Research Paper Volume 2, Issue 4 pp 185—199

Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling"

class="figure-viewer-img"

Figure 4. Comparisons between the "Reverse Warburg Effect" and "Neuron-Glia Metabolic Coupling", suggest "Epithelial-Stromal Metabolic Coupling". In "Neuron-Glia Metabolic Coupling", astrocytes take up more glucose, shift towards aerobic glycolyis, secrete pyruvate and lactate, which is then taken up by adjacent neurons and then "feeds" into the neuronal TCA cycle, resulting in increased neuronal oxidative mitochondrial metabolism, and higher ATP production in neurons. In essence, the astrocytes function as support cells to "feed" the adjacent neuronal cells. This schematic diagram shows that "Neuron-Glia Metabolic Coupling" and the "Reverse Warburg Effect" are analogous biological processes, where the astrocytes are the cancer-associated fibroblasts and the neurons are the epithelial tumor cells. Thus, the "Reverse Warburg Effect" could also be more generally termed "Epithelial-Stromal Metabolic Coupling" or "Epithelial-Fibroblast Metabolic Coupling". This figure was partially re-drawn from Bonucelli et al. 2010, with permission [24]. MCT, mono-carboxylate transporter.