Both transforming growth factor-beta (TGF-β) and lipopolysaccharide (LPS) can activate hepatic stellate cells (HSCs), thus increasing expressions of alpha smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1) and promoting liver fibrosis. However, whether TGF-β and LPS have a common downstream reactor remains unclear. Recently, a strong relationship of circular RNAs (circRNAs) and fibrogenesis has been elucidated. In this study, we compared the expressions of several circRNAs in TGF-β- and LPS-activated HSCs, and found that circ-PWWP2A was upregulated in both TGF-β- and LPS-activated HSCs and in mouse fibrotic liver tissues. Meanwhile, circ-PWWP2A was positively correlated with HSC activation and proliferation. Two microRNAs, miR-203 and miR-223, were identified to be the downstream targets of circ-PWWP2A using luciferase reporter assay and pull-down interaction assay. Circ-PWWP2A was suggested to promote HSC activation and proliferation via sponging miR-203 and miR-223, and subsequently increasing Fstl1 and TLR4, respectively. Furthermore, downregulating circ-PWWP2A was indicated to alleviate hepatic fibrosis in vivo. In conclusion, our findings indicated that circ-PWWP2A is the common downstream reactor of TGF-β and LPS in HSC activation, and that circ-PWWP2A plays a critical role in hepatic fibrogenesis via sponging miR-203 and miR-223.