from the TIMER and MCP-counter platforms. TME-related scores are displayed in the 
top bar. (B) Correlations between eight hub genes and 22 immune-related cells. (C) Correlation analysis between nine hub genes and 75 
immune-associated genes. (D) Comparison of the proportions of 22 immune-related cells between control and treated groups. 
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Construction and pharmacological regulation analysis 

of ceRNA networks 

 
Cytoscape was utilized for the construction  
of the CeRNA network and analysis of drug 

regulation. This investigation unveiled connections 
between the model genes and various drugs, such  

as everolimus, sunitinib, panobinostat, apitolisib, 
vorinostat, and olaparib, particularly in relation to 

BAP1. Additionally, the association of MDM4 with 
epirubicin, pembrolizumab, nivolumab, atezolizumab, 

and docetaxel was observed, whereas SLC2A1 showed 
an association with genistein and glufosfamide (Figure 
8A). Furthermore, the interactions among model genes, 

miRNA, and LncRNA were further investigated, with 
an elevated expression indicated by the color red and a 

diminished expression represented by the color yellow 
(Figure 8B). 

 

 
 

Figure 6. Pathway analysis of model genes. (A) AEBP2 enrichment pathway. (B) AKR1C1 enrichment pathway. (C) BAP1 enrichment 
pathway. (D) CIRBP enrichment pathway. (E) GLRX5 enrichment pathway. (F) MDM4 enrichment pathway. (G) NR4A1 enrichment pathway. 
(H) SLC2A1 enrichment pathway. The upper panel shows the enrichment pathway analysis for genes with high expression, while the lower 
panel represents the enrichment pathway analysis for genes with low expression. 

 

 
 

Figure 7. Expression levels of selected candidate genes. (A) AEBP2 gene expression level. (B) AKR1C1 gene expression level. (C) BAP1 
gene expression level. (D) CIRBP gene expression level. (E) GLRX5 gene expression level. (F) MDM4 gene expression level. (G) NR4A1 gene 
expression level. (H) SLC2A1 gene expression level. 
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SLC2A1 and ACSL4 were overexpressed in AKI 

and promote HK-2 cell apoptosis 

 
To study the involvement of SLC2A1 in AKI, a  
mouse model of ischemia-reperfusion injury was 

developed using C57BL/6 mice. Following euthanasia, 
immunohistochemistry and Western blot analyses were 

conducted on the isolated kidney tissues to examine  
the expression of SLC2A1. It was observed that the 
ischemia-reperfusion kidney injury model led to renal 

damage and caused ferroptosis, which were identified 
by HE staining and TEM, and also a marked elevation 
in the levels of SLC2A1 and a decrease in the level of 

GPX4 expression in the renal tissues of mice (Figure 
9A). The Western blot results of SLC2A1 and ACSL4 

were consistent with immunohistochemistry mentioned 
above (Figure 9B, 9C). Furthermore, verification of the 
hypoxia-reoxygenation model was conducted employing 

the HK-2 cell line. The results revealed that hypoxia-
reoxygenation induced an elevation in the expression of 
ACSL4, and SLC2A1 in the HK-2 cells (Figure 9D, 9E). 

Moreover, elevated lipid peroxidation and accumulation 
of malondialdehyde (Figure 9F, 9G) were detected, 

along with an augmented rate of cellular apoptosis 
(Figure 9H, 9I). Our experimental findings confirmed 
the crucial role of ACSL4 in ferroptosis and revealed the 

involvement of ferroptosis in the hypoxia-reoxygenation 
model. To further understand how SLC2A1 can regulate 
cell fate through ACSL4, we employed a specific ACSL4 

inhibitor called Troglitazone. Our results demonstrated 
that overexpression of SLC2A1 in the hypoxia-
reoxygenation model led to the upregulation of ACSL4, 

and SLC2A1 expression in the HK2 cells (Figure 10A, 
10B). Accompanied by heightened lipid peroxidation 

and malondialdehyde accumulation in HK-2 cells 
(Figure 10C, 10D), an increased rate of cell apoptosis 
was observed (Figure 10E–10G). Additionally, inhibition  

of ACSL4 was observed to prevent the alterations  
in reactive oxygen species (ROS), malondialdehyde 

(MDA), and cellular apoptosis induced by SCL2A1. 
Taken together, our results propose that SLC2A1  
drives the demise of renal proximal tubular epithelial 

cells via ACSL4-mediated ferroptosis in the hypoxia-
reoxygenation model, ultimately contributing to the 
impairment of renal functional cells in cases of AKI. 
 

