Research Paper Volume 14, Issue 11 pp 4673—4698

CXCR4 knockdown enhances sensitivity of paclitaxel via the PI3K/Akt/mTOR pathway in ovarian carcinoma


Figure 7. Ex vivo evaluating the role of CXCR4 knockdown in improving PTX chemosensitivity through reduction of PI3K/Akt/mTOR signalling, EMT- and CSC-related protein expressions. CXCR4, EMT-and CSC-related protein expressions, as well as PI3K/Akt/mTOR signalling pathway in both OVCA420 (A) and SKOV3 (C) cells derived from the tumour xenograft model were analysed by WB using the indicated antibody against each protein examined. Band density ratios of p-Akt to Akt, and CXCR4, E-cadherin, N-cadherin, vimentin and snail, CD44, CD133 and NANOG to β-actin were determined by densitometry analysis, respectively (B, D). Data are presented as the mean ± SD of three independent experiments with triplicated wells for each condition. Asterisk indicates P< 0.05 compared with the control as determined by t test.