The molecular mechanisms underlying sevoflurane (SEVO)-induced impairment of learning and memory remain unclear. Specifically, a role of microRNAs (miRNAs) in the control of the neuron proliferation in the developing brain exposed to SEVO has not been reported previously. Here, we studied the effects of SEVO exposure on the neural cell proliferation, and on the learning and memory of neonatal rats. We found that SEVO exposure significantly decreased neuron cell proliferation, reduced BDNF levels in brain, and impaired learning and memory of neonatal rats in Morris water maze test and Plus-Maze discriminative avoidance task (PM-DAT), likely through downregulation of CCNA2 protein. Next, we used bioinformatic tools to predict CCNA2-binding microRNAs (miRNAs), and found that miR-19-3p was upregulated in neurons exposed to SEVO. Moreover, miR-19-3p functionally inhibited the protein translation of CCNA2 in a human neural cell line, HCN-2. Furthermore, intracranial injection of adeno-associated virus carrying antisense of miR-19-3p under a CMV promoter into the neonatal rats significantly alleviated SEVO exposure-induced impairment of neuron cell proliferation, as well as the learning and memory of the rats. Together, our data suggest that SEVO-induced upregulation of miR-19-3p post-transcriptionally inhibits CCNA2, which contributes to the SEVO-associated impairment of learning and memory of the neonatal rats.