DISCUSSION 
 

Acute kidney injury (AKI) is a growing global health 
issue characterized by increasing incidence rates [15]. 

This condition not only compromises patients’ physical 
health and survival but also places a significant strain on 
healthcare systems [16]. The efficient management of AKI 

heavily relies on the timely diagnosis and intervention, 
which play a vital role in ensuring effective interventions 

[17]. The timely identification of AKI allows for 
immediate implementation of therapeutic interventions, 
resulting in a more favorable prognosis [18]. Currently, 

close attention is given to monitoring urine output,  
blood chemistry markers, and renal function in order to 
facilitate early detection and prevent further damage to 

the kidneys [19]. Nevertheless, the achieved outcomes 
have been somewhat restricted to date [20]. The clinical 
importance of AKI has been acknowledged by the 

 

 

 
Figure 8. Construction of competing endogenous RNA (ceRNA) network and regulation by drugs. (A) Drug regulatory network 
of model genes. (B) The ceRNA network associated with model genes. Up-regulated entities are indicated in red, while down-regulated 
entities are indicated in yellow. 
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medical community of late, prompting endeavors to 
refine our comprehension, early identification, and 

efficient treatment approaches for this ailment [21]. 

Research on diagnostic and prognostic biomarkers in 
the field of medicine has gained significant traction 

[18]. Recent studies have highlighted the critical role of 

 

 
 

Figure 9. SLC2A1 and ACSL4 were overexpressed in AKI and promote HK-2 cell apoptosis. (A) HE and immunohistochemistry of 
SLC2A1, GPX4 and TEM in renal ischemia-reperfusion injury model; (B) The protein level of SLC2A1 and ACSL4 in renal ischemia-reperfusion 
injury model and normal control model was verified by Western blot; (C) Relative quantification of SLC2A1 and ASCL4 in B; (D) The protein 
level of ACSL4 and SLC2A1 in HR induced AKI model and was verified by Western blot; (E) Relative quantification of these proteins in D; (F) 
The lipid ROS level was verified in HR induced AKI model and normal control model; (G) The MDA level was verified in HR induced AKI 
model and normal control model; (H, I) The apoptosis rate was verified in HR induced AKI model and normal control model. *p < 0.05, **p < 
0.01, ***p < 0.001. Abbreviations: MDA: Malondialdehyde; ROS: Reactive Oxygen Species. 
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ferroptosis in AKI development and progression. Many 
ferroptosis-related genes have been found to be closely 

related to AKI. 

SLC2A1 (solute carrier family 2 member 1), also 
referred to as glucose transporter type 1 (GLUT1), is a 

significant gene within the human genome that holds a 

 

 
 

Figure 10. SLC2A1 promotes HK-2 cell apoptosis and ferroptosis via ACSL4. (A, B) The protein level of ACSL4 and SLC2A1 in HR 
induced AKI mode when overexpressed SLC2A1, overexpressed SLC2A1+T, or T was verified by Western blot and relative quantification of 
these proteins; (C) The lipid ROS level was verified in HR induced AKI mode when overexpressed SLC2A1, overexpressed SLC2A1+T, or T; (D) 
The MDA level was verified in HR induced AKI model when overexpressed SLC2A1, overexpressed SLC2A1+T, or T; (E–G) The apoptosis rate 
was verified in HR induced AKI model when overexpressed SLC2A1, overexpressed SLC2A1+T, or T. *p < 0.05, **p < 0.01, ***p < 0.001. 
Abbreviations: T: Troglitazone; MDA: Malondialdehyde; ROS: Reactive Oxygen Species. 
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pivotal position in glucose metabolism [22]. Its  
primary function revolves around facilitating the 

transportation of glucose across cellular membranes, 
thereby guaranteeing a sufficient supply of glucose as 
an energy source for various physiological processes 

[23]. Meanwhile, SLC2A1 is also a programmed cell 
death-related gene that plays important roles in 

ferroptosis [24]. Previous studies have investigated its 
role as a prognostic and immunotherapeutic marker in 
lung adenocarcinoma [25], where it was found to be 

aberrantly expressed in numerous cancers. Furthermore, 
SLC2A1 has shown prognostic significance and plays 
a role as an immune marker in various other cancers 

[26–28]. In the study of non-tumor diseases, evidence 
suggests that high expression of SLC2A1 is associated 

with type 2 diabetes and its complications [29], as  
well as chronic inflammation [30]. The interaction of 
SLC2A1 may influence the onset of chronic kidney 

disease by regulating ferroptosis [31]. However, the 
diagnostic and prognostic significance of SLC2A1, as  
a gene associated with ferroptosis in AKI has not yet 

been fully understood. 
 

