Search
To search the journal, enter a term in the search bar. If you'd like to find specific authors, titles, or abstracts, use the advanced search to the right.
Search Results
9 results found. Results per page: [ 20 ][ 40 ][ 60 ][ 80 ][ 100 ][ 200 ][ 300 ]
Sort by: [ Publication Date ][ Score ]
Year of publication: [ 2025 ][ 2024 ][ 2023 ][ 2022 ][ 2021 ][ 2020 ][ 2019 ][ 2018 ][ 2017 ][ 2016 ][ 2015 ][ 2014 ][ 2013 ][ 2012 ][ 2011 ][ 2010 ][ 2009 ][ Any ]
-
Research Paper Volume 13, Issue 21 pp 23936-23952
Impaired glucose metabolism reduces the neuroprotective action of adipocytokines in cognitively normal older adults with insulin resistance
Relevance score: 7.091994Karel M. Lopez-Vilaret, Jose L. Cantero, Marina Fernandez-Alvarez, Miguel Calero, Olga Calero, Mónica Lindín, Montserrat Zurrón, Fernando Díaz, Mercedes Atienza
Keywords: adiponectin, leptin, cognitive function, cortical thickness, metabolism
Published in Aging on November 3, 2021
-
Research Paper Volume 13, Issue 12 pp 16834-16858
The consequences of a high-calorie diet background before calorie restriction on skeletal muscles in a mouse model
Relevance score: 7.1225643Martin Maldonado, Jianying Chen, Yang Lujun, Huiqin Duan, Mazhar Ali Raja, Ting Qu, Tianhua Huang, Jiang Gu, Ying Zhong
Keywords: calorie-intervention, skeletal muscle, sirtuins, mitochondria, adiponectin
Published in Aging on June 24, 2021
-
Research Paper Volume 13, Issue 11 pp 15433-15443
Galectin-3/adiponectin as a new biological indicator for assessing the risk of type 2 diabetes: a cross-sectional study in a community population
Relevance score: 5.903216Diaozhu Lin, Xiaosi Hong, Kan Sun, Xiaoyun Zhang, Hong Lian, Jiahuan Wang, Na Mao, Xiuwei Zhang, Meng Ren, Li Yan, Feng Li, Lili You
Keywords: type 2 diabetes, age, galectin-3/adiponectin, diabetes risk assessment model
Published in Aging on June 7, 2021
-
Review Volume 12, Issue 5 pp 4660-4672
Adiponectin in renal fibrosis
Relevance score: 8.877462Huan Jing, Simin Tang, Sen Lin, Meijuan Liao, Hongtao Chen, Youling Fan, Jun Zhou
Keywords: adiponectin, renal fibrosis
Published in Aging on February 17, 2020
The pathomechanism of renal fibrosis involves several factors, including oxidative stress and related inflammation, disturbances of glucose metabolism, and hemodynamic abnormalities. Many studies have confirmed that APN is involved in reducing renal fibrosis, and its specific mechanisms include reducing renal toxicity, reducing renal cell damage, resisting fibrosis, and reducing proteinuria to protect the glomerular filter.
The molecular mechanisms driving renal fibrosis are wide-ranging and complex, among which signaling pathways are very important. The common signaling pathways activated in adiponectin-mediated renal fibrosis are the AMPK and peroxisome proliferators-activated receptors (PPARs) pathway.
Accumulative evidence about the renoprotective role of adiponectin promotes a therapeutic strategy for renal fibrosis targeting adiponectin, such as increasing the plasma adiponectin level or increasing the sensitivity of adiponectin by activating adiponectin receptors. Numerous studies have confirmed that PPAR-γ agonist compounds increase adiponectin secretion and circulating adiponectin levels in adipose tissue. And the exogenous adiponectin is also currently a hot focus for the treatment of kidney disease. In addition, AdipoRon directly activates intrarenal AdipoR1 and AdipoR2, and promotes downstream reactions, thereby restrainting renal fibrosis.
