The ROS-induced mitochondrial apoptotic pathway is implicated in the liquid storage of goat spermatozoa
The development of semen storage technology offers more opportunities for the successful application of AI in herd breeding [1, 2]. Liquid storage of spermatozoa is a practical and effective method to minimize the spermatozoa injuries that is generated seriously by the freezing and thawing method [1]. In recent decades, many studies have tried to prolong the time of liquid storage through optimizing the environmental conditions, greatly improving the in vitro viability and fertilizing potential of spermatozoa [2, 3, 5, 8]. In fact, the results of liquid storage remain unsatisfactory in many species, especially in the goat. An inevitable consequence of liquid storage is the rapid deterioration of spermatozoa quality, when the period of storage is extended [3, 5]. Previous studies reported that long term liquid storage of ram semen caused significant decrease of spermatozoa motility [2, 3, 5, 34]. Similarly, in this study, the motility of liquid-stored goat spermatozoa was assessed and showed a significant decrease with the increase in storage time. Various extrinsic and intrinsic factors influence the storage of spermatozoa. Nevertheless, the underlying mechanisms involved in the liquid storage of spermatozoa remain largely unexplored.
Increasing numbers of studies have demonstrated that apoptosis, as an ongoing physiological phenomenon, seems to exert a strong influence on the decrease in spermatozoa quality [5, 6]. In stored spermatozoa, apoptosis may directly affect the changes in typical spermatozoa quality parameters, including motility, acrosome status, membrane integrity, and phosphatidylserine distribution [14–16]. Previous studies revealed that freezing and thawing-induced apoptosis is inversely correlated with spermatozoa motility and plasma membrane integrity during cryopreservation [15, 19, 22]. Moreover, for liquid storage, the increase in apoptosis exhibiting a significant relationship with the decrease in spermatozoa quality was reported in many species, such as the boar, bull, and stallion [6–8, 35]. In the current study, the occurrence of apoptosis in liquid-stored goat spermatozoa was detected both by TUNEL staining and Annexin-V-FITC/PI staining, which are considered as routine and effective methods to validate spermatozoa undergoing apoptosis and have been utilized in many similar studies [36, 37]. Similar to previous studies [3, 7], the rate of apoptosis exhibited a significant time-dependent increase and was significantly related to the reduction of spermatozoa motility, indicating that apoptosis negatively affects the liquid storage of goat spermatozoa. Additionally, similar results suggested that the reduction of apoptosis can cause significant enhancement of spermatozoa motility and viability [20, 21]. Hence, apoptosis may be a critical mechanism involved in the liquid storage of spermatozoa and can be considered a useful index to assess the spermatozoa quality in the goat.
Notably, in this study, the occurrence of apoptosis was accompanied by ultrastructural changes in spermatozoa, including plasma membrane blebbing, apoptotic body formation, defects in the nuclear envelope, and nuclear fragmentation. The defined signs of apoptosis were similar to the previous observations in human spermatozoa [11], further providing evidence for liquid-stored spermatozoa undergoing apoptosis. Particularly, the distinct alteration of the mitochondrial ultrastructure was observed in the current study. It was reported that structural defects in mitochondria represent a main feature of mitochondrial dysfunction and may be strongly associated with mitochondria-dependent apoptosis [38, 39]. Previous studies demonstrated that changes in the mitochondrial structure can be used as early apoptotic markers in human spermatozoa [11, 40]. Our morphological observations implied that the mitochondrial apoptotic pathway may be implicated in the liquid storage of goat spermatozoa. Moreover, further assessments of the MMP and expression levels in mitochondrial apoptosis-related proteins were employed to confirm the speculation. As expected, analysis by JC-1 staining showed a significant decline in MMP, which exhibits an early sign of the intrinsic mitochondrial pathway leading to apoptosis [41]. Western blot analysis also showed changes in the levels of critical proteins involved in the mitochondrial apoptotic pathway, including significant increases in Cleaved caspase-9 and Cleaved caspase-3 and the large release of CytC from the mitochondria to the cytoplasm. These molecular evidences clearly indicate that liquid storage results in activation of the intrinsic mitochondrial apoptotic pathway in goat spermatozoa.