In this study, we conducted an extensive bioinformatics 
analysis of the SLC2A1 gene, which is known to be 
associated with the process of ferroptosis. This gene’s 

involvement in the development and progression of  
AKI was also explored. Moreover, we delved into its 
potential correlation with various clinical characteristics, 

immune infiltration, and immune checkpoints. 
 
Our study focused on exploring the connection between 

ferroptosis and AKI. By utilizing the Human Protein 
Atlas, we identified four genes that were specifically 

expressed in AKI tissue and involved in the process  
of ferroptosis. Through analysis of single-cell RNA-
sequencing data, we also identified several genes that 

were associated with ferroptosis. Among these genes, 
we selected eight (BAP1, AEBP2, MDM4, CIRBP, 
AKR1C1, MR4A1, GLRX5, SLC2A1) to develop a 

new risk signature using differential analysis, univariate 
Cox regression, lasso regression, and multivariate Cox 

regression methods. 
 
To assess the predictive value of the risk signature, we 

employed the GEO AKI dataset. Based on the calculated 
risk scores, patients were classified into high- and  
low-risk groups using the median value as the cutoff. 

Our findings demonstrated that the low-risk group had 
significantly better prognosis compared to the high-risk 
group. Additionally, the risk score was independently 

associated with overall survival, as observed in both 
univariate and multivariate Cox regression models. 

 
Tubular cell death plays a crucial role in the early  
stages of AKI and triggers inflammation through the 

release of chemokines and damage-associated molecular 
patterns from dying cells [32]. Various forms of cell 

death contribute to tubular cell loss in AKI, including 
ferroptosis, which is characterized by the accumulation 
of iron-dependent lipid hydroperoxides [33]. Ferroptosis 

has been shown to be significant in AKI mouse models 
induced by ischemia-reperfusion injury or oxalate 

crystal, contributing to renal tubule necrosis [34]. 
 
While apoptosis, pyroptosis, and necroptosis are well-

established forms of cell death regulated by the immune 
system [35–37], it remains unclear if ferroptosis has a 
similar physiological role, whether through sensitization 

or induction via intrinsic or extrinsic mechanisms [38]. 
Given the complexities of ferroptosis and its involvement 

in various metabolic pathways, it is plausible that the 
immune system targets specific key elements of the 
ferroptosis process. The SLC2A1 study aims to analyze 

immune changes in AKI during immunotherapy to 
identify biomarkers that can accurately predict the 
immune response and guide treatment strategies [39]. 

The ultimate goal is to enable clinicians to select the 
most effective therapy and identify suitable recipients 

who will benefit from it, thereby avoiding treatment 
delays and achieving improved outcomes in AKI 
management. 

 
We extensively explored the immune landscape of AKI 
based on risk features associated with specific risk genes 

(SRGs). Our findings indicate that the high-risk subgroup 
of patients exhibits increased immune cell infiltration. 
However, we observed that monocytes, RMSE, and 

resting CD4T cells are the predominant immune 
infiltrating cell types in the high-risk population. These 

cells have been shown to induce immune evasion in 
cancer immunotherapy, which poses a disadvantageous 
response to immune treatment. Therefore, we propose 

that immunotherapy may be more effective for patients 
in the low-risk group. Supporting our viewpoint, our 
analysis of the IMvigor210 and GSE78220 cohorts 

aligns with previous studies, as low-risk patients appear 
to derive greater benefits from immunotherapy compared 

to high-risk patients. 
 
Based on our experimental results, we observed a 

significant upregulation of SLC2A1 and ACSL4 
expression in the kidneys of mice subjected to  
an ischemia-reperfusion injury model of AKI. 

Additionally, in the HK-2 cell line, we found that 
hypoxia-reoxygenation resulted in upregulation of 
ACSL4, and SLC2A1 expression. These changes were 

accompanied by lipid peroxidation and an increase in 
cell apoptosis rate. 