-
Research Paper Volume 11, Issue 19 pp 8329-8346
Involvement of adiponectin in age-related increases in tear production in mice
Relevance score: 5.515554Yosuke Shikama, Mie Kurosawa, Masae Furukawa, Naozumi Ishimaru, Kenji Matsushita
Keywords: dry eye, adiponectin, peroxisome proliferator-activated receptor gamma, senescence-associated T cells, aging
Published in Aging on October 8, 2019
Pilocarpine-stimulated tear secretion increased in aged mice, but not in high-fat diet-fed mice. (A and B) Body weights and the weights of the lacrimal glands (LG) in young, middle-aged, and aged mice. Upper and lower graphs show male (N=5) and female mice (N=4-6), respectively. (C–E) Absolute volume of tear flow ©, adjusted by body weight (D) or LG weight (E). Upper and lower graphs show male (N=6) and female mice (N=4-6), respectively. (F) Body weight in normal diet (ND)- or high-fat diet (HFD)-fed mice for the indicated period (N=4). Upper and lower graphs show male and female mice, respectively. (G and H) Absolute volume of tear flow (G) adjusted by body weight (H) in ND or HFD-fed mice for the indicated period (N=4). Upper and lower graphs show male and female mice, respectively. Values are presented as means ± SEM. *p<0.05 and **p<0.01 (an unpaired Student’s t-test). #p<0.05 and ##p<0.01 versus young mice (Dunnett’s multiple comparison test).
Effects of aging or high-fat diet feeding on M3R mRNA expression in lacrimal glands. M3R mRNA expression levels in young and aged mice (N=7-8) (A), and in mice fed a normal diet (ND) or high-fat diet (HFD) for 8 weeks (N=4-5) (B). Values are presented as means ± SEM. NS, not significant (an unpaired Student’s t-test).
SA-T cells accumulate in lacrimal glands of aged mice, particularly in female mice. (A and B) Naïve (CD44loCD62Lhi) and effector memory (CD44hiCD62Llo) expression in CD4+ T cells (A), or PD-1+CD153+ expression in effector memory CD4+ T cells (B) in the lacrimal glands of young and aged mice. Results are representative of those from each group of mice. (C and D) Proportions (N=5) (C) and numbers adjusted by the lacrimal gland (LG) weight (N=4) (D) of PD-1+CD153+ cells gated on effector memory CD4+ T cells in the LG of young and aged mice. (E) CD153 mRNA expression levels in the LG of young and aged female mice, and of female mice fed a normal diet (ND) or high-fat diet (HFD) for 8 weeks (N=4-5). Values are presented as means ± SEM. *p<0.05 and **p<0.01 (an unpaired Student’s t-test).
PPARγ expression in lacrimal glands and adiponectin mRNA expression in the white adipose tissue of aged and high-fat diet-fed mice. (A and B) PPARγ mRNA expression levels in the lacrimal glands of young and aged mice (N=7-8) (A), or of mice fed a normal diet (ND) or high-fat diet (HFD) for 8 weeks (N=4-5) (B). (C) PPARγ mRNA expression levels in the epithelial cells of the lacrimal glands of young and aged mice (N=4). (D) Detection of the PPARγ protein by Western blotting. Lysates prepared from the lacrimal glands of young and aged mice were immunoblotted with anti-AdipoR2 and anti-β-Actin antibodies. Left and right images show male (N=2) and female mice (N=2), respectively. The positive control (Posi) is a lysate prepared from the subcutaneous fat of young mice. The bar graph shows integrated signal intensities in AdipoR2 normalized to that of β-Actin (N=4). (E) PPARγ expression in the acinar cells of the lacrimal glands of young and aged mice as detected by immunofluorescence. Nuclei were stained with DAPI. Bars = 10 μm. (F) Adiponectin mRNA expression levels in the mesenteric white adipose tissues of young and aged mice (N=4-5). Values are presented as means ± SEM. NS, not significant. **p<0.01 (an unpaired Student’s t-test).
Influence of aging or high-fat diet feeding on adiponectin, adipoR1, and adipoR2 expression in lacrimal glands. Adiponectin (A), adipoR1 (B), and adipoR2 (C) mRNA expression levels in lacrimal glands. Upper and lower graphs show results in young and aged mice (N=7-8), and in mice fed a normal diet (ND) or high-fat diet (HFD) for 8 weeks (N=4-5), respectively. (D) Detection of the AdipoR2 protein by Western blotting. Lysates prepared from the lacrimal glands of young and aged mice were immunoblotted with anti-AdipoR2 and anti-β-Actin antibodies. Left and right images show male (N=2) and female mice (N=2), respectively. The bar graph shows integrated signal intensities in AdipoR2 normalized to that of β-Actin (N=4). (E) AdipoR2 expression in the lacrimal glands of young and aged mice as detected by immunofluorescence. Nuclei were stained with DAPI. Bars = 40 μm. Values are presented as means ± SEM. NS, not significant. *p<0.05 and **p<0.01 (an unpaired Student’s t-test).
