Clonal Hematopoiesis and Its Impact on Aging, Cancer, and Patient Care

01-10-2024

“Understanding the influence of prior treatments on CH [clonal hematopoiesis] dynamics is crucial for comprehending the intricate interplay between therapy, aging, and cancer.” 

Listen to an audio version of this press release

BUFFALO, NY- January 10, 2024 – A new editorial paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 24, entitled, “Exploring clonal hematopoiesis and its impact on aging, cancer, and patient care.”

In this new editorial, researchers Julieta Elena Rodriguez, Jean Baptiste Micol and Capucine Baldini from Gustave Roussy discuss clonal hematopoiesis. Clonal hematopoiesis (CH) is a term that refers to the presence in blood cells of hematologic malignancy-associated somatic mutations without fulfilling the diagnostic criteria of hematologic disease. Emerging evidence suggests that CH is a consequence of an expansion of cells harboring initiating driver mutations, potentially linked to the aging hematopoietic system.

While these detectable somatic mutations are rare in individuals under 40 years old, they become increasingly prevalent in the elderly population, a term called age-related clonal hematopoiesis (ARCH), reaching up to 18.4% in those aged 90 years or older. Aging itself is a significant stressor associated with CH, particularly in individuals over 70 years old. DNMT3A, TET2, and ASXL1 mutations are more common with advancing age. 

“Recent evidence also indicates that CH may play a role in solid tumors, such as an increased risk of incident lung cancer [4]. While initial studies associated CH mutations with worse survival outcomes [5], newer findings suggest that solid tumor patients with CH may experience longer survival [6]. However, the underlying mechanisms behind this relationship remain to be elucidated.”

Read the full paper: DOI: https://doi.org/10.18632/aging.205404 

Corresponding Author: Capucine Baldini

Corresponding Email: capucine.baldini@gustaveroussy.fr 

Keywords: clonal hematopoiesis, aging, solid tumors

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.https://doi.org/10.18632/aging.205404

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.