 
The significant upregulation of SLC2A1 and ACSL4 
expression in the AKI model suggests their involvement 
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in the pathogenesis of AKI. SLC2A1 is responsible for 
glucose uptake, and its overexpression in AKI may 

contribute to metabolic dysregulation [40]. ACSL4, on 
the other hand, plays a role in lipid metabolism and  
has been implicated in ferroptosis, a type of regulated 

cell death characterized by iron-dependent accumulation 
of lipid peroxides. Our findings suggest that ACSL4-

mediated ferroptosis may be involved in the death of 
renal proximal tubular epithelial cells, ultimately leading 
to the disruption of renal functional cells in AKI. 

 
Furthermore, our experiments using a specific inhibitor 
of ACSL4 demonstrated that blocking ACSL4 can 

inhibit the changes in reactive oxygen species (ROS), 
malondialdehyde (MDA) accumulation, and cell 

apoptosis induced by SLC2A1 overexpression. This 
suggests that SLC2A1 promotes the death of renal 
proximal tubular epithelial cells through ACSL4-

mediated ferroptosis in the hypoxia-reoxygenation 
model [41]. 
 

Overall, our findings provide insight into the role  
of SLC2A1 and ACSL4 in the pathogenesis of AKI. 

They highlight the involvement of ACSL4-mediated 
ferroptosis in the death of renal cells and the disruption 
of renal function, However SLC2A1 needs to be further 

studied in future studies using knockout animals. Further 
research on the molecular mechanisms underlying 
SLC2A1 and ACSL4 dysregulation in AKI may uncover 

potential therapeutic targets for the treatment of this 
condition. 
 

CONCLUSIONS 
 
Elevated SLC2A1 gene expression demonstrates a 

robust correlation with prognosis and heightened 
invasive capacity in iron-induced cellular apoptosis, 
indicating its potential contribution to the progression of 

AKI through modulation of immune cell infiltration. 
This investigation highlights SLC2A1 as a potentially 

valuable diagnostic and prognostic biomarker in AKI 
patients, offering novel functional implications and 
presenting it as a promising target for both diagnostic 

and therapeutic interventions. 
 

MATERIALS AND METHODS 
 
Transcriptome data acquisition and processing 

 

The AKI single-cell RNA sequencing (scRNA-seq) 
dataset was obtained from the Gene Expression 
Omnibus (GEO) database with the accession number 

GSE149687. Cells that exhibited expression of less than 
three genes or demonstrated expression of fewer than 
250 genes were excluded after a meticulous screening 

process. In order to quantify the proportions of rRNA 

and mitochondria, the methodology involved utilization 
of the PercentageFeatureSet function from the Seurat R 

package, ensuring minimization of redundancies within 
the analysis. 
 

Collection of genes associated with ferroptosis 

 

After applying the filter for the keyword “ferroptosis” on 
the GENECARDS website (https://www.genecards.org/), 
we exclusively considered the downloaded genes that 

demonstrated a correlation score exceeding 1. 

 
scRNA-seq data processing and cell annotation 

 
Using the “Seurat” R package, we conducted quality 
control on the single-cell RNA sequencing (scRNA-

seq) dataset. To ensure high-quality data, we removed 
genes that were expressed in less than three individual 
cells. Additionally, cells with a gene count below  

200 or above 7,000 were excluded. Furthermore, we 
filtered out cells with more than 10% mitochondrial 

genes to minimize potential technical artifacts. These 
rigorous filters allowed us to retain a refined and 
reliable scRNA-seq dataset. The remaining cells  

were subsequently subjected to linear regression 
modeling and “Log-normalization” technique for 
scaling and normalization to facilitate further analysis. 

Subsequently, the “FindVariableFeatures” tool was 
employed to identify the top 3,000 highly variable 
genes. To eliminate batch effects caused by multiple 

samples, the “FindIntegrationAnchors” function of  
the canonical correlation analysis (CCA) approach  

was employed. The data were consolidated and 
standardized using the “IntegrateData” and “ScaleData” 
functionalities. Principal component analysis (PCA) 

was then applied to reduce dimensionality and identify 
pivotal anchor points. Afterwards, the t-distributed 
stochastic neighbor embedding (t-SNE) algorithm was 

utilized to assess the most influential 20 principal 
components and identify significant clusters. To 

evaluate differential expression within each cluster, the 
“FindMarkers” tool from the “Seurat” package was 
employed. We employed the cutoff thresholds and 

adjusted criteria of P < 0.01 and log2 (foldchange) 
>0.25 to identify cluster-specific marker genes. 
Subsequently, the cell types were verified and annotated 

using the canonical marker genes of each cluster, in 
accordance with previous studies. 

