Aging
 Submit an Article
Online ISSN: 1945-4589
  • Home
  • Search
  • Navigate
  • Home
  • Editorial Board
  • Editorial Policies
  • Advance Publications
  • Current Issue
  • Archive
  • Special Collections
  • Scientific Integrity
  • Publication Ethics Statements
  • Interviews with Outstanding Authors
  • Newsroom
  • Sponsored Conferences
  • Contact
Rapamycin Press LLC is the publisher of Aging: www.impactjournals.com.
Impact Journals is a member of the Wellcome Trust List of Compliant Publishers.
Impact Journals is a member of the Society for Scholarly Publishing.
Learn about our FREE Post-Publication Promotion Services
Longevity & Aging Series
Longevity and Aging
ARDD 2025
Aging Research and Drug Discovery Meeting (ARDD)
Aging Initiative at Harvard
Aging Initiative at Harvard

Search

To search the journal, enter a term in the search bar. If you'd like to find specific authors, titles, or abstracts, use the advanced search to the right.

Search Results

1 results found. Results per page: [ 20 ][ 40 ][ 60 ][ 80 ][ 100 ][ 200 ][ 300 ]

Sort by: [ Publication Date ][ Score ]

Year of publication: [ 2025 ][ 2024 ][ 2023 ][ 2022 ][ 2021 ][ 2020 ][ 2019 ][ 2018 ][ 2017 ][ 2016 ][ 2015 ][ 2014 ][ 2013 ][ 2012 ][ 2011 ][ 2010 ][ 2009 ][ Any ]

Direction: [ Desc ][ Asc ]

  • Research Paper Volume 13, Issue 18 pp 22109-22119

    LHX9, a p53-binding protein, inhibits the progression of glioma by suppressing glycolysis

    Relevance score: 8.502296
    Xiangying Luo, Jianwei Ge, Tao Chen, Jinfang Liu, Ziyuan Liu, Changlong Bi, Song Lan
    Keywords: LHX9, p53, glioma, glycolysis, PGK1
    Published in Aging on September 17, 2021
    Show abstract
    Hide abstract

    Purpose: LHX9 methylation has been reported in many tumors, but its functions and related mechanisms in glioma are still unknown and need to be verified.

    Methods: The protein level of LHX9 in glioma tissues was examined using western blotting and immunohistochemistry, and the functions of LHX9 in glioma cell lines were investigated using MTT and colony formation assays. In addition, the interaction between LHX9 and P53 was analyzed by immunoprecipitation, and the roles of LHX9 in cancer metabolism were explored by measuring metabolites.

    Results: In this study, we found that the LHX9 expression level was decreased in glioma specimens, and the upregulation of LHX9 expression inhibited the growth of glioma cells in liquid medium and on soft agar. Regarding the molecular mechanism, we found that LHX9 interacted with p53, and downregulation of LHX9 promoted the expression of the glycolysis-related enzyme PGK1 and increased the lactic acid content. By interfering with the expression of LHX9, the tumorigenicity of glioma cells was promoted, an outcome blocked by further interference with PGK1 expression.

    Conclusion: In summary, the decreased expression of LHX9 in gliomas activates the expression of the glycolysis-related enzyme PGK1, thereby promoting the development of gliomas, suggesting that the LHX9-PGK1 signaling axis can be used as a target for the treatment of glioma.

Advanced Search

Home | Editorial Board | Editorial Policies | Advance Publications | Current Issue | Archive | Special Collections | Scientific Integrity | Publication Ethics Statements | Interviews with Outstanding Authors | Newsroom | Sponsored Conferences | Contact

By using our site you are giving us permission to use cookies. This website collects cookies to deliver a better user experience, and to analyze our website traffic and performance. Personal data is not collected. Privacy Policy | Terms Of Service

Copyright © 2025 Rapamycin Press LLC dba Impact Journals
Impact Journals ® is a registered trademark of Rapamycin Press LLC