-
Research Paper Volume 11, Issue 12 pp 4159-4182
Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats
Relevance score: 6.5161424Fang-Hui Li, Lei Sun, Da-Shuai Wu, Hao-En Gao, Zhu Min
Keywords: aging, skeletal muscle, proteome, high-intensity interval training, adiponectin
Published in Aging on June 26, 2019
Effect of MICT and HIIT protocols on physical performance and fiber cross sectional area. Changes in time to exhaustion (min) (A), grip strength (N·g–1) (B), maximum run speed (m·min-1) (C), inclined plane performance (D), relative gastrocnemius weight (E), absolute gastrocnemius weight (F), muscle fiber morphology (G), mean cross-sectional area (H), and frequency distribution of mean gastrocnemius fiber cross sectional area (I). SED, sedentary control; MICT, moderate-intensity continuous training; HIIT, high-intensity interval training; BW, body weight. Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc test and are presented as mean ± SD. * p < 0.05 vs. SED; ** p < 0.01 vs. SED; # p < 0.05 vs. MICT.
Relative protein abundances in the red gastrocnemius muscle of rats in the MICT, HIIT, and SED groups. (A) Heat map and (B) volcano plot of significantly up- and downregulated proteins in the red gastrocnemius muscle from MICT and SED rats (p < 0.05, fold change > ± 1.5). (C) Heat map and (D) volcano plot of significantly up- and downregulated proteins in the red gastrocnemius muscle from HIIT and SED rats. (E) Overlap of proteins up- and downregulated following different modes of exercise training compared with their levels in the SED group.
Evaluation of mRNA levels following HIIT and MICT. SED, sedentary; MICT, moderate-intensity continuous training; HIIT, high-intensity interval training; DnaJ heat shock protein family (Hsp40) member A2, Dnaja2; Superoxide dismutase 2, Sod2; Junctophilin 1, Jph1; Synaptophysin-like 2, Sypl2; Forkhead box O 1, FOXO1. Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc test and are reported as the mean ± SD. * p < 0.05 vs. SED; ** p < 0.01 vs. SED; # p < 0.05 vs. MICT.
Expression of autophagy (A), apoptosis (B), and mitochondrial function markers (C), and adipocytokine signaling-related proteins (D). SED, sedentary; MICT, moderate-intensity continuous training; HIIT, high-intensity interval training; succinate dehydrogenase, SDH; sirtuin 3, SIRT3; aldehyde dehydrogenase 2, ALDH2; peroxisome proliferator-activated receptor γ coactivator-1Α, PGC-1a; adiponectin, ADP; autophagy-related gene-3, Atg-3; microtubule-associated protein 1 light chain 3 II, LC3-II; B-cell lymphoma 2, Bcl-2; Bcl-2-associated X protein, Bax; AMP-activated protein kinase, AMPK; adiponectin receptor 1, ADPR1; Forkhead box O1, FOXO1. Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc and are presented as mean ± SD. * p < 0.05 vs. SED; ** p < 0.01 vs. SED; # p < 0.05 vs. MICT; ## p < 0.01 vs. MICT.
Proposed model of the mechanism by which HIIT improved skeletal muscle function in aged rats. HIIT protocols preserve skeletal muscle function by activating lysosomal degradation and improving mitochondrial OXPHOS via the ADP/ADPR1 axis, mediated by the AMPK pathway.
-
Research Paper Volume 10, Issue 3 pp 386-401
Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice
Relevance score: 7.6818542Roxanne Weiss, Elizabeth Fernandez, Yuhong Liu, Randy Strong, Adam B. Salmon
Keywords: mTOR, gluconeogenesis, AMPK, leptin, adiponectin, interventions, insulin
Published in Aging on March 22, 2018
Metformin prevents rapamycin-induced weight loss in male mice. Body weights over time for (A) male and (B) female HET3 mice fed control (open square) diet or diets containing metformin (open circle), rapamycin (closed square), or both metformin and rapamycin (closed circle). Symbols represent mean values at indicated time point ± SEM. For all groups, n=10. Letters indicate significant difference among groups.