 
Development and implementation of a prognostic-

related model 

 
Initially, a differential analysis was performed to identify 
genes that exhibited differential expression between 
samples with AKI and normal samples. Afterwards, the 

R package “survival” was utilized to conduct univariate 
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Cox regression analysis in order to explore genes that 
are correlated with prognosis. These genes were later 

chosen for constructing a prognostic model related to 
cell ferroptosis, employing the Lasso and multivariate 
Cox regression algorithms. The effectiveness of the 

models was evaluated through the generation of ROC 
curves in order to assess their performance. 

 
Analysis of enrichment functional pathways 

 

To explore the biological mechanisms and pathways 
associated with the two risk groups, we performed GO 
and KEGG enrichment analysis. Gene Set Enrichment 

Analysis (GSEA) was employed to investigate variations 
in gene function within KEGG pathways. Furthermore, 

we carried out additional assessment of pivotal genes. 
The analysis was conducted using several R packages, 
including “clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” 

“dplyr,” and “ggpubr”. 
 
Immune cell related expression analysis 

 
The analytical tool known as “CIBERSORT” was 

employed to examine the prevalence of immune cells  
in both the control and treatment cohorts, and the 
disparities in immune cell quantities between these 

cohorts can be visually depicted using box plots. 
 
Drug–gene interaction analysis 

 
In order to explore the correlation between 
pharmaceuticals and genes, we leveraged the DrugBank 

repository to ascertain presently established or potentially 
linked drug compounds. Moreover, we employed the 

Cytoscape software to visually represent the obtained 
data. 
 

Exploration ceRNA network of the hub genes 

 
In order to explore the cross-talk between miRNA and 

mRNA within the ceRNA network, we analyzed the 
TargetScan, miRNet, and DIANA TOOLS TarBase 

v.8 databases to identify relevant miRNAs targeting 
the central gene. To visualize the obtained information, 
we utilized the web-based platforms Wei Sheng Xin 

(http://www.bioinformatics.com.cn) and Draw Venn 
Diagram (http://bioinformatics.psb.ugent.be/webtools/ 
Venn/). 

 
Animals and renal ischemia/reperfusion model 

induction 

 
Male C57BL/6J mice aged 7 to 8 weeks were  

utilized for this investigation and accommodated in  
a 12-hour light/12-hour dark cycle. The experimental 
procedures were authorized by the Ethical Committee 

of Anhui Medical University, with certification  
number LLSC, 20231218. These protocols adhere to  

the recommendations specified in the Guide for the 
Care and Use of Laboratory Animals as outlined by the 
National Institutes of Health (NIH) in their publication 

no. 85–23, revised in 2011. 
 

The induction of renal ischemia/reperfusion was 
conducted as follows. Initially, the mice were anesthetized 
by administering sodium pentobarbital at a dose of 50 

mg/kg. Subsequently, the renal ischemia surgery was 
performed. This procedure involved a sequential incision 
of the skin, muscle, and fascia to expose both the left and 

right kidneys. Following that, the bilateral renal pedicles 
were clamped using noninvasive arteriole clips for a 

duration of 42 minutes. After the removal of the clips, 
reperfusion was allowed for a period of 24 hours. In 
comparison, the sham group underwent the same surgical 

procedure as the I/R group, with the exception of renal 
ischemia and reperfusion. After a 24-hour period, the 
mice were put down and kidneys were gathered. The 

right kidney was divided into two halves, with one being 
rapidly frozen for Western blot analysis, and the other 

being preserved in 4% phosphate-buffered formaldehyde 
for Immunohistochemistry (IHC). The left kidney was 
isolated to extract kidney cells for flow cytometry analysis. 

 
Western blotting 

 

The samples were lysed using RIPA buffer 
supplemented with PMSF as previously described. 
Following that, the protein sample’s concentration was 

determined using the Bradford method. Subsequently, 
electrophoresis was performed on the samples, and they 

were subsequently transferred onto PVDF membranes. 
After blocking for 0.5 hours, the samples were subjected 
to incubation with ACSL4 (ab155282, Abcam, UK) at  

a 1:5000 dilution, SLC2A1 (21829-1-AP, Proteintech, 
China) at a 1:2000 dilution, The membranes were then 
treated with the appropriate secondary antibodies (ZB-

2306/ZB-2305, ZSGB-BIO, Beijing, China) at a 1:5000 
dilution for 1 hour at room temperature. Protein bands 

were detected using an ECL kit (Biosharp Life Sciences, 
BL523A, Hefei, China) and imaged with a Tanon 5200 
imaging system (Tanon Technology, Shanghai, China). 