Numerous reports have suggested that an imbalance of antioxidant defenses usually follows the impairment of mitochondrial function, which is responsible for mitochondria-dependent apoptosis [27, 42]. Oxidative stress by ROS seems to significantly contribute to the damage to mitochondria and apoptosis of spermatozoa [3, 26, 42]. Studies in semen disorders have demonstrated the putative vital roles of ROS in inducing mitochondrial apoptotic signaling [43]. He et al. [44] reported that alleviating ROS-driven mitochondrial dysfunction can inhibit the apoptosis of germ cells. Falch et al. [34] found a gradual increase of ROS production throughout the 96 h of liquid storage of ram semen. In this study, the endogenous ROS level in goat spermatozoa was significantly increased with the extension of storage time, which is similar to the previous result [34], and the decrease in the mitochondrial SOD, CAT, and GSH-Px levels was also detected, indicating that liquid storage induced the excessive generation of ROS and decrease in antioxidant properties. It is well known that high levels of ROS cause lipid peroxidation of plasma membranes, resulting in alteration of spermatozoa functional quality [39, 45]. Previous study in boar spermatozoa revealed that an increase in lipid peroxidation was associated with decrease in motility and viability [6]. The occurrence of lipid peroxidation in mitochondria adversely affects mitochondrial integrity and function, which is one of major factors to explain the reduction of spermatozoa motility [6, 46]. Importantly, lipid peroxidation causes the loss of MMP, directly inducing the release of apoptotic factor CytC protein and then activating apoptosis in spermatozoa [39, 46]. In the present study, the concentration of mitochondrial MDA was significantly increased, suggesting that lipid peroxidation was significantly accelerated by liquid storage and resulted in the damage of mitochondria. Moreover, our observations of alteration of MDA were closely associated with the above results on mitochondrial structural alterations and expression changes of mitochondrial apoptotic proteins, implying that the long period of liquid storage causes ROS-mediated oxidative stress that is associated with mitochondria-dependent apoptosis. More importantly, our further analysis by inhibition of ROS validates the axis of the regulatory process. In the current study, the supplementation of the ROS scavenger NAC obviously suppressed the generation of ROS in a dose-dependent manner and enhanced the spermatozoa motility, followed by apoptosis inhibition, increase in MMP, and decrease in Cleaved caspase-9, Cleaved caspase-3, and CytC protein levels. Taken together, these findings support the conclusion that liquid storage causes an abnormal high level of ROS, resulting in mitochondrial damage, which then stimulates mitochondria-dependent apoptosis in goat spermatozoa [27, 43].
