Abstract

It is currently believed that aging is closely linked with mitochondrial dysfunction, and that resveratrol exhibits anti-aging and neuroprotective effects by improving mitochondrial function, even though the mechanisms are not well defined. This study explored mitochondrial quality (mitochondrial DNA integrity and copy number), mitochondrial function (fusion/fission, mitophagy/autophagy), antioxidant system and activity of the Akt/mTOR and Ampk/Sirt1/Pgc1α pathways, and inflammation in aging zebrafish retinas to identify the probable mechanisms of resveratrol’s anti-aging and neuroprotective effects. mtDNA integrity, mtDNA copy number, mitochondrial fusion regulators, mitophagy, and antioxidant-related genes were all decreased whereas Akt/mTOR activity and inflammation was increased upon aging in zebrafish retinas. Resveratrol was shown to not only increase mitochondrial quality and function, but also to suppress Akt/mTOR activity in zebrafish retinas. These results support the notion that mitochondrial dysfunction and increased Akt/mTOR activity are major players in age-related retinal neuropathy in zebrafish, and demonstrate a trend towards mitochondrial fragmentation in the aging retina. Importantly, resveratrol promoted mitochondrial function, up-regulating Ampk/Sirt1/Pgc1α, and down-regulated Akt/mTOR pathway activity in zebrafish retinas, suggesting that it may be able to prevent age-related oculopathy.