Densitometry analysis was conducted using the ImageJ 
software (ImageJ 1.4, NIH, MD, USA), utilizing β-actin 
as the internal reference. 

 
IHC in mouse kidneys 

 

Kidneys were regularly harvested for SLC2A1  
and GPX4 immunohistochemistry (IHC). Following 

overnight fixation in 4% paraformaldehyde, the  
tissues were embedded in paraffin and sectioned at  
a thickness of 4 µm. After subjecting the sections to 
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antigen retrieval in a solution containing 10 mM sodium 
citrate, 0.05% Tween-20 at a pH of 6.0, they were 

heated at 95–100°C. To block endogenous peroxidase 
activity, the slides were treated with 3% H2O2. 
Additionally, 2.5% normal horse serum was applied  

to minimize nonspecific binding. The slides were 
subsequently incubated at a temperature of 4°C 

overnight with rabbit anti-SLC2A1 (21829-1-AP, 1:200, 
Proteintech), anti-GPX4 (HuaAn, Hangzhou, China) 
and then treated with ImmPRESS HRP polymer horse-

anti-rabbit secondary antibody at room temperature  
for 1 hour. Negative controls were established by 
substituting the primary antibody with antibody diluent. 

The signals were visualized using the Vector® DAB kit 
and counterstained with hematoxylin following the 

washing steps. To quantify the staining, a total of 20 to 
30 fields (400× magnification) were randomly chosen 
from each section. The percentage of positive stained 

area was then analyzed utilizing ImageJ software. 
 
Determination of MDA levels of kidney tissue 

 
MDA levels in HK-2 cell were detected using  

MDA activity assay kits, following the manufacturer’s 
protocols provided by Nanjing Jiancheng Bioengineering 
Institute, China (C013-2-1). MDA content was detected 

at a wavelength of 450 nm. Subsequently, the concen-
tration of MDA was standardized by the total protein 
concentration, which was determined using the Bradford 

assay. 
 
Apoptosis and ROS measure 

 
A flow cytometer was employed to evaluate the apoptotic 

rate using an Annexin V-FITC/PI Apoptosis Detection 
Kit (Yeasen, Shanghai, China). The proportion of cells 
undergoing both early and late stages of apoptosis was 

determined in order to calculate the overall apoptotic  
rate.  The ROS level in HK-2 cells was measured using 
the ROS assay kit (Beyotime, Shanghai, China) as per the 

manufacturer’s instructions. 
 

Cell culture and drug treatment 

 
HK2 cells were obtained from the Shanghai Institutes for 

Biological Sciences. The cells were cultured in DMEM-
F12 (Gibco, CA, USA) supplemented with 5% FBS 
(Gibco, CA, USA) at a temperature of 37°C and in a 5% 

CO2-containing atmosphere. In the H/R group, the HK2 
cells underwent a period of hypoxia (94% N2, 5% CO2, 
and 1% O2) for 24 hours, followed by reoxygenation to 

restore normal conditions for an additional 3 hours. The 
cells were then collected for further investigation. 

 
For in vitro experiments, Troglitazone (4 μM, MCE) 
was utilized. All cells were maintained in a 37°C 

incubator with a 5% CO2 atmosphere to ensure optimal 
conditions. 

 
Transfection 

 

The full-length SLC2A1 plasmid (obtained from 
Miaolingbio, Wuhan, China) was utilized for transfecting 
HK-2 cells, with the assistance of Polybrene A at  

a concentration of 5 μg/ml (Gene-Pharma, Shanghai, 
China), following the guidelines provided by the 

manufacturer. 

 
Transmission electron microscopy (TEM) 

 
Tissues of renal cortical were fixed in 2.5% 
glutaraldehyde and then dehydrated and embedded. 

Firstly, 2.5% glutaraldehyde fixed for 72 h at 4°C. Then 
incubated at 37°C with 2% osmium tetroxide and 0.1 M 
cacodylate sodium (pH 7.4) for 1 h and polymerized  

for 48 h at 60°C. Finally, observed and evaluated  
with transmission electron microscopy (Hitachi, Tokyo, 
Japan). 

 
Statistical analysis 

 
Experimental data from three independent experiments 
were analyzed using GraphPad Prism software (version 
8.0) for biostatistics. The mean ± standard deviation 

(SD) was used to express the data. Group comparisons 
were evaluated through Student’s t-tests (*P < 0.05, **P 
< 0.01, ***P < 0.001). 
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