Metformin abrogates rapamycin-mediated glucose intolerance in female mice. Glucose tolerance tests performed in male (left) and female (right) mice following (A) 1, (B) 2, (C) 3, or (D) 9 months of indicated diet treatments. Symbols represent mean values for indicated group at each time point ± SEM. For all groups, n=8-10.
Combined effects of rapamycin and metformin on glucose metabolism. (A) Area under the curve for glucose tolerance tests repeated in the same cohort of animals following indicated months of treatment. Symbols represent mean values for indicated group at each time point ± SEM. (B) Area under the curve calculated for insulin tolerance tests performed following 3 months of treatment. Bars represent mean values for indicated group at each time point ± SEM. (C) Insulin concentration in plasma collected from fed mice following 9 months of treatment on the indicated diets. Bars represent mean values for indicated group at each time point ± SEM. For glucose and insulin tolerance test, n=8-10 for all groups. For insulin measurements, n=8-10 for all groups.
Rapamycin and metformin effects on circulating metabolic markers. (A) Triglycerides, (B) Adiponectin and (C) Leptin in plasma collected from fed mice following 9 months of treatment on the indicated diets. For A-C, n=8-10 for all groups. Rapamycin and metformin effects on hepatic gluconeogenesis. (D) relative phosphoenolpyruvate carboxykinase (PEPCK) expression and (E) relative glucose 6-phosphatase (G6P) expression in liver from male and female mice fed indicated diets. For D and E, n = 5 for all groups. For all, bars represent mean values for indicated group ± SEM.
No effect of metformin on rapamycin-mediated mTORC1 inhibition. Quantification of phosphorylation/total protein ratios for S6 (left) and Akt (right) for liver, adipose tissue and muscle collected from male (A) and female (B) mice. Bars represent mean values for indicated diet/sex ± SEM. For all groups, n=6.
Mild activation of AMPK signaling in metformin treated mice. Quantification of phosphorylation/total protein ratios for (A) AMPKα and (B) ACC from liver of male and female mice fed indicated diets. Bars represent mean values for diet/sex ± SEM. For all groups, n=6.
-
Research Paper Volume 6, Issue 10 pp 900-912
The effect of calorie restriction on insulin signaling in skeletal muscle and adipose tissue of Ames dwarf mice
Relevance score: 6.44165Denise S. Wiesenborn, Vinal Menon, Xu Zhi, Andrew Do, Adam Gesing, Zhihui Wang, Andrzej Bartke, Deborah A. Altomare, Michal M. Masternak
Keywords: Ames dwarf, insulin, adipose tissue, skeletal muscle, adiponectin, obesity
Published in Aging on October 5, 2014
The effect of CR on bodyweight (A) and fasting blood glucose (B) of Normal (N) and Ames dwarf (df/df) mice fed ad libitum (AL) or subjected to 30% calorie restriction (CR). Groups which do not share the same letter display a statistical significance (p < 0.05).
Relative gene expression in skeletal muscle of Normal (N) and Ames dwarf (df/df) mice fed ad libitum (AL) or subjected to 30% calorie restriction (CR). Groups which do not share the same letter display a statistical significance (p < 0.05).
Relative gene expression in epididymal adipose tissue of Normal (N) and Ames dwarf (df/df) mice fed ad libitum (AL) or subjected to 30% calorie restriction (CR). Groups which do not share the same letter display a statistical significance (p < 0.05)
Adiponectin levels in Normal (N) and Ames dwarf (df/df) mice fed ad libitum (AL) or subjected to 30% calorie restriction (CR). (A) Plasma adiponcetin, (B) mRNA adiponectin in epididymal adipose tissue, (C) Protein level of adiponectin in epididymal adipose tissue, (D) mRNa adiponectin in skeletal muscle, (E) protein level of adiponectin in skeletal muscle. Groups which do not share the same letter display a statistical significance (p < 0.05).
Adipocytes of epididymal adipose tissue from Normal and Ames dwarf mice. Histological effect of genotype and CR on adipocytes size of epididymal adipose tissue from ormal and Ames dwarf mice.
-
Research Paper pp undefined-undefined
Adiponectin is associated with inflammaging and age-related salivary gland lipid accumulation
Relevance score: 7.4624553Ji Won Kim, Jeong Mi Kim, Mi Eun Choi, Eun Jeong Jeon, Jin-Mi Park, Young-Mo Kim, Jeong-Seok Choi
Keywords: adiponectin, inflammation, aging, salivary gland, lipid
Published in Aging on Invalid Date