Aging
 Submit an Article
Online ISSN: 1945-4589
  • Home
  • Search
  • Navigate
  • Home
  • Editorial Board
  • Editorial Policies
  • Advance Publications
  • Current Issue
  • Archive
  • Special Collections
  • Scientific Integrity
  • Publication Ethics Statements
  • Interviews with Outstanding Authors
  • Newsroom
  • Sponsored Conferences
  • Contact
Rapamycin Press LLC is the publisher of Aging: www.impactjournals.com.
Impact Journals is a member of the Wellcome Trust List of Compliant Publishers.
Impact Journals is a member of the Society for Scholarly Publishing.
Learn about our FREE Post-Publication Promotion Services
Longevity & Aging Series
Longevity and Aging
ARDD 2025
Aging Research and Drug Discovery Meeting (ARDD)
Aging Initiative at Harvard
Aging Initiative at Harvard

Search

To search the journal, enter a term in the search bar. If you'd like to find specific authors, titles, or abstracts, use the advanced search to the right.

Search Results

1 results found. Results per page: [ 20 ][ 40 ][ 60 ][ 80 ][ 100 ][ 200 ][ 300 ]

Sort by: [ Publication Date ][ Score ]

Year of publication: [ 2025 ][ 2024 ][ 2023 ][ 2022 ][ 2021 ][ 2020 ][ 2019 ][ 2018 ][ 2017 ][ 2016 ][ 2015 ][ 2014 ][ 2013 ][ 2012 ][ 2011 ][ 2010 ][ 2009 ][ Any ]

Direction: [ Desc ][ Asc ]

  • Research Paper Volume 13, Issue 4 pp 5461-5474

    Identification of prognostic immune-related genes in rhabdoid tumor of kidney based on TARGET database analysis

    Relevance score: 21.188683
    Huimou Chen, Suying Lu, Jinqiu Guan, Xiaoqin Zhu, Feifei Sun, Junting Huang, Jia Zhu, Juan Wang, Zijun Zhen, Yi Que, Xiaofei Sun, Yizhuo Zhang
    Keywords: malignant rhabdoid tumor of kidney, TARGET database, immune-related genes, disease prognosis
    Published in Aging on February 11, 2021
    Show abstract
    Hide abstract

    Background: Malignant rhabdoid tumor of the kidney (RTK) is a rare and highly aggressive pediatric malignancy. Immune system dysfunction is significantly correlated with tumor initiation and progression.

    Methods: We integrated and analyzed the expression profiles of immune-related genes (IRGs) in 65 RTK patients based on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Prognostic related IRGs in RTK patients were analyzed using univariate and multivariate analysis, based on which a prognostic model with IRGs was constructed. Correlation analysis between the risk score of our model and tumor-infiltrating cell were also investigated.

    Results: Twenty two IRGs were significantly associated with the clinical outcomes of RTK patients. Gene ontology (GO) analysis revealed that inflammatory pathways were most frequently implicated in RTK. A prognostic model was constructed using 7 IRGs (MMP9, SERPINA3, FAM19A5, CCR9, PLAUR, IL1R2, PRKCG), which were independent prognostic indices that could differentiate patients based on their survival outcomes. Furthermore, the risk scores from our prognostic model was positively associated with cancer-associated fibroblasts (CAFs).

    Conclusions: We screened seven IRGs of clinical significance to distinguish patients with different survival outcomes. This may enhance our understanding of the immune microenvironment of RTK, and could use to design individualized treatments for RTK patients.

    Background: Malignant rhabdoid tumor of the kidney (RTK) is a rare and highly aggressive pediatric malignancy. Immune system dysfunction is significantly correlated with tumor initiation and progression.

    Methods: We integrated and analyzed the expression profiles of immune-related genes (IRGs) in 65 RTK patients based on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Prognostic related IRGs in RTK patients were analyzed using univariate and multivariate analysis, based on which a prognostic model with IRGs was constructed. Correlation analysis between the risk score of our model and tumor-infiltrating cell were also investigated.

    Results: Twenty two IRGs were significantly associated with the clinical outcomes of RTK patients. Gene ontology (GO) analysis revealed that inflammatory pathways were most frequently implicated in RTK. A prognostic model was constructed using 7 IRGs (MMP9, SERPINA3, FAM19A5, CCR9, PLAUR, IL1R2, PRKCG), which were independent prognostic indices that could differentiate patients based on their survival outcomes. Furthermore, the risk scores from our prognostic model was positively associated with cancer-associated fibroblasts (CAFs).

    Conclusions: We screened seven IRGs of clinical significance to distinguish patients with different survival outcomes. This may enhance our understanding of the immune microenvironment of RTK and could use to design individualized treatments for RTK patients.

Advanced Search

Home | Editorial Board | Editorial Policies | Advance Publications | Current Issue | Archive | Special Collections | Scientific Integrity | Publication Ethics Statements | Interviews with Outstanding Authors | Newsroom | Sponsored Conferences | Contact

By using our site you are giving us permission to use cookies. This website collects cookies to deliver a better user experience, and to analyze our website traffic and performance. Personal data is not collected. Privacy Policy | Terms Of Service

Copyright © 2025 Rapamycin Press LLC dba Impact Journals
Impact Journals ® is a registered trademark of Rapamycin Press LLC