Putative molecular mechanism of ROS-induced mitochondria-dependent apoptosis in goat spermatozoa during liquid storage
Considerable evidences have demonstrated the prominent role of mitochondria-dependent apoptosis in germ cells [39, 47, 48]; however, the molecular basis and underlying mechanism of ROS-induced mitochondria-dependent apoptosis has not been clearly explored in spermatozoa during liquid storage. In this study, TMT-based quantitative proteomic analysis was used to profile the critical proteins involved in the mitochondrial apoptotic pathway during the liquid storage of goat spermatozoa. It is well known that Bcl-2 family proteins are the essential sentinels of the mitochondrial apoptotic pathway to control the first regulatory step of mitochondria-dependent apoptosis [49]. Studies have revealed that the coordinated expression levels of pro- and anti-apoptotic Bcl-2 family proteins ultimately decide germ cell apoptosis [48–50]. Our studies by proteomic analysis identified several DEPs belonging to the Bcl-2 family, such as the downregulated Bcl-xL (anti-apoptotic protein) and upregulated BAX and BAD (pro-apoptotic proteins), suggesting that these Bcl-2 family proteins may play pivotal roles in the mitochondrial pathway of apoptosis. Upon apoptotic stress, the interplay of pro- and anti-apoptotic members of Bcl-2 family regulates the mitochondrial apoptotic pathway through controlling the permeabilization of the outer mitochondrial membrane (OMM) and subsequent release of CytC into the cytoplasm to activate the caspase cascade [39, 50, 51]. Importantly, in the current study, both proteomic analysis and western blot analysis showed the upregulation of CytC protein, which co-occurred with the induction of the mitochondrial permeability transition, strongly indicating the activation of mitochondrial apoptotic pathway [41]. Additionally, AIFM1, a downstream molecule of the mitochondrial apoptotic pathway, also exhibited significant upregulation. Previous studies have shown that AIFM1 can induce the release of the mitochondrial protein CytC, activate caspase proteins and then induce apoptosis [52]. Moreover, the increase in cytoplasmic AIFM1 promotes the release of more AIFM1 from the mitochondria, further accelerating apoptosis [53]. The expression alterations of these apoptosis-related proteins may initiate mitochondria-dependent apoptosis during the liquid storage of goat spermatozoa.
Oxidative stress induced by excessive ROS generation is indispensable for mitochondria-dependent apoptosis [3, 26, 42]. The inner mitochondrial membrane (IMM) includes multiple complexes that make up mitochondrial ETC, which promotes ROS production [39]. Previous comparative proteomic analysis has suggested that the expression of subunits in ETC complexes was altered in spermatozoa exposed to excessive oxidative stress [54, 55]. Inhibition of mitochondrial complex I can induce a further increase in ROS production, eventually leading to apoptosis [56]. In the present study, several DEPs, including NDUFA9, NDUFS2, and NDUFS8, were involved in ETC complex I and exhibited significant downregulation during liquid storage, indicating the defects in mitochondrial complex I. Additionally, our study identified a downregulated SDHB protein, which is a key subunit of mitochondrial complex II and has evolved a role in apoptosis induction [57]. These subunits with decreased expression may be attributed to excess ROS generation and are potential contributors to mitochondria-dependent apoptosis in liquid-stored goat spermatozoa. Moreover, the effective scavenging of ROS is an essential process to protect germ cells from oxidative stress [39, 58]. In this study, several proteins related to ROS scavenging, such as SOD2 and PRDX1, were markedly repressed, and may contribute to antioxidant system disorders. The low expression of SOD2 protein agrees with our above results on the decreased enzyme activity of SOD. Additionally, PRDX1 is regarded as an antioxidant and functions in reducing ROS and inhibiting cell apoptosis [59]. In general, these differentially regulated proteins involved in the antioxidant defense system disturb the balance between ROS generation and scavenging, directly triggering the mitochondrial apoptotic pathway in goat spermatozoa.
Furthermore, ROS-activated MAPK signaling regulating the progression of apoptosis complicates the mechanisms of ROS-induced apoptosis [58, 60, 61]. Previous studies have shown that increased ROS, a vital second messenger, could activate MAPK signaling, which mediated the regulation of many biological processes in spermatozoa [60–62]. Moreover, the ROS-activated MAPK signaling pathway contributes to expression changes in Bcl-2 family proteins, leading to activation of the mitochondrial apoptotic pathway [63, 64]. As expected, in the present study, functional enrichment analysis showed that the ‘MAPK signaling pathway’ (chx04010) was significantly enriched. Being similar to the differential expression of critical Bcl-2 family proteins, several DEPs, including TAB2, JNK, and PKA, were identified and involved in the MAPK signaling pathway. These results implied another critical mechanism that ROS, as a second messenger, may regulate mitochondria-dependent apoptosis by modulating the MAPK signaling cascade during the liquid storage of goat spermatozoa, which clearly require further researches.