Aging
 Submit an Article
Online ISSN: 1945-4589
  • Home
  • Search
  • Navigate
  • Home
  • Editorial Board
  • Editorial Policies
  • Advance Publications
  • Current Issue
  • Archive
  • Special Collections
  • Scientific Integrity
  • Publication Ethics Statements
  • Interviews with Outstanding Authors
  • Newsroom
  • Sponsored Conferences
  • Contact
Rapamycin Press LLC is the publisher of Aging: www.impactjournals.com.
Impact Journals is a member of the Wellcome Trust List of Compliant Publishers.
Impact Journals is a member of the Society for Scholarly Publishing.
Learn about our FREE Post-Publication Promotion Services
Longevity & Aging Series
Longevity and Aging
ARDD 2025
Aging Research and Drug Discovery Meeting (ARDD)
Aging Initiative at Harvard
Aging Initiative at Harvard

Search

To search the journal, enter a term in the search bar. If you'd like to find specific authors, titles, or abstracts, use the advanced search to the right.

Search Results

2 results found. Results per page: [ 20 ][ 40 ][ 60 ][ 80 ][ 100 ][ 200 ][ 300 ]

Sort by: [ Publication Date ][ Score ]

Year of publication: [ 2025 ][ 2024 ][ 2023 ][ 2022 ][ 2021 ][ 2020 ][ 2019 ][ 2018 ][ 2017 ][ 2016 ][ 2015 ][ 2014 ][ 2013 ][ 2012 ][ 2011 ][ 2010 ][ 2009 ][ Any ]

Direction: [ Desc ][ Asc ]

  • Research Paper Volume 13, Issue 17 pp 21712-21728

    The ceRNA PVT1 inhibits proliferation of ccRCC cells by sponging miR-328-3p to elevate FAM193B expression

    Relevance score: 11.355466
    Guohai Xie, Xinyi Zheng, Zhong Zheng, Ruoyu Wu, Zhixian Yao, Wenjie Huang, Feng Sun, Xingyu Mu, Ke Wu, Junhua Zheng
    Keywords: PVT1, proliferation, clear cell renal cell carcinoma, miR-328-3p, FAM193B
    Published in Aging on September 13, 2021
    Show abstract
    Hide abstract

    Clear cell renal cell carcinoma (ccRCC) is a common and fatal malignancy. Long noncoding RNAs (lncRNAs) have emerged as crucial biomarkers and regulators in many cancers, warranting the detailed investigation of their biological functions and molecular mechanisms. In this study, we explored the role and mechanism of plasmacytoma variant translocation 1 (PVT1), a competitive endogenous RNA (ceRNA) in ccRCC tissues in vitro and in vivo. We found that PVT1 is upregulated in ccRCC cells and promoted cell proliferation. Bioinformatic analysis, dual-luciferase reporter assays, argonaute 2-RNA immunoprecipitation (AGO2-RIP), quantitative PCR arrays, western blot assay, and rescue experiments were conducted to explore the underlying mechanisms of PVT1. Our analyses revealed that miR-328-3p was a direct target of PVT1 and that FAM193B was a direct target of miR-328-3p. FAM193B is upregulated in ccRCC tissues and promotes cell proliferation by activating the MAPK/ERK and PI3K/AKT pathways. Our results indicated that PVT1 promotes ccRCC cells proliferation by sponging miR-328-3p to upregulate FAM193B and activate the MAPK/ERK and PI3K/AKT pathways. Collectively, these results suggest that PVT1- miR-328-3p-FAM193B loop could serve as a potential biomarker and therapeutic target for ccRCC.

  • Research Paper Volume 13, Issue 17 pp 21232-21250

    LncRNA SNHG17 promotes tumor progression and predicts poor survival in human renal cell carcinoma via sponging miR-328-3p

    Relevance score: 12.973882
    Jie Wu, Gang Dong, Tingting Liu, Shaojin Zhang, Lulu Sun, Weijie Liang
    Keywords: renal cell carcinoma, SNHG17, miR-328-3p, H2AX
    Published in Aging on September 8, 2021
    Show abstract
    Hide abstract

    Accumulating data shows that dysregulation of long non-coding RNAs (lncRNAs) are involved in human tumors' occurrence and progression. Small nucleolar RNA host genes (SNHGs) are recently revealed to play a carcinogenic role in various human neoplasms. However, the functions and underlying mechanisms of lncRNA SNHG17 in renal cell carcinoma (RCC) are still elusive. We analyzed the relationship between SNHG17 expression levels and clinicopathologic characteristics and prognosis in patients with RCC according to TCGA RNA-sequencing data and our cohort data. Loss-of-function and gain-of-function experiments were conducted to examine the biological behaviors of SNHG17 on RCC cell proliferation, migration, invasion, apoptosis, and tumor growth in vivo. The interaction between SNHG17, miR-328-3p, and Histone’sH2Avariant (H2AX) was verified by bioinformatics, dual-luciferase reporter gene, and RNA immunoprecipitation (RIP). Highly expressed SNHG17 was evident in RCC tissue samples and cell lines, and SNHG17 overexpression was related to advanced TNM stage and reduced relapse-free and overall survival of patients with RCC. Knockdown of SNHG17 prohibited malignant phenotypes, whereas ectopic SNHG17 expression showed the opposite effects. More importantly, SNHG17 could upregulate the expression of H2AX by acting as a miR-328-3p sponge. In vivo experiments confirmed that SNHG17 promoted the growth of RCC tumors. SNHG17/miR-328-3p/H2AXaxis might be involved in RCC progression, which provided a potential therapeutic target for RCC.

Advanced Search

Home | Editorial Board | Editorial Policies | Advance Publications | Current Issue | Archive | Special Collections | Scientific Integrity | Publication Ethics Statements | Interviews with Outstanding Authors | Newsroom | Sponsored Conferences | Contact

By using our site you are giving us permission to use cookies. This website collects cookies to deliver a better user experience, and to analyze our website traffic and performance. Personal data is not collected. Privacy Policy | Terms Of Service

Copyright © 2025 Rapamycin Press LLC dba Impact Journals
Impact Journals ® is a registered trademark of Rapamycin Press LLC