Research Paper Volume 13, Issue 12 pp 16165—16177

PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway

Inhibition of PTEN nuclear translocation reduces neural injury after OGD. (A) TUNEL-positive cells increased after OGD. This enhanced apoptosis was blocked in GFP-PTENK13R neurons. Scale bars = 50 μm. (B) Extracellular levels of LDH decreased in GFP-PTENK13R neurons after OGD. (C) Bcl-2 and Bcl-xL protein expression was evaluated by western blot which showed that their expression increased in GFP-PTENK13R neurons after OGD. (D) Quantification of Bcl-2 and Bcl-xL protein expression normalized against GFP-PTENWT neurons. n = 5 in each column and ** p WT neurons, K13R: GFP-PTENK13R neurons; P: PDTC.

Figure 6. Inhibition of PTEN nuclear translocation reduces neural injury after OGD. (A) TUNEL-positive cells increased after OGD. This enhanced apoptosis was blocked in GFP-PTENK13R neurons. Scale bars = 50 μm. (B) Extracellular levels of LDH decreased in GFP-PTENK13R neurons after OGD. (C) Bcl-2 and Bcl-xL protein expression was evaluated by western blot which showed that their expression increased in GFP-PTENK13R neurons after OGD. (D) Quantification of Bcl-2 and Bcl-xL protein expression normalized against GFP-PTENWT neurons. n = 5 in each column and ** p < 0.01 vs. WT. ##p < 0.01, vs. WT. OGD: oxygen and glucose deprivation, GFP: green fluorescent protein, TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling WT: GFP-PTENWT neurons, K13R: GFP-PTENK13R neurons; P: PDTC.