Telomeres protect the ends of linear chromosomes from being recognized as damaged DNA, and telomere stability is required for genome stability. Here we demonstrate that telomere stability in androgen receptor (AR)-positive LNCaP human prostate cancer cells is dependent on AR and androgen, as AR inactivation by AR antagonist bicalutamide (Casodex), AR-knockdown, or androgen-depletion caused telomere dysfunction, and the effect of androgen-depletion or Casodex was blocked by the addition of androgen. Notably, neither actinomycin D nor cycloheximide blocked the DNA damage response to Casodex, indicating that the role of AR in telomere stability is independent of its role in transcription. We also demonstrate that AR is a component of telomeres, as AR-bound chromatin contains telomeric DNA, and telomeric chromatin contains AR. Importantly, AR inactivation by Casodex caused telomere aberrations, including multiple abnormal telomere signals, remindful of a fragile telomere phenotype that has been described previously to result from defective telomere DNA replication. We suggest that AR plays an important role in telomere stability and replication of telomere DNA in prostate cancer cells, and that AR inactivation-mediated telomere dysfunction may contribute to genomic instability and progression of prostate cancer cells.